Residue Analysis and Risk Exposure Assessment of Multiple Pesticides in Tomato and Strawberry and Their Products from Markets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Samples Collection
2.3. Spiked Samples of Tomato and Strawberry with Pesticides
2.4. Spiked Samples of Products from Market with Pesticides
2.5. Home Processing of Fortified Tomato and Strawberry
2.6. Sample Preparation
2.7. LC-MS/MS Analysis
2.8. GC-MS/MS Analysis
2.9. Dietary Risk Assessment
2.10. Statistical Analysis
3. Results
3.1. Residue Analysis of Pesticides in Tomato, Strawberry, and Their Product
3.2. Recovery of Pyrethroids from Tomato and Strawberry Based-Products
3.3. Dietary Risk Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Global Agriculture towards 2050; FAO: Rome, Italy, 2009. [Google Scholar]
- Oliveira, C.; Auad, A.; Mendes, S.; Frizzas, M. Crop losses and the economic impact of insect pests on Brazilian agriculture. Crop Prot. 2014, 56, 50–54. [Google Scholar] [CrossRef]
- Kolani, L.; Mawussi, G.; Sanda, K. Assessment of organochlorine pesticide residues in vegetable samples from some agricultural areas in Togo. Am. J. Anal. Chem. 2016, 7, 332–341. [Google Scholar] [CrossRef]
- Tudi, M.; Ruan, H.D.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture development, pesticide application and its impact on the environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef] [PubMed]
- Schimmel, S.C.; Garnas, R.L.; Patrick, J.M.; Moore, J.C. Acute toxicity, bioconcentration, and persistence of AC 222,705, benthiocarb, chlorpyrifos, fenvalerate, methyl parathion, and permethrin in the estuarine environment. J. Agric. Food Chem. 1983, 31, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Holyńska-Iwan, I.; Szewczyk-Golec, K. Pyrethroids: How they affect human and animal health? Medicina 2020, 56, 582. [Google Scholar] [CrossRef] [PubMed]
- Chrustek, A.; Hołyńska-Iwan, I.; Dziembowska, I.; Bogusiewicz, J.; Wróblewski, M.; Cwynar, A.; Olszewska-Słonina, D. Current Research on the Safety of Pyrethroids Used as Insecticides. Medicina 2018, 54, 61. [Google Scholar] [CrossRef]
- Cordova, D.; Benner, E.; Sacher, M.; Rauh, J.; Sopa, J.; Lahm, G.; Selby, T.; Stevenson, T.; Flexner, L.; Gutteridge, S.; et al. Anthranilic diamides: A new class of insecticides with a novel mode of action, ryanodine receptor activation. Pestic. Biochem. Physiol. 2006, 84, 196–214. [Google Scholar] [CrossRef]
- El-Sheikh, E.-S.A.; Ramadan, M.M.; El-Sobki, A.E.; Shalaby, A.A.; McCoy, M.R.; Hamed, I.A.; Ashour, M.-B.; Hammock, B.D. Pesticide residues in vegetables and fruits from farmer markets and associated dietary risks. Molecules 2022, 27, 8072. [Google Scholar] [CrossRef]
- FAO; WHO. Fruit and Vegetables for Health, Report of a Joint FAO/WHO Workshop; WHO: Geneva, Switzerland; FAO: Rome, Italy, 2004. [Google Scholar]
- Szpyrka, E.; Kurdziel, A.; Matyaszek, A.; Podbielska, M.; Rupar, J.; Słowik-Borowiec, M. Evaluation of pesticide residues in fruits and vegetables from the region of south-eastern Poland. Food Control. 2015, 48, 137–142. [Google Scholar] [CrossRef]
- Varela-Martínez, D.A.; Gonázlez-Curbelo, M.A.; González-Sálamo, J.; Hernandez-Borges, J. Analysis of multiclass pesticides in dried fruits using QuEChERS-gas chromatography tandem mass spectrometry. Food Chem. 2019, 297, 1–8. [Google Scholar] [CrossRef]
- Jin, B.; Xie, L.; Guo, Y.; Pang, G. Multi-residue detection of pesticides in juice and fruit wine: A review of extraction and detection methods. Food Res. Int. 2012, 46, 399–409. [Google Scholar] [CrossRef]
- Horrigan, L.; Lawrence, R.S.; Walker, P. How sustainable agriculture can address the environmental and human health harms of industrial agriculture. Environ. Health Perspect. 2002, 110, 445–456. [Google Scholar] [CrossRef] [PubMed]
- Vasylieva, N.; Barnych, B.; Wan, D.; El-Sheikh, E.-S.A.; Nguyen, H.M.; Wulff, H.; McMahen, R.; Strynar, M.; Gee, S.J.; Hammock, B.D. Hydroxy-fipronil is a new urinary biomarker of exposure to fipronil. Environ. Int. 2017, 103, 91–98. [Google Scholar] [CrossRef] [PubMed]
- El-Sheikh, E.A.; Ashour, M.-B. Diamide insecticides: Efficacy, toxicity and analytical methods for residue monitoring in food samples. Egypt. J. Chem. 2022, 65, 165–177. [Google Scholar] [CrossRef]
- Shalaby, A.; El-Sheikh, E.-S.; Refaat, A.; Ragheb, D. Residue analysis and associated risk assessment of hexythiazox and spinosad applied on strawberry plants. Egypt. J. Chem. 2022, 65, 489–498. [Google Scholar] [CrossRef]
- EPA. Pesticide Fact Sheet Name of Chemical, Chlorantraniliprole: Reason for Issuance, Unconditional Registration; U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances: Washington, DC, USA, 2008.
- Chu, Y.; Tong, Z.; Dong, X.; Sun, M.; Gao, T.; Duan, J.; Wang, M. Simultaneous determination of 98 pesticide residues in strawberries using UPLC-MS/MS and GC-MS/MS. Microchem. J. 2020, 156, 104975. [Google Scholar] [CrossRef]
- EU—European Union. Directorate-General for External Policies. The Use of Pesticides in Developing Countries and Their Impact on Health and the Right to Food. 2021. Available online: https://www.europarl.europa.eu/cmsdata/219887/Pesticides%20health%20and%20food.pdf (accessed on 5 September 2021).
- Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G.P.S.; Handa, N.; Kohli, S.K.; Yadav, P.; Bali, A.S.; Parihar, R.D.; et al. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 2019, 1, 1446. [Google Scholar] [CrossRef]
- Golge, O.; Kabak, B. Evaluation of QuEChERS sample preparation and liquid chromatography–triple-quadrupole mass spectrometry method for the determination of 109 pesticide residues in tomatoes. Food Chem. 2015, 176, 319–332. [Google Scholar] [CrossRef]
- Lozowicka, B.; Abzeitova, E.; Sagitov, A.; Kaczynski, P.; Toleubayev, K.; Li, A. Studies of pesticide residues in tomatoes and cucumbers from Kazakhstan and the associated health risks. Environ. Monit. Assess. 2015, 187, 609. [Google Scholar] [CrossRef]
- Farajzadeh, M.A.; Dabbagh, M.S. Development of a dispersive solid phase extraction method based on in situ formation of adsorbent followed by dispersive liquid—Liquid microextraction for extraction of some pesticide residues in fruit juice samples. J. Chromatogr. A 2020, 1627, 461398. [Google Scholar] [CrossRef]
- Pérez-Mayán, L.; Ramil, M.; Cela, R.; Rodríguez, I. Multiresidue procedure to assess the occurrence and dissipation of fungicides and insecticides in vineyard soils from Northwest Spain. Chemosphere 2020, 261, 127696. [Google Scholar] [CrossRef]
- Moinfar, S.; Jamil, L.A.; Sami, H.Z.; Ataei, S. An innovative continuous sample drop flow microextraction for GC-MS determination of pesticides in grape juice and water samples. J. Food Compos. Anal. 2021, 95, 103695. [Google Scholar] [CrossRef]
- Costa, F.R.D.S.; Amaral, S.M.B.; Freitas, J.V.D.M.; da Silva, F.S.; de Farias, V.L.; Damaceno, M.N.; Nobre, C.D.A.; Silva, R.D.O.; Silva, V.P.d.A.; Milhome, M.A.L. A short review of extraction methods associated with chromatographic analysis for the control of pesticide residues in processed fruit juices. Microchem. J. 2023, 186, 108312. [Google Scholar] [CrossRef]
- Hu, X.Z.; Chu, X.G.; Yu, J.X.; Zhang, Y.B.; Yan, Z.G.; Ni, L.S. Rapid determination of 105 pesticide residues in concentrated apple juice by gas chromatography-mass spectrometry. J. Instrum. Anal. 2003, 22, 26–31. [Google Scholar]
- Hu, X.Z.; Chu, X.G.; Yu, J.X.; Li, J.; Huang, X.; Lin, Y.F. Determination of 22 organochlorine and 15 pyrethroid pesticide residues in apple juice by matrix solid-phase dispersion and gas chromatography-mass spectrometry. J. Instrum. Anal. 2004, 23, 38–42. [Google Scholar]
- Chu, X.-G.; Hu, X.-Z.; Yao, H.-Y. Determination of 266 pesticide residues in apple juice by matrix solid-phase dispersion and gas chromatography-mass selective detection. J. Chromatogr. A 2004, 1063, 201–210. [Google Scholar] [CrossRef]
- Wang, J.H.; Zhang, Y.B.; Chu, X.G.; Wang, X.L. Determination of pesticide residues in concentrated fruit and vegetable juices by gas chromatography-mass spectrometry with large-volume, temperature-programmed injection. J. Instrum. Anal. 2006, 25, 29–34. [Google Scholar]
- Hlihor, R.M.; Pogăcean, M.O.; Rosca, M.; Cozma, P.; Gavrilescu, M. Modelling the behavior of pesticide residues in tomatoes and their associated long-term exposure risks. J. Environ. Manag. 2019, 233, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Wongmaneepratip, W.; Gao, X.; Yang, H. Effect of food processing on reduction and degradation pathway of pyrethroid pesticides in mackerel fillet (Scomberomorus commerson). Food Chem. 2022, 384, 132523. [Google Scholar] [CrossRef]
- Bian, Y.; Feng, Y.; Zhang, A.; Qi, X.; Ma, X.; Pan, J.; Han, J.; Liang, L. Residue behaviors, processing factors and transfer rates of pesticides and metabolites in rose from cultivation to consumption. J. Hazard. Mater. 2023, 442, 130104. [Google Scholar] [CrossRef] [PubMed]
- Hrynko, I.; Kaczyński, P.; Pietruszyńska, M.; Łozowicka, B. The effect of food thermal processes on the residue concentration of systemic and non-systemic pesticides in apples. Food Control. 2023, 143, 109267. [Google Scholar] [CrossRef]
- Huang, X.; Liu, H.; Xu, X.; Chen, G.; Li, L.; Zhang, Y.; Liu, G.; Xu, D. Magnetic composite based on carbon nanotubes and deep eutectic solvents: Preparation and its application for the determination of pyrethroids in tea drinks. Foods 2022, 12, 8. [Google Scholar] [CrossRef] [PubMed]
- Arisekar, U.; Shakila, R.J.; Shalini, R.; Jeyasekaran, G.; Padmavathy, P. Effect of household culinary processes on organochlorine pesticide residues (OCPs) in the seafood (Penaeus vannamei) and its associated human health risk assessment: Our vision and future scope. Chemosphere 2022, 297, 134075. [Google Scholar] [CrossRef] [PubMed]
- Bai, A.; Liu, S.; Chen, A.; Chen, W.; Luo, X.; Liu, Y.; Zhang, D. Residue changes and processing factors of eighteen field-applied pesticides during the production of Chinese Baijiu from rice. Food Chem. 2021, 359, 129983. [Google Scholar] [CrossRef]
- Li, X.; Liu, C.; Liu, F.; Zhang, X.; Peng, Q.; Wu, G.; Lin, J.; Zhao, Z. Accelerated removal of five pesticide residues in three vegetables with ozone microbubbles. Food Chem. 2023, 403, 134386. [Google Scholar] [CrossRef]
- Li, Y.; Xu, J.; Zhao, X.; He, H.; Zhang, C.; Zhang, Z. The dissipation behavior, household processing factor and risk assessment for cyenopyrafen residues in strawberry and mandarin fruits. Food Chem. 2021, 359, 129925. [Google Scholar] [CrossRef] [PubMed]
- Naman, M.; Masoodi, F.; Wani, S.M.; Ahad, T. Changes in concentration of pesticide residues in fruits and vegetables during household processing. Toxicol. Rep. 2022, 9, 1419–1425. [Google Scholar] [CrossRef]
- Zaller, J.G.; Kruse-Plaß, M.; Schlechtriemen, U.; Gruber, E.; Peer, M.; Nadeem, I.; Formayer, H.; Hutter, H.-P.; Landler, L. Pesticides in ambient air, influenced by surrounding land use and weather, pose a potential threat to biodiversity and humans. Sci. Total Environ. 2022, 838, 156012. [Google Scholar] [CrossRef]
- Sójka, M.; Miszczak, A.; Sikorski, P.; Zagibajło, K.; Karlińska, E.; Kosmala, M. Pesticide residue levels in strawberry processing by-products that are rich in ellagitannins and an assessment of their dietary risk to consumers. NFS J. 2015, 1, 31–37. [Google Scholar] [CrossRef]
Samples | Pesticides | Residue (mg kg−1) | LOD (mg kg−1) | LOQ (mg kg−1) | MRL * (mg kg−1) | ||
---|---|---|---|---|---|---|---|
Range | Average | RSD | |||||
Strawberry yogurt | Acetamiprid | 0.019–0.019 | 0.019 | 0.000 | 0.0001 | 0.0010 | 0.050 |
Chlorantraniliprole | 0.011–0.013 | 0.012 | 0.001 | 0.0001 | 0.0010 | 0.050 | |
Chlorpyrifos | 0.006–0.022 | 0.013 | 0.008 | 0.0016 | 0.0032 | 0.010 | |
Cypermethrin | 0.015–0.368 | 0.118 | 0.126 | 0.0040 | 0.0230 | 0.100 | |
Imidacloprid | 0.014–0.014 | 0.014 | 0.000 | 0.0001 | 0.0050 | 0.050 | |
Lambda-Cyhalothrin | 0.024–0.174 | 0.106 | 0.090 | 0.0001 | 0.0010 | 0.010 | |
Thiacloprid | 0.025–0.124 | 0.075 | 0.070 | 0.0001 | 0.0010 | 50.000 | |
Thiamethoxam | 0.008–0.046 | 0.020 | 0.018 | 0.0017 | 0.0050 | 0.050 | |
Strawberry juice | Chlorantraniliprole | 0.011–0.126 | 0.069 | 0.081 | 0.0001 | 0.0010 | 0.050 |
Cypermethrin | 0.032–0.096 | 0.066 | 0.032 | 0.0040 | 0.0230 | 0.100 | |
Lambda-Cyhalothrin | 0.011–0.011 | 0.011 | 0.000 | 0.0001 | 0.0010 | 0.010 | |
Thiamethoxam | 0.024–0.024 | 0.024 | 0.000 | 0.0017 | 0.0050 | 0.050 | |
Strawberry jam | Acetamiprid | 0.013–0.013 | 0.013 | 0.000 | 0.0001 | 0.0010 | 0.050 |
Chlorantraniliprole | 0.014–0.147 | 0.081 | 0.094 | 0.0001 | 0.0010 | 0.050 | |
Cypermethrin | 0.018–2.739 | 0.568 | 1.073 | 0.0040 | 0.0230 | 0.100 | |
Thiamethoxam | 0.010–0.083 | 0.030 | 0.027 | 0.0017 | 0.0050 | 0.050 | |
Dried strawberry | Cypermethrin | 0.215–0.215 | 0.215 | 0.000 | 0.0040 | 0.0230 | 0.100 |
Deltamethrin | 0.020–0.020 | 0.020 | 0.000 | 0.0018 | 0.0100 | 15.000 | |
Thiamethoxam | 0.050–0.050 | 0.050 | 0.000 | 0.0017 | 0.0050 | 0.050 | |
Tomato sauce | Acetamiprid | 0.006–0.006 | 0.006 | 0.000 | 0.0001 | 0.0010 | 0.500 |
Azoxystrobin | 0.007–0.021 | 0.011 | 0.007 | 0.0013 | 0.0040 | 3.000 | |
Boscalid | 0.015–0.015 | 0.015 | 0.000 | 0.0001 | 0.0010 | 3.000 | |
Carbendazim | 0.008–0.009 | 0.009 | 0.001 | 0.0001 | 0.0010 | 0.300 | |
Chlorantraniliprole | 0.006–0.035 | 0.021 | 0.021 | 0.0001 | 0.0010 | 0.600 | |
Chlorfenapyr | 0.021–0.031 | 0.027 | 0.004 | 0.0025 | 0.0100 | 0.010 | |
Chlorpyrifos | 0.006–0.030 | 0.012 | 0.010 | 0.0016 | 0.0032 | 0.010 | |
Cypermethrin | 0.038–0.788 | 0.176 | 0.249 | 0.0040 | 0.0230 | 0.500 | |
Difenoconazole | 0.007–0.012 | 0.009 | 0.003 | 0.0001 | 0.0050 | 2.000 | |
Dimethomorph | 0.007–0.023 | 0.013 | 0.007 | 0.0010 | 0.0050 | 1.000 | |
Imidacloprid | 0.006–0.035 | 0.016 | 0.010 | 0.0001 | 0.0050 | 0.300 | |
Lambda-Cyhalothrin | 0.009–1.311 | 0.351 | 0.579 | 0.0001 | 0.0010 | 0.070 | |
Pyridalyl | 0.348–0.348 | 0.348 | 0.000 | 0.0005 | 0.0010 | 1.500 | |
Thiamethoxam | 0.010–0.017 | 0.013 | 0.002 | 0.0017 | 0.0050 | 0.200 | |
Triadimenol | 0.011–0.011 | 0.011 | 0.000 | 0.0005 | 0.0010 | 0.300 | |
Tomato ketchup | Carbendazim | 0.006–0.006 | 0.006 | 0.000 | 0.0001 | 0.0010 | 0.300 |
Chlorfenapyr | 0.011–0.016 | 0.014 | 0.003 | 0.0025 | 0.0100 | 0.010 | |
Chlorpyrifos | 0.006–0.013 | 0.010 | 0.004 | 0.0016 | 0.0032 | 0.010 | |
Cypermethrin | 0.026–0.066 | 0.050 | 0.020 | 0.0040 | 0.0230 | 0.500 | |
Deltamethrin | 0.070–0.070 | 0.070 | 0.000 | 0.0018 | 0.0100 | 0.070 | |
Dimethomorph | 0.007–0.028 | 0.018 | 0.015 | 0.0010 | 0.0050 | 1.000 | |
Imidacloprid | 0.008–0.027 | 0.018 | 0.013 | 0.0001 | 0.0050 | 0.300 | |
Thiamethoxam | 0.013–0.128 | 0.047 | 0.055 | 0.0017 | 0.0050 | 0.200 | |
Tomato juice | Carbofuran | 0.008–0.008 | 0.008 | 0.000 | 0.0001 | 0.0005 | 0.002 |
Cypermethrin | 0.067–0.067 | 0.067 | 0.000 | 0.0040 | 0.0230 | 0.500 | |
Thiamethoxam | 0.013–0.013 | 0.013 | 0.000 | 0.0017 | 0.0050 | 0.200 | |
Dried tomato | Acetamiprid | 0.007–0.007 | 0.007 | 0.000 | 0.0001 | 0.0010 | 0.050 |
Chlorfenapyr | 0.015–0.015 | 0.015 | 0.000 | 0.0025 | 0.0100 | 0.010 | |
Chlorpyrifos | 0.020–0.020 | 0.020 | 0.000 | 0.0016 | 0.0032 | 0.010 | |
Cypermethrin | 0.335–0.335 | 0.335 | 0.000 | 0.0040 | 0.0230 | 0.500 | |
Dimethomorph | 0.010–0.010 | 0.010 | 0.000 | 0.0010 | 0.0050 | 1.000 | |
Lambda-Cyhalothrin | 0.033–0.033 | 0.033 | 0.000 | 0.0001 | 0.0010 | 0.070 | |
Permethrin | 0.006–0.006 | 0.006 | 0.000 | 0.0001 | 0.0010 | 0.050 | |
Thiamethoxam | 0.025–0.025 | 0.025 | 0.000 | 0.0017 | 0.0050 | 0.200 | |
Tomato samples | Azoxystrobin | 0.008–0.011 | 0.010 | 0.002 | 0.0013 | 0.0040 | 3.000 |
Chlorfenapyr | 0.017–0.022 | 0.020 | 0.004 | 0.0025 | 0.0100 | 0.010 | |
Chlorpyrifos | 0.097–0.115 | 0.103 | 0.010 | 0.0016 | 0.0032 | 0.010 | |
Cypermethrin | 0.015–0.681 | 0.250 | 0.374 | 0.0040 | 0.0230 | 0.500 | |
Deltamethrin | 0.102–0.14 | 0.121 | 0.027 | 0.0018 | 0.0100 | 0.070 | |
Difenoconazole | 0.006–0.006 | 0.006 | 0.000 | 0.0001 | 0.0050 | 2.000 | |
Lambda-Cyhalothrin | 0.014–0.089 | 0.053 | 0.038 | 0.0001 | 0.0010 | 0.070 | |
Permethrin | 0.075–0.075 | 0.075 | 0.000 | 0.0001 | 0.0010 | 0.050 | |
Thiamethoxam | 0.010–0.013 | 0.012 | 0.002 | 0.0017 | 0.0050 | 0.200 | |
Strawberry samples | Carbofuran | 0.008–0.008 | 0.008 | 0.000 | 0.0001 | 0.0005 | 0.050 |
Chlorfenapyr | 0.006–0.006 | 0.006 | 0.000 | 0.0025 | 0.0100 | 0.050 | |
Chlorpyrifos | 0.029–0.052 | 0.041 | 0.016 | 0.0016 | 0.0032 | 0.010 | |
Cypermethrin | 0.059–0.228 | 0.147 | 0.085 | 0.0040 | 0.0230 | 0.100 | |
Deltamethrin | 0.228–0.228 | 0.228 | 0.000 | 0.0018 | 0.0100 | 15.000 | |
Ethion | 0.026–0.029 | 0.028 | 0.002 | 0.0037 | 0.0110 | 0.050 | |
Lambda-Cyhalothrin | 0.008–0.045 | 0.026 | 0.009 | 0.0001 | 0.0010 | 0.010 | |
Thiamethoxam | 0.011–0.043 | 0.027 | 0.023 | 0.0017 | 0.0050 | 0.050 |
Samples | Pesticides | Spiked Concentrations | |||||
---|---|---|---|---|---|---|---|
Average * | RSD | ||||||
0.01 (mg kg−1) | 0.1 (mg kg−1) | 1 (mg kg−1) | 0.01 (mg kg−1) | 0.1 (mg kg−1) | 1 (mg kg−1) | ||
Strawberry yogurt | Deltamethrin | 65.0 b | 77.5 b | 94.1 b | 7.1 | 4.9 | 5.9 |
Lambda-cyhalothrin | 90.0 a | 105.0 a | 117.4 a | 14.1 | 1.4 | 10.5 | |
Permethrin | 55.0 c | 75.5 b | 84.2 b | 7.1 | 2.1 | 7.1 | |
Fenvalerate | 47.5 d | 61.0 c | 65.2 c | 10.6 | 2.8 | 4.0 | |
Strawberry jam | Deltamethrin | 94.5 a | 109.5 a | 106.7 a | 4.9 | 19.1 | 6.3 |
Lambda-cyhalothrin | 89.5 a | 90.0 a | 120.1 a | 13.4 | 1.4 | 23.7 | |
Permethrin | 75.5 b | 87.0 ab | 97.7 ab | 6.4 | 1.4 | 4.6 | |
Fenvalerate | 62.5 c | 77.5 b | 85.5 c | 3.5 | 3.5 | 6.5 | |
Tomato sauce | Deltamethrin | 76.1 b | 101.0 a | 113.7 b | 8.6 | 2.8 | 1.8 |
Lambda-cyhalothrin | 87.5 a | 110.0 a | 121.2 a | 3.5 | 15.6 | 7.3 | |
Permethrin | 72.5 b | 88.0 b | 84.5 c | 3.5 | 5.7 | 2.8 | |
Fenvalerate | 55.5 c | 81.9 b | 83.0 c | 6.4 | 4.2 | 4.5 | |
Tomato ketchup | Deltamethrin | 77.5 b | 82.5 b | 109.2 b | 3.5 | 3.5 | 1.5 |
Lambda-cyhalothrin | 89.0 a | 118.0 a | 127.9 a | 1.4 | 21.2 | 8.1 | |
Permethrin | 67.5 b | 74.5 bc | 89.3 c | 10.6 | 10.6 | 1.1 | |
Fenvalerate | 57.5 c | 71.5 c | 82.9 c | 4.9 | 3.5 | 9.5 |
Pesticides | Market Sample | Spiked Sample | Processed Sample * | % of Reduction ** |
---|---|---|---|---|
Tomato | ||||
Azoxystrobin | 0.010 | 0.011 | ND *** | 100.0 |
Bifenthrin | ND | 2.315 | 0.013 | 99.4 |
Chlorfenpayer | 0.020 | 0.020 | ND | 100.0 |
Chlorpyrifos | 0.052 | 0.054 | 0.031 | 42.6 |
Cypermethrin | 0.250 | 2.438 | 0.010 | 99.6 |
Deltamethrin | 0.121 | 2.603 | 0.002 | 99.9 |
Difenoconazole | 0.006 | 0.007 | ND | 100.0 |
Esfenvalerate | ND | 1.981 | 0.009 | 99.5 |
Fenvalerate | ND | 2.162 | 0.013 | 99.4 |
Lambda-cyhalothrin | 0.053 | 2.591 | ND | 100.0 |
Permethrin | 0.075 | 2.079 | 0.011 | 99.5 |
Thiamethoxam | 0.012 | 0.011 | ND | 100.0 |
Strawberry | ||||
Bifenthrin | ND | 1.716 | 0.020 | 98.8 |
Carbofuran | 0.008 | 0.009 | ND | 100.0 |
Chlorfenpayer | 0.006 | 0.006 | ND | 100.0 |
Chlorpyrifos | 0.168 | 0.166 | 0.080 | 51.8 |
Cypermethrin | 0.147 | 1.828 | 0.020 | 98.9 |
Deltamethrin | 0.228 | 2.414 | 0.021 | 99.1 |
Esfenvalerate | ND | 2.105 | 0.022 | 99.0 |
Ethion | 0.028 | 0.028 | ND | 100.0 |
Fenvalerate | ND | 2.212 | 0.080 | 96.4 |
Lambda-cyhalothrin | 0.051 | 2.080 | ND | 100.0 |
Permethrin | ND | 2.040 | 0.019 | 99.1 |
Thiamethoxam | 0.027 | 0.026 | ND | 100.0 |
Samples | Pesticides | ARfD * (mg kg−1 bw) | %ARfD | ADI * (mg kg−1 bw.day) | %ADI |
---|---|---|---|---|---|
Strawberry yogurt | Chlorpyrifos | 0.005 | 3.72 | 0.001 | 3.11 |
Cypermethrin | 0.005 | 62.15 | 0.005 | 8.51 | |
Lambda-Cyhalothrin | 0.005 | 29.39 | 0.0025 | 8.80 | |
Chlorantraniliprole | 1.56 | 0.01 | 1.56 | 0.01 | |
Thiamethoxam | 0.5 | 0.08 | 0.26 | 0.02 | |
Thiacloprid | 0.02 | 5.24 | 0.01 | 1.66 | |
Acetamiprid | 0.025 | 0.64 | 0.025 | 0.17 | |
Imidacloprid | 0.08 | 0.15 | 0.06 | 0.05 | |
Strawberry juice | Cypermethrin | 0.005 | 10.02 | 0.005 | 5.69 |
Lambda-Cyhalothrin | 0.005 | 1.15 | 0.0025 | 1.96 | |
Chlorantraniliprole | 1.56 | 0.04 | 1.56 | 0.02 | |
Thiamethoxam | 0.5 | 0.03 | 0.26 | 0.04 | |
Tomato juice | Cypermethrin | 0.005 | 5.96 | 0.005 | 5.96 |
Thiamethoxam | 0.5 | 0.01 | 0.26 | 0.02 | |
Carbofuran | 0.00015 | 23.70 | 0.00015 | 23.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Sheikh, E.-S.A.; Li, D.; Hamed, I.; Ashour, M.-B.; Hammock, B.D. Residue Analysis and Risk Exposure Assessment of Multiple Pesticides in Tomato and Strawberry and Their Products from Markets. Foods 2023, 12, 1936. https://doi.org/10.3390/foods12101936
El-Sheikh E-SA, Li D, Hamed I, Ashour M-B, Hammock BD. Residue Analysis and Risk Exposure Assessment of Multiple Pesticides in Tomato and Strawberry and Their Products from Markets. Foods. 2023; 12(10):1936. https://doi.org/10.3390/foods12101936
Chicago/Turabian StyleEl-Sheikh, El-Sayed A., Dongyang Li, Ibrahim Hamed, Mohamed-Bassem Ashour, and Bruce D. Hammock. 2023. "Residue Analysis and Risk Exposure Assessment of Multiple Pesticides in Tomato and Strawberry and Their Products from Markets" Foods 12, no. 10: 1936. https://doi.org/10.3390/foods12101936
APA StyleEl-Sheikh, E. -S. A., Li, D., Hamed, I., Ashour, M. -B., & Hammock, B. D. (2023). Residue Analysis and Risk Exposure Assessment of Multiple Pesticides in Tomato and Strawberry and Their Products from Markets. Foods, 12(10), 1936. https://doi.org/10.3390/foods12101936