Changes in the Texture and Flavor of Lotus Root after Different Cooking Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Cooking Procedures for Lotus Root
2.3. Determination of Physicochemical and Textural Properties of Lotus Root
2.4. Chemicals and Regents
2.5. Determination of Free Amino Acids
2.6. Determination of 5′-Nucleotide
2.7. Determination of Taste Trait by Electronic Tongue
2.8. Determination of Smell Characteristics by Electronic Nose
2.9. HS-SPME-GC-MS Analysis
2.10. Statistical Analyses
3. Result
3.1. Physicochemical and Textural Properties of Fresh Lotus Roots
3.2. Texture Properties of Lotus Roots before and after Cooking
3.3. Free Amino Acid Contents of Lotus Roots before and after Cooking
3.4. 5′-Nucleotides Contents of Lotus Roots before and after Cooking
3.5. Electronic Tongue for Taste Character
3.6. Electronic Nose for Smell Character
3.7. Volatile Aroma Components Contents of Lotus Roots before and after Cooking
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shin, D.J.; Choe, J.; Hwang, K.E.; Kim, C.J.; Jo, C. Antioxidant effects of lotus (Nelumbo nucifera) root and leaf extracts and their application on pork patties as inhibitors of lipid oxidation, alone and in combination. Int. J. Food Prop. 2019, 22, 383–394. [Google Scholar] [CrossRef]
- Ji, L.; Gao, W.; Wei, J.; Pu, L.; Yang, J.; Guo, C.J. In vivo antioxidant properties of lotus root and cucumber: A pilot comparative study in aged subjects. J. Nutr. Health Aging 2015, 19, 765–770. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Cheng, J.H.; Hong, Q.D.; Dong, W.J.; Chen, X.A.; Wu, G.P.; Zhang, Z.Z. Identification of changes in the volatile substances of robusta coffee beans during drying based on HS–SPME/GC-MS and E-nose analyses with the aid of chemometrics. LWT-Food Sci. Technol. 2022, 161, 113317. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Zang, M.W.; Zhang, K.H.; Wang, S.W.; Li, D.; Li, X.M. Effect of two types of thermal processing methods on the aroma and taste profile of three commercial plant-based beef analogues and beef by GC-MS, E-nose, E-tongue, and sensory evaluation. Food Control 2023, 146, 109551. [Google Scholar] [CrossRef]
- Li, X.B.; Feng, T.; Zhou, F.; Zhou, S.; Liu, Y.F.; Li, W.; Ye, R.; Yang, Y. Effects of drying methods on the tasty compounds of Pleurotus eryngii. Food Chem. 2015, 166, 358–364. [Google Scholar] [CrossRef]
- Qian, C.L.; Ren, N.N.; Wang, J.Y.; Xu, Q.; Chen, X.H.; Qi, X.H. Effects of exogenous application of CPPU, NAA and GA4+7 on parthenocarpy and fruit quality in cucumber (Cucumis sativus L.). Food Chem. 2018, 243, 410–413. [Google Scholar] [CrossRef]
- Min, T.; Niu, L.F.; Feng, X.Y.; Yi, Y.; Wang, L.M.; Zhao, Y.; Wang, H.X. The effects of different temperatures on the storage characteristics of lotus (Nelumbo nucifera G.) root. Food Chem. 2021, 348, 129109. [Google Scholar] [CrossRef]
- Wang, L.; Xu, R.J.; Hu, B.; Li, W.; Sun, Y.; Tu, Y.Y.; Zeng, X.X. Analysis of free amino acids in Chinese teas and flower of tea plant by high performance liquid chromatography combined with solid-phase extraction. Food Chem. 2010, 123, 1259–1266. [Google Scholar] [CrossRef]
- Taylor, M.W.; Hershey, H.V.; Levine, R.A.; Coy, K.; Olivelle, S. Improved method of resolving nucleotides by reversed-phase high-per- formance liquid chromatography. J. Chromatograpfzy 1981, 219, 133–139. [Google Scholar] [CrossRef]
- Ismail, I.; Hwang, Y.H.; Joo, S.T. Low-temperature and long-time heating regimes on non-volatile compound and taste traits of beef assessed by the electronic tongue system. Food Chem. 2020, 320, 126656. [Google Scholar] [CrossRef]
- Phat, C.; Moon, B.; Lee, C. Evaluation of umami taste in mushroom extracts by chemical analysis, sensory evaluation, and an electronic tongue system. Food Chem. 2016, 192, 1068–1077. [Google Scholar] [CrossRef]
- Liu, Z.B.; Zhang, M.; Wang, Y.C. Drying of restructured chips made from the old stalks of Asparagus officinalis: Impact of different drying methods. J. Sci. Food Agric. 2016, 96, 2815–2824. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.Q.; Wang, J.; Yang, L.C.; Wu, J.F.; Wang, X.L. Qualitative and quantitative analysis on aroma characteristics of ginseng at different ages using E-nose and GC-MS combined with chemometrics. J. Pharm. Biomed. Anal. 2015, 102, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Showkat, Q.A.; Majid, D.; Makroo, H.A.; Dar, B.N. Physico-mechanical characterization of different grades of Lotus rhizome (Nelumbo nucifera Gaertn) for valorisation and smart post-harvest management. Appl. Food Res. 2021, 1, 100002. [Google Scholar] [CrossRef]
- Sim, E.; Kim, J.; Kim, H.S.; Park, H.Y.; Choi, H.S. Physicochemical characteristics of three potato cultivars grown in different cultivation periods. J. Food Compos. Anal. 2023, 119, 105215. [Google Scholar] [CrossRef]
- Ellong, E.N.; Billard, C.; Adenet, S. Comparison of Physicochemical, Organoleptic and Nutritional Abilities of Eight Sweet Potato. Food Nutr. Sci. 2014, 5, 196–211. [Google Scholar]
- Tu, J.; Zhang, M.; Xu, B.G.; Liu, H.H. Effect of physicochemical properties on freezing suitability of Lotus (Nelumbo nucifera) root. Int. J. Refrig. 2015, 50, 1–9. [Google Scholar] [CrossRef]
- Yuan, L.; Xu, F.F.; Xu, Y.Y.; Wu, J.H.; Lao, F. Production of marinated chinese lotus root slices using high-pressure processing as an alternative to traditional thermal-and-soaking procedure. Molecules 2022, 27, 6506. [Google Scholar] [CrossRef]
- Chiang, P.Y.; Luo, Y.Y. Effects of pressurized cooking on the relationship between the chemical compositions and texture changes of lotus root (Nelumbo nucifera Gaertn.). Food Chem. 2007, 105, 480–484. [Google Scholar] [CrossRef]
- Kaur, L.; Singh, J.; Singh, N.; Ezekiel, R. Textural and pasting properties of potatoes (Solanum tuberosum L.) as affected by storage temperature. J. Sci. Food Agric. 2007, 87, 520–526. [Google Scholar] [CrossRef]
- García-Segovia, P.; Andrés-Bello, A.; Martínez-Monzó, J. Textural properties of potatoes (Solanum tuberosum L.; cv. Monalisa) as affected by different cooking processes. J. Food Eng. 2008, 88, 28–35. [Google Scholar] [CrossRef]
- Kong, Y.; Zhang, L.L.; Sun, Y.; Zhang, Y.Y.; Sun, B.G.; Chen, H.T. Determination of the Free Amino Acid, Organic Acid, and Nucleotide in Commercial Vinegars. J. Food Sci. 2017, 82, 1116–1123. [Google Scholar] [CrossRef] [PubMed]
- Ngudi, D.D.; Kuo, Y.-H.; Lambein, F. Amino acid profiles and protein quality of cooked cassava leaves or ‘saka-saka’. J. Sci. Food Agric. 2003, 83, 529–534. [Google Scholar] [CrossRef]
- Wang, K.; Zhuang, H.N.; Bing, F.L.; Chen, D.; Feng, T.; Xu, Z.M. Evaluation of eight kinds of flavor enhancer of umami taste by an electronic tongue. Food Sci. Nutr. 2021, 9, 2095–2104. [Google Scholar] [CrossRef]
- Yang, J.H.; Lin, H.C.; Mau, J.L. Non-volatile taste components of several commercial mushrooms. Food Chem. 2001, 72, 465–471. [Google Scholar] [CrossRef]
- Tsai, S.Y.; Tsai, H.L.; Mau, J.L. Non-volatile taste components of Agaricus blazei, Agrocybe cylindracea and Boletus edulis. Food Chem. 2008, 107, 977–983. [Google Scholar] [CrossRef]
- Lu, L.; Hu, Z.Q.; Hu, X.Q.; Li, D.; Tian, S.Y. Electronic tongue and electronic nose for food quality and safety. Food Res. Int. 2022, 162, 112214. [Google Scholar] [CrossRef]
- Li, S.Y.; Li, X.J.; Lamikanra, O.; Luo, Q.; Liu, Z.W.; Yang, J. Effect of cooking on physicochemical properties and volatile compounds in lotus root (Nelumbo nucifera Gaertn). Food Chem. 2017, 216, 316–323. [Google Scholar] [CrossRef]
- Tian, Y.T.; Zhao, Y.T.; Huang, J.J.; Zeng, H.L.; Zheng, B.D. Effects of different drying methods on the product quality and volatile compounds of whole shiitake mushrooms. Food Chem. 2016, 197, 714–722. [Google Scholar] [CrossRef]
- Tellez, M.R.; Schrader, K.K.; Kobaise, M. Volatile Components of the Cyanobacterium Oscillatoria perornata(Skuja). J. Agric. Food Chem. 2001, 49, 5989–5992. [Google Scholar] [CrossRef]
- Scotter, M.J.; Wilson, L.A.; Appleton, G.P.; Castle, L. Analysis of annatto (Bixa orellana) food coloring formulations. 2. Determination of aromatic hydrocarbon thermal degradation products by gas chromatography. J. Agric. Food Chem. 2000, 48, 484–488. [Google Scholar] [CrossRef] [PubMed]
Sensor No. | Sensing Species |
---|---|
S1 | Aromatic compounbds |
S2 | Oxynitride |
S3 | Sulfides |
S4 | Organic acid esters, terpenoids |
S5 | Biosynthetic compounds, e.g., materials produced in Maillard reaction, baking |
S6 | Lenthionine |
S7 | Aliphatic hydrocarbon |
S8 | Amines |
S9 | Dihydrostilbenes |
S10 | Hydrocarbon |
S11 | TVOC (volatile organic compound) |
S12 | Sulfide |
S13 | Ethylene |
S14 | Volatile gas produced in cooking |
S15 | Propane compounbds |
S16 | Isobutane compounbds |
S17 | combustible gas |
S18 | Sulfur Compounds |
Property | Value |
---|---|
Moisture content (%) | 82.99 ± 0.37 |
Soluble solids (%) | 8.03 ± 0.12 |
Soluble sugar (mg/g) | 27.02 ± 1.54 |
Titratable acid (%) | 0.32 ± 0.01 |
Row Lotus | Boiled 2 min | Boiled 4 min | Boiled 6 min | Steamed 2 min | Steamed 4 min | Steamed 6 min | Fried 1 min | Fried 2 min | Fried 3 min | |
---|---|---|---|---|---|---|---|---|---|---|
Hardness (N) | 243.47 ± 45.32 a | 74.57 ± 25.56 c | 70.47 ± 4.76 c | 64.02 ± 13.67 c | 83.57 ± 20.48 c | 79.97 ± 16.03 c | 73 ± 24.89 c | 171.53 ± 71.06 b | 226.74 ± 28.73 a | 181.53 ± 7.30 b |
Springiness | 1.96 ± 0.35 a | 0.72 ± 0.11 d | 0.49 ± 0.04 e | 0.56 ± 0.11 de | 0.50 ± 0.05 e | 0.61 ± 0.16 de | 0.65 ± 0.06 de | 1.14 ± 0.12 c | 1.34 ± 0.15 b | 1.31 ± 0.18 b |
Gumminess | 7.2 ± 0.67 c | 6.42 ± 0.61 c | 8.33 ± 0.17 c | 6.30 ± 0.63 c | 10.12 ± 0.49 c | 11.35 ± 0.54 c | 8.73 ± 0.28 c | 61.18 ± 3.55 b | 104.48 ± 9.64 a | 59.7 ± 5.23 b |
Chewiness (J) | 5.27 ± 0.34 c | 4.75 ± 0.21 c | 4.13 ± 0.28 c | 3.57 ± 0.19 c | 5.17 ± 0.31 c | 6.33 ± 0.43 c | 5.51 ± 0.35 c | 57.56 ± 2.82 b | 140.56 ± 9.53 a | 79.93 ± 5.83 b |
Cohesiveness | 0.1 ± 0.01 c | 0.09 ± 0.02 c | 0.12 ± 0.01 c | 0.10 ± 0.01 c | 0.12 ± 0.01 c | 0.14 ± 0.05 c | 0.12 ± 0.02 c | 0.33 ± 0.05 b | 0.47 ± 0.08 a | 0.33 ± 0.05 b |
Free Amino Acids | Content (mg/g Fresh Weight) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Row Lotus | Boiled 2 min | Boiled 4 min | Boiled 6 min | Steamed 2 min | Steamed 4 min | Steamed 6 min | Fired 1 min | Fried 2 min | Fried 3 min | |
L-Aspartic acid | 0.29 ± 0.06 a | 0.08 ± 0.01 b | ND | ND | 0.06 ± 0.02 b | ND | ND | 0.02 ± 0.01 c | ND | ND |
L-Glutamic acid | ND | ND | ND | ND | ND | ND | ND | 6.46 ± 0.21 b | 15.25 ± 0.35 a | 15.37 ± 0.75 a |
L-Serine | 0.49 ± 0.11 a | 0.33 ± 0.13 b | 0.11 ± 0.07 c | 0.09 ± 0.02 c | 0.06 ± 0.01 c | 0.2 ± 0.05 b | 0.15 ± 0.08 b | 0.13 ± 0.07 b | ND | 0.08 ± 0.01 c |
L-Histidine | 0.11 ± 0.01 d | 0.03 ± 0.01 e | 0.2 ± 0.05 c | 0.14 ± 0.05 c | 0.71 ± 0.12 b | 0.25 ± 0.12 c | 0.05 ± 0.04 e | 5.34 ± 1.24 a | 4.13 ± 0.96 a | ND |
L-Arginine | 2.44 ± 0.13 b | 1.68 ± 0.08 c | 3.21 ± 0.98 b | 0.95 ± 0.04 e | 2.36 ± 0.11 b | 1.8 ± 0.11 c | 1.34 ± 0.03 d | 2.34 ± 1.23 b | 2.97 ± 0.21 b | 7.14 ± 1.11 a |
L-Threonine | 10.82 ± 2.31 a | 6.73 ± 1.74 b | 4.81 ± 0.15 c | 1.26 ± 0.24 d | 9.83 ± 2.36 a | 7.28 ± 1.45 ab | 3.95 ± 0.34 c | 1.43 ± 0.21 d | ND | ND |
Glycine | 0.43 ± 0.14 a | 0.48 ± 0.21 a | 0.02 ± 0.01 c | 0.34 ± 0.05 b | 0.42 ± 0.11 a | 0.55 ± 0.13 a | 0.44 ± 0.11 a | 0.26 ± 0.04 b | ND | 0.23 ± 0.14 b |
L-Tyrosine | 0.3 ± 0.11 c | 0.21 ± 0.14 c | 1.75 ± 0.24 a | 0.21 ± 0.12 c | ND | 0.6 ± 0.11 b | 0.11 ± 0.05 c | ND | ND | 0.04 ± 0.01 d |
L = Proline | 0.09 ± 0.01 a | 0.04 ± 0.02 b | ND | ND | ND | ND | ND | ND | ND | ND |
L-Alanine | 0.22 ± 0.05 e | 0.29 ± 0.11 e | 0.13 ± 0.08 e | 0.24 ± 0.11 e | 0.98 ± 0.11 d | 0.85 ± 0.11 d | 0.94 ± 0.14 d | 2.34 ± 0.23 b | 4.52 ± 0.45 a | 1.23 ± 0.12 c |
L-Methionine | 0.05 ± 0.02 b | 0.01 ± 0.01 c | ND | ND | ND | 0.77 ± 0.12 a | ND | ND | ND | ND |
L-Valine | 0.53 ± 0.11 c | 0.41 ± 0.04 c | 0.43 ± 0.08 c | 0.13 ± 0.03 e | 0.23 ± 0.06 d | ND | 0.84 ± 0.14 b | 3.23 ± 0.73 a | 0.31 ± 0.07 f | 0.07 ± 0.01 i |
L-Tryptophan | 0.29 ± 0.14 c | 0.21 ± 0.08 c | 0.12 ± 0.05 d | 0.25 ± 0.17 c | 0.54 ± 0.13 b | 0.13 ± 0.09 cd | 0.27 ± 0.12 c | 0.71 ± 0.19 a | ND | 0.12 ± 0.05 d |
L-Phenylalanine | 3.65 ± 0.23 b | 2.29 ± 0.12 c | 0.28 ± 0.13 d | ND | 2.55 ± 0.45 c | 0.05 ± 0.01 e | 0.13 ± 0.04 e | 7.59 ± 0.57 a | 0.32 ± 0.12 d | 0.11 ± 0.07 e |
L-Isoleucine | 0.32 ± 0.03 a | 0.31 ± 0.04 a | 0.11 ± 0.07 b | 0.31 ± 0.03 a | 0.38 ± 0.04 a | 0.04 ± 0.04 b | 0.34 ± 0.07 a | 0.19 ± 0.08 b | 0.07 ± 0.01 b | 0.02 ± 0.01 c |
L-Lysine | 0.38 ± 0.12 b | 0.26 ± 0.17 b | ND | 0.02 ± 0.01 d | 0.32 ± 0.11 b | 0.08 ± 0.02 c | ND | 0.24 ± 0.11 b | 4.52 ± 0.27 a | ND |
L-Leucine | 0.12 ± 0.09 a | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Bitter | 7.4 ± 2.36 a | 4.91 ± 0.59 ab | 4.15 ± 0.97 ab | 1.64 ± 0.23 c | 6.06 ± 2.13 a | 2.79 ± 0.38 b | 2.92 ± 044 b | 6.47 ± 2.54 a | 3.67 ± 0.67 b | 0.32 ± 0.07 b |
MSG-like | 0.29 ± 0.06 c | ND | ND | ND | ND | ND | ND | 6.48 ± 0.31 b | 15.25 ± 2.13 a | 15.37 ± 3.64 a |
Sweet | 11.94 ± 4.34 a | 7.8 ± 2.54 a | 4.96 ± 1.38 b | 1.86 ± 0.35 c | 11.55 ± 5.27 a | 8.76 ± 3.78 a | 5.33 ± 2.74 ab | 4.27 ± 1.39 b | 9.04 ± 2.67 a | 1.46 ± 0.56 c |
Total | 20.9 ± 4.69 b | 13.36 ± 3.14 bc | 11.17 ± 2.67 c | 3.94 ± 0.87 d | 18.44 ± 4.39 b | 12.6 ± 2.95 c | 8.56 ± 1.78 c | 30.28 ± 5.24 a | 32.09 ± 6.74 a | 24.41 ± 4.51 ab |
5′-Nucleotides | Content (mg/g Fresh Weight) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Row Lotus | Boiled for 2 min | Boiled for 4 min | Boiled for 6 min | Steamed for 2 min | Steamed for 4 min | Steamed for 6 min | Fried for 1 min | Fried 2 min | Fried 3 min | |
5′-CMP | 0.05 ± 0.07 d | 0.31 ± 0.02 c | 0.61 ± 0.08 b | 0.24 ± 0.12 c | 0.93 ± 0.04 a | 1.02 ± 0.07 a | 0.66 ± 0.17 b | ND | ND | ND |
5′-UMP | 0.02 ± 0.01 c | ND | 0.01 ± 0.01 c | ND | 0.02 ± 0.01 c | 0.02 ± 0.01 c | 0.01 ± 0.01 c | 0.25 ± 0.03 b | 0.27 ± 0.09 b | 0.4 ± 0.02 a |
5′-GMP | ND | ND | 0.01 ± 0.01 b | ND | 0.02 ± 0.01 a | 0.02 ± 0.01 a | 0.02 ± 0.01 a | ND | ND | ND |
5′-IMP | ND | ND | ND | ND | ND | ND | ND | ND | 0.58 ± 0.12 a | 0.39 ± 0.01 b |
5′-AMP | ND | ND | ND | ND | 0.01 ± 0.01 a | ND | ND | ND | ND | ND |
Total | 0.07 | 0.31 | 0.63 | 0.24 | 0.98 | 1.06 | 0.69 | 0.25 | 0.85 | 0.79 |
Compound Name (μg/kg) | Row Lotus | Steamed 4 min | Bired 4 min | Fired 2 min |
---|---|---|---|---|
(E)-2-Octen-1-ol | ND | 0.97 ± 0.05 a | ND | ND |
1-Pentanol | 14.54 ± 1.23 a | ND | ND | ND |
(Z)-3-Hexen-1-ol | 1.2 ± 0.07 a | ND | ND | ND |
1-Hexanol | 24.06 ± 3.24 a | ND | 3.99 ± 0.23 b | ND |
5-methyl-1-Hexanol | ND | 0.3 ± 0.02 b | 0.78 ± 0.11 a | ND |
1-Octen-3-ol | ND | ND | ND | 32.42 ± 5.26 a |
2,4-dimethyl-Cyclohexanol | 2.79 ± 0.31 b | ND | ND | 33.7 ± 5.14 a |
3-Ethyl-4-methylpentan-1-ol | 3.05 ± 0.64 a | ND | ND | ND |
Benzyl alcohol | 4.32 ± 0.97 a | ND | 0.58 ± 0.19 b | ND |
Furaneol | ND | ND | ND | 4.17 ± 0.24 a |
2-Octen-1-ol | 1.42 ± 0.08 c | 2.89 ± 0.23 a | 2.11 ± 0.87 b | ND |
(E)-2-Octen-1-ol | 1.22 ± 0.17 c | ND | 9.41 ± 2.19 b | 33.7 ± 5.16 a |
4-Ethylcyclohexanol | ND | ND | ND | 13.4 ± 1.24 a |
1-Octanol | 12.16 ± 2.14 a | 2.89 ± 0.09 c | 6.93 ± 1.45 b | ND |
Linalool | ND | 0.02 ± 0.01 a | ND | ND |
(E)-2-Nonen-1-ol | 24.81 ± 3.29 b | 14.87 ± 1.96 c | ND | 133.96 ± 9.48 a |
2-Nonen-1-ol | 24.81 ± 3.13 a | 13.27 ± 1.65 b | 6.48 ± 2.13 c | ND |
Phenylethyl Alcohol | 4.44 ± 0.67 a | ND | ND | ND |
(Z)-3-Nonen-1-ol | 3.81 ± 0.19 a | ND | ND | ND |
1-Nonanol | 11.31 ± 2.36 a | ND | ND | ND |
5-methyl-2-(1-methylethyl)-Cyclohexanol | 3.17 ± 1.69 a | ND | 0.74 ± 0.07 b | ND |
(E)-2-Decen-1-ol | 1.99 ± 0.13 b | ND | 4.81 ± 0.94 a | ND |
Geraniol | 2.99 ± 0.61 a | ND | ND | ND |
(Z)-3-Decen-1-ol | 1.83 ± 0.24 a | ND | ND | ND |
(E)-2-Decenal | 0.57 ± 0.07 c | 1.06 ± 0.09 b | 1.08 ± 0.05 b | 87.94 ± 8.91 a |
Pentanal | ND | ND | 2.37 ± 0.24 a | ND |
Hexanal | 6.05 ± 2.17 c | 3.38 ± 0.87 d | 18.91 ± 3.84 b | 82.35 ± 9.26 a |
Heptanal | ND | 0.65 ± 0.08 b | ND | 15.58 ± 2.19 a |
(Z)-2-Heptenal | ND | ND | 6.89 ± 1.67 b | 98.95 ± 9.25 a |
Benzaldehyde | 4.36 ± 0.94 a | 0.59 ± 0.07 c | 1.58 ± 0.23 b | ND |
Octanal | 2.79 ± 0.21 c | 2.89 ± 0.27 c | 9.41 ± 2.19 b | 33.7 ± 5.19 a |
(E,E)-2,4-Heptadienal | ND | ND | ND | 19.54 ± 5.41 a |
(E)-2-Nonenal | ND | ND | ND | 63.57 ± 8.26 a |
(E)-4-Nonenal | ND | ND | ND | 25.05 ± 3.45 a |
Nonanal | 24.81 ± 3.29 b | 14.87 ± 1.87 c | 3.48 ± 0.98 d | 133.96 ± 9.68 a |
2-Nonenal | ND | 1.01 ± 0.07 c | 3.69 ± 0.95 b | 19.12 ± 2.36 a |
Decanal | 1.99 ± 0.13 c | 1.03 ± 0.06 d | 4.81 ± 0.94 b | 12.84 ± 4.29 a |
2,4-Nonadienal | ND | ND | ND | 15.05 ± 4.57 a |
2,4-dimethyl-Benzaldehyde | 1.61 ± 0.07 a | 0.55 ± 0.05 c | 1.03 ± 0.05 b | ND |
(Z)-2-Decenal | ND | 1.06 ± 0.09 b | 1.08 ± 0.05 b | 87.94 ± 8.91 a |
(Z)-3-Phenylacrylaldehyde | 1.24 ± 0.12 a | ND | 0.49 ± 0.07 b | ND |
2,4-Decadienal | 1.69 ± 0.18 c | 34.93 ± 5.67 b | 1.96 ± 0.08 c | 1794.12 ± 56.23 a |
(E,E)-2,4-Dodecadienal | ND | ND | ND | 0.46 ± 0.02 a |
E-2-Undecenal | ND | ND | ND | 46.86 ± 5.49 a |
Tridecanal | 0.58 ± 0.12 a | ND | 0.4 ± 0.17 a | ND |
13-Methyltetradecanal | 14.82 ± 5.26 a | ND | ND | ND |
Dodecanal | ND | ND | 1.57 ± 0.15 a | ND |
Butanoic acid, 2-methyl-, methyl ester | 0.59 ± 0.03 a | ND | 0.42 ± 0.07 b | ND |
Formic acid, heptyl ester | 4.09 ± 0.64 a | ND | ND | ND |
Formic acid, octyl ester | 12.16 ± 2.14 a | ND | 6.93 ± 1.45 b | ND |
Propanoic acid, 2-methyl-, 3-hydroxy-2,2,4-trimethylpentyl ester | 2.65 ± 0.65 a | 0.73 ± 0.08 b | 2.22 ± 0.15 a | ND |
4,7-Methano-1H-inden-6-ol, 3a,4,5,6,7,7a-hexahydro-, acetate | ND | ND | 0.49 ± 0.07 a | ND |
Dimethyl phthalate | ND | 0.36 ± 0.02 a | 0.39 ± 0.02 a | ND |
5-hexyldihydro-2(3H)-Furanone | 0.6 ± 0.05 a | ND | ND | ND |
Benzyl Benzoate | 5.46 ± 1.24 a | ND | ND | ND |
Tetradecanoic acid, 12-methyl-, methyl ester | 2.25 ± 0.26 a | ND | ND | ND |
Dibutyl phthalate | 70.92 ± 4.35 a | 0.79 ± 0.12 c | 4.93 ± 0.65 b | ND |
1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester | ND | ND | 4.93 ± 0.65 a | ND |
1-hydroxy-2-Propanone | ND | ND | ND | 56.42 ± 9.21 a |
3-Hexanone | 1.39 ± 0.24 a | 0.65 ± 0.08 b | ND | ND |
1-Octen-3-one | ND | ND | ND | 7.18 ± 1.26 a |
6-methyl-5-Hepten-2-one | ND | ND | 1.43 ± 0.21 a | ND |
2,5-Dimethylfuran-3,4(2H,5H)-dione | ND | ND | ND | 4.17 ± 0.24 a |
Acetophenone | 1.02 ± 0.07 a | ND | 0.64 ± 0.24 a | ND |
3-methyl-1,2,4-Cyclopentanetrione | ND | ND | ND | 17.19 ± 1.67 a |
3-Nonen-2-one | ND | ND | ND | 10.1 ± 1.47 a |
5-dihydroxy-6-methyl-4H-Pyran-4-one, 2,3-dihydro-3 | ND | ND | ND | 33.28 ± 5.12 a |
trans-3-Nonen-2-one | ND | ND | ND | 10.1 ± 1.47 a |
2-Dodecanone | ND | ND | 1.21 ± 0.14 a | ND |
6,10-dimethyl-5,9-Undecadien-2-one | 1.66 ± 0.19 a | ND | 1.4 ± 011 a | ND |
6,10,14-trimethyl-2-Pentadecanone | ND | ND | ND | 5.75 ± 1.24 a |
2,6,7-trimethyl-Decane | ND | 1.44 ± 0.24 a | ND | ND |
2,6-dimethyl-Nonane | ND | 0.66 ± 0.04 b | 0.85 ± 0.09 a | ND |
5-methyl-Decane | ND | 0.24 ± 0.07 b | 0.4 ± 0.02 a | ND |
4-methyl-Decane | 1.01 ± 0.31 b | 1.29 ± 0.14 b | 2.75 ± 0.29 a | ND |
2-methyl-Decane | ND | ND | 0.45 ± 0.05 a | ND |
3,7-dimethyl-Nonane | ND | 0.51 ± 0.13 a | ND | ND |
2,3-Dimethyldecane | ND | ND | 0.58 ± 0.19 a | ND |
2,6-Dimethyldecane | ND | 0.73 ± 0.08 a | ND | ND |
5-Ethyldecane | ND | 0.47 ± 0.09 a | ND | ND |
2-methyl-Undecane | ND | ND | 1.03 ± 0.05 a | ND |
3-methyl-Undecane | ND | 0.47 ± 0.09 b | 0.85 ± 0.09 a | ND |
4-methyl-Undecane | ND | 0.38 ± 0.07 a | ND | ND |
5-methyl-Undecane | ND | 0.73 ± 0.08 a | ND | ND |
4,7-dimethyl-Undecane | ND | ND | 2.89 ± 0.98 a | ND |
6-methyl-Dodecane | ND | ND | 0.42 ± 0.07 a | ND |
2,3,5,8-tetramethyl-Decane | ND | 0.25 ± 0.01 a | ND | ND |
2,9-dimethyl-Decane | ND | ND | 0.81 ± 0.17 a | ND |
4,6-dimethyl-Dodecane | ND | 0.66 ± 0.04 a | ND | ND |
7-methyl-Pentadecane | 2.3 ± 0.19 a | ND | ND | ND |
(1-ethylnonyl)-Benzene | 1.19 ± 0.21 b | ND | 1.69 ± 0.12 a | ND |
Pentadecanal | 14.82 ± 5.26 a | ND | ND | ND |
(1-pentylheptyl)-Benzene | ND | 0.21 ± 0.09 a | ND | ND |
(1-butyloctyl)-Benzene | 1.4 ± 0.15 a | 0.2 ± 0.01 b | ND | ND |
(1-propylnonyl)-Benzene | 1.05 ± 0.31 a | ND | ND | ND |
(1-ethyldecyl)-Benzene | ND | ND | 2.32 ± 0.67 a | ND |
(1-hexylheptyl)-Benzene | ND | ND | 1.13 ± 0.21 a | ND |
Toluene | 2.12 ± 0.41 c | 99.79 ± 6.78 b | 112.65 ± 9.67 a | ND |
1,3-dimethyl-Benzene | 6.3 ± 2.14 a | 6.79 ± 2.69 a | ND | ND |
Ethylbenzene | 6.3 ± 2.14 a | 3.37 ± 1.04 b | 9.92 ± 3.21 a | ND |
p-Xylene | ND | 6.79 ± 2.69 a | 11.88 ± 2.97 a | ND |
1,2,4,5-tetramethyl-Benzene | ND | 0.2 ± 0.01 a | ND | ND |
(1-butylhexyl)-Benzene | 0.75 ± 0.08 a | ND | ND | ND |
(1-butylheptyl)-Benzene | 1.67 ± 0.19 a | 0.1 ± 0.01 b | 1.6 ± 0.14 a | ND |
(1-propyloctyl)-Benzene | 1.4 ± 0.15 a | ND | 1.17 ± 0.24 a | ND |
(1-methyldecyl)-Benzene | 2.34 ± 0.54 a | ND | 1.45 ± 0.13 b | ND |
(1-pentylheptyl)-Benzene | 2.31 ± 0.19 a | ND | 1.76 ± 0.21 b | ND |
(1-butyloctyl)-Benzene | ND | ND | 1.83 ± 0.31 a | ND |
(1-propylnonyl)-Benzene | ND | ND | 1.28 ± 0.27 a | ND |
(1-pentyloctyl)-Benzene | ND | ND | 1.13 ± 0.17 a | ND |
(1-propyldecyl)-Benzene | ND | ND | 0.39 ± 0.04 a | ND |
1,3,5-Cycloheptatriene | 73.04 ± 6.24 b | 49.79 ± 2.15 c | 82.65 ± 8.39 a | 44.86 ± 3.16 c |
3-ethyl-2-methyl-1,3-Hexadiene | ND | ND | ND | 52.03 ± 2.16 a |
(Z)-5-Undecene | ND | 0.4 ± 0.02 a | 0.64 ± 0.24 a | ND |
(E)-5-Tetradecene | 0.63 ± 0.21 a | ND | ND | ND |
(Z)-6-Dodecene | ND | ND | ND | 11.99 ± 1.36 a |
2-Undecenal | ND | 0.43 ± 0.05 b | 0.23 ± 0.04 c | 46.86 ± 5.24 a |
Decahydro-1,5,5,8a-tetramethyl-, [1S-(13a48a9R)]-1,2,4-Methenoazulene | ND | 0.46 ± 0.05 a | ND | ND |
Diepicedrene | ND | 0.16 ± 0.01 a | ND | ND |
2,4-Ditertbutylphenol | 1.45 ± 0.24 a | ND | 0.82 ± 0.06 b | ND |
Methional | ND | 0.62 ± 0.08 b | ND | 11.06 ± 2.47 a |
Pentanoic acid | ND | ND | ND | 32.55 ± 5.39 a |
Nonanoic acid | ND | ND | ND | 10.11 ± 2.69 a |
,methyl-Pyrazine | ND | ND | ND | 11.68 ± 5.29 a |
2,6-dimethyl-Pyrazine | ND | ND | ND | 12.55 ± 2.14 a |
2,5-dimethyl-Pyrazine | ND | ND | ND | 12.55 ± 2.36 a |
(phenylmethyl)-Hydrazine | 4.44 ± 0.67 a | ND | ND | ND |
,2-pentyl-Pyridine | ND | ND | ND | 17.04 ± 2.61 a |
Benzothiazole | 1.43 ± 0.54 a | ND | ND | ND |
1-methyl-Naphthalene | ND | 0.31 ± 0.05 a | 0.34 ± 0.06 a | ND |
1,6-anhydro-D-Glucopyranose | ND | ND | ND | 1119.3 ± 54.23 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, C.; Jiang, Y.; Sun, Y.; Yin, X.; Zhang, M.; Kan, J.; Liu, J.; Xiao, L.; Jin, C.; Qi, X.; et al. Changes in the Texture and Flavor of Lotus Root after Different Cooking Methods. Foods 2023, 12, 2012. https://doi.org/10.3390/foods12102012
Qian C, Jiang Y, Sun Y, Yin X, Zhang M, Kan J, Liu J, Xiao L, Jin C, Qi X, et al. Changes in the Texture and Flavor of Lotus Root after Different Cooking Methods. Foods. 2023; 12(10):2012. https://doi.org/10.3390/foods12102012
Chicago/Turabian StyleQian, Chunlu, Yaying Jiang, Yan Sun, Xiaodong Yin, Man Zhang, Juan Kan, Jun Liu, Lixia Xiao, Changhai Jin, Xiaohua Qi, and et al. 2023. "Changes in the Texture and Flavor of Lotus Root after Different Cooking Methods" Foods 12, no. 10: 2012. https://doi.org/10.3390/foods12102012
APA StyleQian, C., Jiang, Y., Sun, Y., Yin, X., Zhang, M., Kan, J., Liu, J., Xiao, L., Jin, C., Qi, X., & Yang, W. (2023). Changes in the Texture and Flavor of Lotus Root after Different Cooking Methods. Foods, 12(10), 2012. https://doi.org/10.3390/foods12102012