Textural Properties of Chinese Water Chestnut (Eleocharis dulcis) during Steam Heating Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Sensory Evaluation
2.3. Instrumental Tests
2.3.1. Shear Force Test
2.3.2. Puncture Test
2.4. Observation of CWC Cells
2.5. Data Analysis
3. Results and Discussion
3.1. Effect of Steaming Time on Sensory Texture of CWC
3.2. Instrumental Tests
3.2.1. Shear Force Test and Puncture Test
3.2.2. Instrumental Determination of CWC at Different Steaming Times
3.3. Effects of Steaming on the Cell Morphology and the Starch Granule Morphology of CWC
3.4. Correlation Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CWC | Chinese water chestnut |
References
- Luo, Y.; Li, X.; He, J.; Su, J.; Peng, L.; Wu, X.; Du, R.; Zhao, Q. Isolation, characterisation, and antioxidant activities of flavonoids from chufa (Eleocharis tuberosa) peels. Food Chem. 2014, 164, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Du, Z.; Guo, X. Artificial and mechanical harvesting techniques of Chinese water chestnut. J. Chang. Veg. 2020, 511, 9–13. [Google Scholar]
- Zhan, G.; Pan, L.; Tu, K.; Jiao, S. Antitumor, antioxidant, and nitrite scavenging effects of Chinese water chestnut (Eleocharis dulcis) peel flavonoids. J. Food Sci. 2016, 81, H2578–H2586. [Google Scholar] [CrossRef] [PubMed]
- Man, W.; Zong, Y.; Zhao, B.; Zhu, H. Development status, existing problems and development ideas of aquatic vegetable industry in China. J. Chang. Veg. 2019, 462, 35–41. [Google Scholar]
- Szczesniak, A.S. Texture is a sensory property. Food Qual. Prefer. 2002, 13, 215–225. [Google Scholar] [CrossRef]
- Bianchi, T.; Guerrero, L.; Gratacós-Cubarsí, M. Textural properties of different melon (Cucumis melo L.) fruit types: Sensory and physical-chemical evaluation. Sci. Hortic. 2016, 201, 46–56. [Google Scholar] [CrossRef]
- Sila, D.N.; Smout, C.; Vu, S.T.; Van Loey, A.; Hendrickx, M. Influence of pretreatment conditions on the texture and cell wall components of carrots during thermal processing. J. Food Sci. 2005, 70, E85–E91. [Google Scholar] [CrossRef]
- Chauvin, M.A.; Ross, C.F.; Pitts, M.; Kupferman, E.; Swanson, B. Relationship between instrumental and sensory determination of apple and pear texture. J. Food Qual. 2010, 33, 181–198. [Google Scholar] [CrossRef]
- Dijksterhuis, G.; Luyten, H.; de Wijk, R.; Mojet, J. A new sensory vocabulary for crisp and crunchy dry model foods. Food Qual. Prefer. 2007, 18, 37–50. [Google Scholar] [CrossRef]
- Varela, P.; Salvador, A.; Gámbaro, A.; Fiszman, S. Texture concepts for consumers: A better understanding of crispy—Crunchy sensory perception. Eur. Food Res. Technol. 2008, 226, 1081–1090. [Google Scholar] [CrossRef]
- Hua, S.-H.; Hsu, H.-C.; Han, P. P-Wave Visible-Shortwave-Near-Infrared (Vis-SW-NIR) Detection System for the Prediction of Soluble Solids Content and Firmness on Wax Apples. Appl. Spectrosc. 2019, 73, 1135–1145. [Google Scholar] [CrossRef] [PubMed]
- Lan, W.; Jaillais, B.; Leca, A.; Renard, C.M.; Bureau, S. A new application of NIR spectroscopy to describe and predict purees quality from the non-destructive apple measurements. Food Chem. 2020, 310, 125944. [Google Scholar] [CrossRef] [PubMed]
- Mohamadzadeh Moghadam, M.; Taghizadeh, M.; Sadrnia, H.; Pourreza, H.R. Nondestructive classification of saffron using color and textural analysis. Food Sci. Nutr. 2020, 8, 1923–1932. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, P.D.C.; Hashim, N.; Shamsudin, R.; Nor, M.Z.M. Quality evaluation of sweet potatoes (Ipomoea batatas L.) of different varieties using laser light backscattering imaging technique. Sci. Hortic. 2020, 260, 108861. [Google Scholar] [CrossRef]
- Tu, S.S.; Choi, Y.J.; McCarthy, M.J.; McCarthy, K.L. Tomato quality evaluation by peak force and NMR spin-spin relaxation time. Postharvest Biol. Technol. 2007, 44, 157–164. [Google Scholar] [CrossRef]
- Contreras, M.; Benedito, J.; Garcia-Perez, J. Ultrasonic characterization of salt, moisture and texture modifications in dry-cured ham during post-salting. Meat Sci. 2021, 172, 108356. [Google Scholar] [CrossRef]
- Sirisomboon, P.; Tanaka, M.; Kojima, T. Intensive Evaluation of Tomato ‘Momotaro’ Textural Properties. J. Jpn. Soc. Agric. Mach. 2008, 70, 245–246. [Google Scholar]
- Brookfield, P.L.; Nicoll, S.; Gunson, F.A.; Harker, F.R.; Wohlers, M. Sensory evaluation by small postharvest teams and the relationship with instrumental measurements of apple texture. Postharvest Biol. Technol. 2011, 59, 179–186. [Google Scholar] [CrossRef]
- Chiavaro, E.; Barbanti, D.; Vittadini, E.; Massini, R. The effect of different cooking methods on the instrumental quality of potatoes (cv. Agata). J. Food Eng. 2006, 77, 169–178. [Google Scholar] [CrossRef]
- Guiné, R.P.; Barroca, M.J. Effect of drying treatments on texture and color of vegetables (pumpkin and green pepper). Food Bioprod. Processing 2012, 90, 58–63. [Google Scholar] [CrossRef]
- Jaiswal, A.K.; Gupta, S.; Abu-Ghannam, N. Kinetic evaluation of colour, texture, polyphenols and antioxidant capacity of Irish York cabbage after blanching treatment. Food Chem. 2012, 131, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Santos, F.G.; Capriles, V.D. Relationships between dough thermomechanical parameters and physical and sensory properties of gluten-free bread texture during storage. LWT-Food Sci. Technol. 2021, 139, 110577. [Google Scholar] [CrossRef]
- Skarlatos, L.; Marinopoulou, A.; Petridis, A.; Raphaelides, S.N. Texture attributes of acid coagulated fresh cheeses as assessed by instrumental and sensory methods. Int. Dairy J. 2021, 114, 104939. [Google Scholar] [CrossRef]
- Skarlatos, L.; Marinopoulou, A.; Petridis, D.; Raphaelides, S.N. Texture assessment of set yoghurt using sensory and instrumental methods. Int. Dairy J. 2020, 104, 104644. [Google Scholar] [CrossRef]
- Bejaei, M.; Stanich, K.; Cliff, M.A. Modelling and Classification of Apple Textural Attributes Using Sensory, Instrumental and Compositional Analyses. Foods 2021, 10, 384. [Google Scholar] [CrossRef] [PubMed]
- Lázaro, A.; De Lorenzo, C. Texture analysis in melon landraces through instrumental and sensory methods. Int. J. Food Prop. 2015, 18, 1575–1583. [Google Scholar] [CrossRef]
- Paula, A.M.; Conti-Silva, A.C. Texture profile and correlation between sensory and instrumental analyses on extruded snacks. J. Food Eng. 2014, 121, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Ramana, S.V.; Wright, C.J.; Taylor, A.J. Measurement of firmness in carrot tissue during cooking using dynamic, static and sensory tests. J. Sci. Food Agric. 1992, 60, 369–375. [Google Scholar] [CrossRef]
- Rahim, H.A.; Ghazali, R.; Sahlan, S.; Maidin, M.S. Prediction of Texture of Raw Poultry Meat by Visible and Near-Infrared Reflectance Spetroscopy. J. Teknol. 2013, 64, 59–62. [Google Scholar]
- Tabilo-Munizaga, G.; Barbosa-Cánovas, G.V. Rheology for the food industry. J. Food Eng. 2005, 67, 147–156. [Google Scholar] [CrossRef]
- Kang, H.Q.; Chang, H.Y.; Xu, Y.B.; Chen, F. Improvement of paraffin section methods and structural observation to endosperm development of rice kernel. Acta Bot Boreal-Occident Sin 2008, 28, 1069–1074. [Google Scholar]
- Loh, J.; Breene, W.; Davis, E. Between-species differences in fracturability loss: Microscopic and chemical comparison of potato and chinese waterchestnut1. J. Texture Stud. 1982, 13, 325–347. [Google Scholar] [CrossRef]
- Ranganathan, K.; Subramanian, V.; Shanmugam, N. Effect of thermal and nonthermal processing on textural quality of plant tissues. Crit. Rev. Food Sci. Nutr. 2016, 56, 2665–2694. [Google Scholar] [CrossRef] [PubMed]
- Thiel, B.; Donald, A. Microstructural failure mechanisms in cooked and aged carrots. J. Texture Stud. 2000, 31, 437–455. [Google Scholar] [CrossRef]
- Mudahar, G.S.; Jen, J.J. Texture of raw and canned jicama (Pachyrrhizus tuberosus) and Chinese water chestnut (Eleocharis dulcis). J. Food Sci. 1991, 56, 977–980. [Google Scholar] [CrossRef]
- Fan, M.; Huang, Q.; Zhong, S.; Li, X.; Xiong, S.; Xie, J.; Zhao, S. Gel properties of myofibrillar protein as affected by gelatinization and retrogradation behaviors of modified starches with different crosslinking and acetylation degrees. Food Hydrocoll. 2019, 96, 604–616. [Google Scholar] [CrossRef]
- Hai, W.; Kang, T.; Wei, J.; Jikun, C. Texture changes of Chinese water chestnut (Eleocharis dulcis) during canning and the relationship between texture and starch properties. Trans. Chin. Soc. Agric. Eng. 2007, 4, 222–227. [Google Scholar]
- Ng, A.; Waldron, K.W. Effect of cooking and pre-cooking on cell-wall chemistry in relation to firmness of carrot tissues. J. Sci. Food Agric. 1997, 73, 503–512. [Google Scholar] [CrossRef]
- Renard, C.M. Effects of conventional boiling on the polyphenols and cell walls of pears. J. Sci. Food Agric. 2005, 85, 310–318. [Google Scholar] [CrossRef]
- Sajeev, M.; Manikantan, M.; Kingsly, A.; Moorthy, S.; Sreekumar, J. Texture analysis of taro (Colocasia esculenta L. Schott) cormels during storage and cooking. J. Food Sci. 2004, 69, 315–321. [Google Scholar] [CrossRef]
- Waldron, K.W.; Parker, M.; Smith, A.C. Plant cell walls and food quality. Compr. Rev. Food Sci. Food Saf. 2003, 2, 128–146. [Google Scholar] [CrossRef] [PubMed]
- Van Buren, J. The chemistry of texture in fruits and vegetables. J. Texture Stud. 1979, 10, 1–23. [Google Scholar] [CrossRef]
Texture Grade | Semantic Description | Score |
---|---|---|
Hardest (Crispest) | The pulp was hard and very juicy | 8~10 |
Harder (Crisper) | The pulp was crisp and juicy | 6~8 |
Hard (Crisp) | The pulp was not crisp like fresh fruits | 4~6 |
Less Hard (Less Crisp) | The pulp chewed somewhat gritty and had a little juice | 2~4 |
Least Hard (Least Crisp) | The pulp chewed like flour and had less juice | 0~2 |
Steaming Time | Sensory Score of Hardness | Sensory Score of Crispness |
---|---|---|
0 | 9.10 ± 0.74 a | 8.30 ± 1.99 a |
5 | 7.10 ± 1.67 b | 7.40 ± 1.34 ab |
10 | 7.00 ± 1.58 b | 7.00 ± 0.71 ab |
15 | 7.50 ± 1.12 b | 6.60 ± 0.55 b |
20 | 6.90 ± 1.02 b | 6.40 ± 0.89 b |
25 | 6.20 ± 0.84 b | 6.60 ± 1.14 b |
30 | 6.60 ± 0.89 b | 6.40 ± 0.55 b |
Maximum Force/g | Compression Work/(g·mm) | Return Work/(g·mm) | Slope of Descending Curve/(g/mm) | Constant of Descending Curve/(g/mm) | ||
---|---|---|---|---|---|---|
(A) Pre-test speed/(mm/s) | K1 | 236.8 | 652.4 | 75.2 | 1416.9 | 3015.1 |
K2 | 298.4 | 707.4 | 99.0 | 1115.8 | 2481.4 | |
K3 | 253.2 | 676.1 | 76.1 | 1431.1 | 2994.8 | |
R | 61.5 | 55.0 | 23.8 | 315.3 | 533.7 | |
(B) Testing speed/(mm/s) | K1 | 287.7 | 218.2 | 54.2 | 1156.7 | 1017.6 |
K2 | 305.9 | 639.4 | 96.6 | 1360.3 | 2832.6 | |
K3 | 194.8 | 1178.2 | 99.5 | 1446.9 | 4641.1 | |
R | 111.1 | 960.0 | 45.3 | 290.2 | 3623.5 | |
(C) Post-test speed/(mm/s) | K1 | 287.7 | 218.2 | 54.2 | 1156.7 | 1017.6 |
K2 | 305.9 | 639.4 | 96.6 | 1360.3 | 2832.6 | |
K3 | 194.8 | 1178.2 | 99.5 | 1446.9 | 4641.1 | |
R | 111.1 | 960.0 | 45.3 | 290.2 | 3623.5 | |
(D) Compression ratio/% | K1 | 287.7 | 218.2 | 54.2 | 1156.7 | 1017.6 |
K2 | 305.9 | 639.4 | 96.6 | 1360.3 | 2832.6 | |
K3 | 194.8 | 1178.2 | 99.5 | 1446.9 | 4641.1 | |
R | 111.1 | 960.0 | 45.3 | 290.2 | 3623.5 | |
optimal experimental conditions | A1B3C3D3 | A1B1C1D1 | A1B1C1D1 | A2B1C1D1 | A2B1C1D1 |
Maximum Force/g | Compression Work/(g·mm) | Return Work/(g·mm) | Slope of Descending Curve/(g/mm) | Constant of Descending Curve/(g/mm) | ||
---|---|---|---|---|---|---|
(A) Pre-test speed/(mm/s) | K1 | 530.2 | 448.6 | 50.3 | 41,616.6 | 48,762.6 |
K2 | 514.4 | 216.6 | 299.0 | 13,216.5 | 60,765.1 | |
K3 | 713.2 | 387.4 | 107.2 | 26,709.7 | 31,868.0 | |
R | 198.8 | 231.9 | 248.7 | 28,400.1 | 28,897.2 | |
(B) Testing speed/(mm/s) | K1 | 987.4 | 363.0 | 273.5 | 50,860.4 | 106,366.9 |
K2 | 413.8 | 364.7 | 94.2 | 18,865.4 | 20,568.1 | |
K3 | 356.7 | 324.8 | 88.7 | 11,816.9 | 14,460.7 | |
R | 630.7 | 39.9 | 184.8 | 39,043.5 | 91,906.2 | |
(C) Post-test speed/(mm/s) | K1 | 987.4 | 363.0 | 273.5 | 50,860.4 | 106,366.9 |
K2 | 413.8 | 364.7 | 94.2 | 18,865.4 | 20,568.1 | |
K3 | 356.7 | 324.8 | 88.7 | 11,816.9 | 14,460.7 | |
R | 630.7 | 39.9 | 184.8 | 39,043.5 | 91,906.2 | |
(D) Compression ratio/% | K1 | 987.4 | 363.0 | 273.5 | 50,860.4 | 106,366.9 |
K2 | 413.8 | 364.7 | 94.2 | 18,865.4 | 20,568.1 | |
K3 | 356.7 | 324.8 | 88.7 | 11,816.9 | 14,460.7 | |
R | 630.7 | 39.9 | 184.8 | 39,043.5 | 91,906.2 | |
optimal experimental conditions | A2B3C3D3 | A2B3C3D3 | A1B3C3D3 | A2B3C3D3 | A3B3C3D3 |
Index | Slope of Rising Curve/(g/mm) | Slope of Descending Curve/(g/mm) | Compression Work /(g·mm) | Return Work /(g·mm) | Maximum Force/g |
---|---|---|---|---|---|
Shear force indexes | |||||
Hardness | 0.905 *** | −0.724 * | 0.717 * | 0.646 | 0.397 |
Crispness | 0.890 *** | −0.782 ** | 0.889 *** | 0.818 ** | 0.644 |
Puncture indexes | |||||
Hardness | 0.855 ** | −0.901 *** | −0.760 ** | −0.536 | 0.242 |
Crispness | 0.783 ** | −0.868 ** | −0.9038 *** | −0.6022 | 0.4209 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Zhao, S.; Jia, C.; Xu, Y.; Zhang, B.; Niu, M. Textural Properties of Chinese Water Chestnut (Eleocharis dulcis) during Steam Heating Treatment. Foods 2022, 11, 1175. https://doi.org/10.3390/foods11091175
Lu Y, Zhao S, Jia C, Xu Y, Zhang B, Niu M. Textural Properties of Chinese Water Chestnut (Eleocharis dulcis) during Steam Heating Treatment. Foods. 2022; 11(9):1175. https://doi.org/10.3390/foods11091175
Chicago/Turabian StyleLu, Yu, Siming Zhao, Caihua Jia, Yan Xu, Binjia Zhang, and Meng Niu. 2022. "Textural Properties of Chinese Water Chestnut (Eleocharis dulcis) during Steam Heating Treatment" Foods 11, no. 9: 1175. https://doi.org/10.3390/foods11091175
APA StyleLu, Y., Zhao, S., Jia, C., Xu, Y., Zhang, B., & Niu, M. (2022). Textural Properties of Chinese Water Chestnut (Eleocharis dulcis) during Steam Heating Treatment. Foods, 11(9), 1175. https://doi.org/10.3390/foods11091175