Changes in Lacto-Fermented Agaricus bisporus (White and Brown Varieties) Mushroom Characteristics, including Biogenic Amine and Volatile Compound Formation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Edible Mushrooms and Lactic Acid Bacteria Strains Used for Fermentation
2.2. Analysis of the Mushrooms’ Colour and Acidity Characteristics, Lactic Acid Bacteria, and Mould/Yeast Counts
2.3. Determination of the Mushrooms’ Volatile Compounds (VC)
2.4. Analysis of the Mushrooms’ Fatty Acid Profile
2.5. Analysis of Biogenic Amine Content in Mushrooms
2.6. Evaluation of the Overall Acceptability and Emotions Induced for Consumers by the Edible Mushrooms
2.7. Statistical Analysis
3. Results and Discussion
3.1. Mushrooms’ Colour Characteristics, pH, Lactic Acid Bacteria, and Mould/Yeast Count
3.2. Biogenic Amine Formation in Fermented Mushroom Samples
3.3. Fatty Acid Profile of the Non-Treated and Fermented Mushrooms
3.4. Non-Treated and Fermented Mushrooms Volatile Compound Profiles
3.5. Overall Acceptability and Emotions Induced for Judges by the Mushroom Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bakratsas, G.; Polydera, A.; Katapodis, P.; Stamatis, H. Recent Trends in Submerged Cultivation of Mushrooms and Their Application as a Source of Nutraceuticals and Food Additives. Future Foods 2021, 4, 100086. [Google Scholar] [CrossRef]
- Ramos, M.; Burgos, N.; Barnard, A.; Evans, G.; Preece, J.; Graz, M.; Ruthes, A.C.; Jiménez-Quero, A.; Martínez-Abad, A.; Vilaplana, F. Agaricus bisporus and Its By-Products as a Source of Valuable Extracts and Bioactive Compounds. Food Chem. 2019, 292, 176–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, K.; Pu, Y.-Y.; Sun, D.-W. Recent Advances in Quality Preservation of Postharvest Mushrooms (Agaricus bisporus): A Review. Trends Food Sci. Technol. 2018, 78, 72–82. [Google Scholar] [CrossRef]
- Atila, F.; Owaid, M.N.; Shariati, M.A. The Nutritional and Medical Benefits of Agaricus bisporus: A Review. J. Microbiol. Biotechnol. Food Sci. 2021, 2021, 281–286. [Google Scholar] [CrossRef]
- Paulauskienė, A.; Tarasevičienė, Ž.; Šileikienė, D.; Česonienė, L. The Quality of Ecologically and Conventionally Grown White and Brown Agaricus bisporus Mushrooms. Sustainability 2020, 12, 6187. [Google Scholar] [CrossRef]
- Bernaś, E. Comparison of the Mechanism of Enzymatic Browning in Frozen White and Brown A. bisporus. Eur. Food Res. Technol. 2018, 244, 1239–1248. [Google Scholar] [CrossRef]
- Vunduk, J.; Djekic, I.; Petrović, P.; Tomašević, I.; Kozarski, M.; Despotović, S.; Nikšić, M.; Klaus, A. Challenging the Difference between White and Brown Agaricus bisporus Mushrooms: Science behind Consumers Choice. Br. Food J. 2018, 120, 1381–1394. [Google Scholar] [CrossRef]
- Jaworska, G.; Pogoń, K.; Bernaś, E.; Duda-Chodak, A. Nutraceuticals and Antioxidant Activity of Prepared for Consumption Commercial Mushrooms Agaricus bisporus and Pleurotus ostreatus. J. Food Qual. 2015, 38, 111–122. [Google Scholar] [CrossRef]
- Sulieman, A.A.; Zhu, K.-X.; Peng, W.; Hassan, H.A.; Obadi, M.; Siddeeg, A.; Zhou, H.-M. Rheological and Quality Characteristics of Composite Gluten-Free Dough and Biscuits Supplemented with Fermented and Unfermented Agaricus bisporus Polysaccharide Flour. Food Chem. 2019, 271, 193–203. [Google Scholar] [CrossRef]
- Szutowska, J. Functional Properties of Lactic Acid Bacteria in Fermented Fruit and Vegetable Juices: A Systematic Literature Review. Eur. Food Res. Technol. 2020, 246, 357–372. [Google Scholar] [CrossRef]
- Al-Sahlany, S.; Niamah, A. Bacterial Viability, Antioxidant Stability, Antimutagenicity and Sensory Properties of Onion Types Fermentation by Using Probiotic Starter during Storage. Nutr. Food Sci. 2022, 52, 901–916. [Google Scholar] [CrossRef]
- Jabłońska-Ryś, E.; Skrzypczak, K.; Sławińska, A.; Radzki, W.; Gustaw, W. Lactic Acid Fermentation of Edible Mushrooms: Tradition, Technology, Current State of Research: A Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 655–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skrzypczak, K.; Gustaw, K.; Jabłońska-Ryś, E.; Sławińska, A.; Gustaw, W.; Winiarczyk, S. Spontaneously Fermented Fruiting Bodies of Agaricus bisporus as a Valuable Source of New Isolates of Lactic Acid Bacteria with Functional Potential. Foods 2020, 9, 1631. [Google Scholar] [CrossRef] [PubMed]
- Mathur, H.; Beresford, T.P.; Cotter, P.D. Health Benefits of Lactic Acid Bacteria (LAB) Fermentates. Nutrients 2020, 12, 1679. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Jeevaratnam, K.; Fatima, A. Lactic Acid Bacteria: Probiotic Characteristic, Selection Criteria, and Its Role in Human Health (A Review). Int. J. Emerg. Technol. Innov. Res. 2018, 5, 411–424. Available online: https://ssrn.com/abstract=3462244 (accessed on 29 April 2023).
- Chen, Z.; Fang, X.; Wu, W.; Chen, H.; Han, Y.; Yang, H.; Gao, H. Effects of Fermentation with Lactiplantibacillus Plantarum GDM1. 191 on the Umami Compounds in Shiitake Mushrooms (Lentinus edodes). Food Chem. 2021, 364, 130398. [Google Scholar] [CrossRef] [PubMed]
- Hill, D.; Sugrue, I.; Tobin, C.; Hill, C.; Stanton, C.; Ross, R.P. The Lactobacillus Casei Group: History and Health Related Applications. Front. Microbiol. 2018, 9, 2107. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Song, Q.; Wang, M.; Ren, J.; Liu, S.; Zhao, S. Comparative Genomics Analysis of Pediococcus acidilactici Species. J. Microbiol. 2021, 59, 573–583. [Google Scholar] [CrossRef] [PubMed]
- Jabłońska-Ryś, E.; Sławińska, A.; Skrzypczak, K.; Goral, K. Dynamics of Changes in PH and the Contents of Free Sugars, Organic Acids and LAB in Button Mushrooms during Controlled Lactic Fermentation. Foods 2022, 11, 1553. [Google Scholar] [CrossRef]
- Barbieri, F.; Montanari, C.; Gardini, F.; Tabanelli, G. Biogenic Amine Production by Lactic Acid Bacteria: A Review. Foods 2019, 8, 17. [Google Scholar] [CrossRef] [Green Version]
- Jabłońska-Ryś, E.; Sławińska, A.; Skrzypczak, K.; Kowalczyk, D.; Stadnik, J. Content of Biogenic Amines and Physical Properties of Lacto-Fermented Button Mushrooms. Appl. Sci. 2022, 12, 8957. [Google Scholar] [CrossRef]
- Radzki, W.; Ziaja-Sołtys, M.; Nowak, J.; Rzymowska, J.; Topolska, J.; Sławińska, A.; Michalak-Majewska, M.; Zalewska-Korona, M.; Kuczumow, A. Effect of Processing on the Content and Biological Activity of Polysaccharides from Pleurotus ostreatus Mushroom. LWT-Food Sci. Technol. 2016, 66, 27–33. [Google Scholar] [CrossRef]
- Bartkiene, E.; Lele, V.; Ruzauskas, M.; Domig, K.J.; Starkute, V.; Zavistanaviciute, P.; Bartkevics, V.; Pugajeva, I.; Klupsaite, D.; Juodeikiene, G.; et al. Lactic Acid Bacteria Isolation from Spontaneous Sourdough and Their Characterization Including Antimicrobial and Antifungal Properties Evaluation. Microorganisms 2020, 8, 64. [Google Scholar] [CrossRef] [Green Version]
- Roncero-Ramos, I.; Mendiola-Lanao, M.; Pérez-Clavijo, M.; Delgado-Andrade, C. Effect of Different Cooking Methods on Nutritional Value and Antioxidant Activity of Cultivated Mushrooms. Int. J. Food Sci. Nutr. 2017, 68, 287–297. [Google Scholar] [CrossRef] [PubMed]
- ISO 750:1998; Fruit and Vegetable Products—Determination of Titratable Acidity. Available online: https://www.iso.org/standard/22569.html (accessed on 31 May 2023).
- ISO 15214; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Mesophilic Lactic Acid Bacteria—Colony-Count Technique at 30 Degrees C. Available online: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/02/68/26853.html (accessed on 11 August 2022).
- ISO 21527-2:2008; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Moulds—Part 2: Colony Count Technique in Products with Water Activity Less than or Equal to 0.95. Available online: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/03/82/38276.html (accessed on 31 March 2022).
- Bartkiene, E.; Mockus, E.; Mozuriene, E.; Klementaviciute, J.; Monstaviciute, E.; Starkute, V.; Zavistanaviciute, P.; Zokaityte, E.; Cernauskas, D.; Klupsaite, D. The Evaluation of Dark Chocolate-Elicited Emotions and Their Relation with Physico Chemical Attributes of Chocolate. Foods 2021, 10, 642. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Palacios, T.; Ruiz, J.; Ferreira, I.M.P.L.V.O.; Petisca, C.; Antequera, T. Effect of Solvent to Sample Ratio on Total Lipid Extracted and Fatty Acid Composition in Meat Products within Different Fat Content. Meat Sci. 2012, 91, 369–373. [Google Scholar] [CrossRef]
- Ben-Gigirey, B.; Vieites Baptista de Sousa, J.M.; Villa, T.G.; Barros-Velazquez, J. Histamine and Cadaverine Production by Bacteria Isolated from Fresh and Frozen Albacore (Thunnus Alalunga). J. Food Prot. 1999, 62, 933–939. [Google Scholar] [CrossRef]
- Bartkiene, E.; Zokaityte, E.; Starkute, V.; Mockus, E.; Klupsaite, D.; Lukseviciute, J.; Bogomolova, A.; Streimikyte, A.; Ozogul, F. Biopreservation of Wild Edible Mushrooms (Boletus Edulis, Cantharellus, and Rozites Caperata) with Lactic Acid Bacteria Possessing Antimicrobial Properties. Foods 2022, 11, 1800. [Google Scholar] [CrossRef]
- ISO 8586:2012; Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. ISO. Available online: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/04/53/45352.html (accessed on 15 October 2021).
- Jabłońska-Ryś, E.; Sławińska, A.; Radzki, W.; Gustaw, W. Evaluation of the Potential Use of Probiotic Strain Lactobacillus Plantarum 299v in Lactic Fermentation of Button Mushroom Fruiting Bodies. Acta Sci. Pol. Technol. Aliment. 2016, 15, 399–407. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wu, J.; Lv, M.; Shao, Z.; Hungwe, M.; Wang, J.; Bai, X.; Xie, J.; Wang, Y.; Geng, W. Metabolism Characteristics of Lactic Acid Bacteria and the Expanding Applications in Food Industry. Front. Bioeng. Biotechnol. 2021, 9, 612285. [Google Scholar] [CrossRef]
- Filannino, P.; Bai, Y.; Di Cagno, R.; Gobbetti, M.; Gänzle, M.G. Metabolism of Phenolic Compounds by Lactobacillus Spp. during Fermentation of Cherry Juice and Broccoli Puree. Food Microbiol. 2015, 46, 272–279. [Google Scholar] [CrossRef]
- Liu, Y.; Van Bennekom, E.O.; Zhang, Y.; Abee, T.; Smid, E.J. Long-Chain Vitamin K2 Production in Lactococcus Lactis Is Influenced by Temperature, Carbon Source, Aeration and Mode of Energy Metabolism. Microb. Cell Factories 2019, 18, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Venturini, M.E.; Reyes, J.E.; Rivera, C.S.; Oria, R.; Blanco, D. Microbiological Quality and Safety of Fresh Cultivated and Wild Mushrooms Commercialized in Spain. Food Microbiol. 2011, 28, 1492–1498. [Google Scholar] [CrossRef]
- Lao, Y.; Zhang, M.; Li, Z.; Bhandari, B. A Novel Combination of Enzymatic Hydrolysis and Fermentation: Effects on the Flavor and Nutritional Quality of Fermented Cordyceps Militaris Beverage. LWT 2020, 120, 108934. [Google Scholar] [CrossRef]
- Palmqvist, E.; Hahn-Hägerdal, B. Fermentation of Lignocellulosic Hydrolysates. II: Inhibitors and Mechanisms of Inhibition. Bioresour. Technol. 2000, 74, 25–33. [Google Scholar] [CrossRef]
- Janßen, D.; Eisenbach, L.; Ehrmann, M.A.; Vogel, R.F. Assertiveness of Lactobacillus Sakei and Lactobacillus Curvatus in a Fermented Sausage Model. Int. J. Food Microbiol. 2018, 285, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Guillamón, E.; García-Lafuente, A.; Lozano, M.; D’Arrigo, M.; Rostagno, M.A.; Villares, A.; Martínez, J.A. Edible Mushrooms: Role in the Prevention of Cardiovascular Diseases. Fitoterapia 2010, 81, 715–723. [Google Scholar] [CrossRef] [PubMed]
- Kalbarczyk, J.; Radzki, W. Uprawiane Grzyby Wyższe Jako Cenny Składnik Diety Oraz Źródło Substancji Aktywnych Biologicznie. Herba Pol. J. 2009, 55, 224–232. [Google Scholar]
- Skapska, S.; Owczarek, L.; Jasinska, U.; Halasinska, A.; Danielczuk, J.; Sokolowska, B.; Rolno-Spozywczego, I.B.P. Changes in the Antioxidant Capacity of Edible Mushrooms during Lactic Acid Fermentation. Zywnosc Nauka Technol. Jakosc Pol. 2008, 4, 243–250. [Google Scholar]
- Jabłońska-Ryś, E.; Sławińska, A. Possibilities of Use of Lactic Fermentation in Bio Conservation of Edible Mushrooms Fruit Bodies. In Proceedings of the Abstract: 2nd International Conference and Workshop, Plant—The Source of Research Material, Lublin, Poland, 21–24 June 2012; pp. 18–20. [Google Scholar]
- Jabłońska-Ryś, E.; Kalbarczyk, J.; Sztaba, A. Zastosowanie Kultur Starterowych Bakterii Mlekowych i Propionowych w Procesie Kwaszenia Owocników Pieczarki. In Proceedings of the Doniesienie na V Konferencję PTTŻ nt. “Jakość i bezpieczeństwo żywności”, Białobrzegi nad Zalewem Zegrzyńskim, Poland, 17–18 November 2005; pp. 17–18. [Google Scholar]
- Joshi, V.K.; Kaur, M.; Thakur, N.S. Lactic Acid Fermentation of Mushroom (Agaricus bisporus) for Preservation and Preparation of Sauce. Acta Aliment. Bp. 1996, 25, 1–11. [Google Scholar]
- Milanovič, N.; Davidovič, A.; Savič, A. Lactic Acid Fermentation of Mushroom (Agaricus bisporus) with Lactobacillus Plantarum. In Proceedings of the 9th Savjetovanje Hemicara i Tehnologa Republike Srpske (338–345), Banja Luka, Bosnia and Herzegovina, 12–13 November 2010; pp. 12–13. [Google Scholar]
- Niksic, M.; Stojanovic, M.; Zivanovic, S.; Veljic, S. Ecological Approach in Preservation of Edible Mushrooms by Lactic Acid Fermentation; Poslovna Zajednica Vrenje: Vrnjacka Banja, Yugoslavia, 1997. [Google Scholar]
- Zheng, H.-G.; Chen, J.-C.; Ahmad, I. Preservation of King Oyster Mushroom by the Use of Different Fermentation Processes. J. Food Process. Preserv. 2018, 42, e13396. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, X.; Ibrahim, S.A.; Khaskheli, S.G.; Yang, H.; Wang, Y.; Huang, W. Characterization of Lactobacillus Pentosus as a Starter Culture for the Fermentation of Edible Oyster Mushrooms (Pleurotus spp.). LWT-Food Sci. Technol. 2016, 68, 21–26. [Google Scholar] [CrossRef]
- Franco, W.; Pérez-Díaz, I.M. Role of Selected Oxidative Yeasts and Bacteria in Cucumber Secondary Fermentation Associated with Spoilage of the Fermented Fruit. Food Microbiol. 2012, 32, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Kalač, P.; Křížek, M. Formation of Biogenic Amines in Four Edible Mushroom Species Stored under Different Conditions. Food Chem. 1997, 58, 233–236. [Google Scholar] [CrossRef]
- Yen, G.-C. Effects of Heat Treatment and Storage Temperature on the Biogenic Amine Content of Straw Mushroom (Volvariella volvacea). J. Sci. Food Agric. 1992, 58, 59–61. [Google Scholar] [CrossRef]
- Tittarelli, F.; Perpetuini, G.; Di Gianvito, P.; Tofalo, R. Biogenic Amines Producing and Degrading Bacteria: A Snapshot from Raw Ewes’ Cheese. LWT 2019, 101, 1–9. [Google Scholar] [CrossRef]
- Özogul, Y.; Özogul, F. Biogenic Amines Formation, Toxicity, Regulations in Food. In Biogenic Amines in Food; Royal Society of Chemistry: London, UK, 2019. [Google Scholar]
- Özogul, F.; Hamed, I. The Importance of Lactic Acid Bacteria for the Prevention of Bacterial Growth and Their Biogenic Amines Formation: A Review. Crit. Rev. Food Sci. Nutr. 2018, 58, 1660–1670. [Google Scholar] [CrossRef] [PubMed]
- Ladero, V.; Calles-Enriquez, M.; Fernandez, M.; Alvarez, M.A. Toxicological Effects of Dietary Biogenic Amines. Curr. Nutr. Food Sci. 2010, 6, 145–156. [Google Scholar] [CrossRef]
- Makhamrueang, N.; Sirilun, S.; Sirithunyalug, J.; Chaiyana, W.; Wangcharoen, W.; Peerajan, S.; Chaiyasut, C. Effect of Pretreatment Processes on Biogenic Amines Content and Some Bioactive Compounds in Hericium Erinaceus Extract. Foods 2021, 10, 996. [Google Scholar] [CrossRef]
- Jabłońska-Ryś, E.; Sławińska, A.; Stachniuk, A.; Stadnik, J. Determination of Biogenic Amines in Processed and Unprocessed Mushrooms from the Polish Market. J. Food Compos. Anal. 2020, 92, 103492. [Google Scholar] [CrossRef]
- Reis, G.C.L.; Custódio, F.B.; Botelho, B.G.; Guidi, L.R.; Gloria, M.B.A. Investigation of Biologically Active Amines in Some Selected Edible Mushrooms. J. Food Compos. Anal. 2020, 86, 103375. [Google Scholar] [CrossRef]
- Abugri, D.; McElhenney, W.; Willian, K. Fatty Acid Profiling in Selected Cultivated Edible and Wild Medicinal Mushrooms in Southern United States. J. Exp. Food Chem. 2016, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Sande, D.; de Oliveira, G.P.; e Moura MA, F.; de Almeida Martins, B.; Lima, M.T.N.S.; Takahashi, J.A. Edible Mushrooms as a Ubiquitous Source of Essential Fatty Acids. Food Res. Int. 2019, 125, 108524. [Google Scholar] [CrossRef] [PubMed]
- Stojković, D.; Reis, F.S.; Glamočlija, J.; Ćirić, A.; Barros, L.; Griensven, L.J.L.D.V.; Ferreira, I.C.F.R.; Soković, M. Cultivated Strains of Agaricus bisporus and A. Brasiliensis: Chemical Characterization and Evaluation of Antioxidant and Antimicrobial Properties for the Final Healthy Product—Natural Preservatives in Yoghurt. Food Funct. 2014, 5, 1602–1612. [Google Scholar] [CrossRef]
- Saiqa, S.; Haq, N.B.; Muhammad, A.H.; Muhammad, A.A.; Rehman, A. Studies on Chemical Composition and Nutritive Evaluation of Wild Edible Mushrooms. Iran. J. Chem. Chem. Eng. 2008, 27, 151–154. [Google Scholar] [CrossRef]
- Öztürk, M.; Duru, M.E.; Kivrak, Ş.; Mercan-Doğan, N.; Türkoglu, A.; Özler, M.A. In Vitro Antioxidant, Anticholinesterase and Antimicrobial Activity Studies on Three Agaricus Species with Fatty Acid Compositions and Iron Contents: A Comparative Study on the Three Most Edible Mushrooms. Food Chem. Toxicol. 2011, 49, 1353–1360. [Google Scholar] [CrossRef] [PubMed]
- Shao, S.; Hernandez, M.; Kramer, J.K.G.; Rinker, D.L.; Tsao, R. Ergosterol Profiles, Fatty Acid Composition, and Antioxidant Activities of Button Mushrooms as Affected by Tissue Part and Developmental Stage. J. Agric. Food Chem. 2010, 58, 11616–11625. [Google Scholar] [CrossRef]
- Hossain, S.; Hashimoto, M.; Choudhury, E.K.; Alam, N.; Hussain, S.; Hasan, M.; Choudhury, S.K.; Mahmud, I. Dietary Mushroom (Pleurotus ostreatus) Ameliorates Atherogenic Lipid in Hypercholesterolaemic Rats. Clin. Exp. Pharmacol. Physiol. 2003, 30, 470–475. [Google Scholar] [CrossRef]
- Silva Figueiredo, P.; Carla Inada, A.; Marcelino, G.; Maiara Lopes Cardozo, C.; De Cássia Freitas, K.; De Cássia Avellaneda Guimarães, R.; Pereira de Castro, A.; Aragão do Nascimento, V.; Aiko Hiane, P. Fatty Acids Consumption: The Role Metabolic Aspects Involved in Obesity and Its Associated Disorders. Nutrients 2017, 9, 1158. [Google Scholar] [CrossRef] [Green Version]
- Simopoulos, A.P. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef] [Green Version]
- Reis, F.S.; Barros, L.; Martins, A.; Ferreira, I.C.F.R. Chemical Composition and Nutritional Value of the Most Widely Appreciated Cultivated Mushrooms: An Inter-Species Comparative Study. Food Chem. Toxicol. 2012, 50, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Muszynska, B.; Kala, K.; Rojowski, J.; Grzywacz, A.; Opoka, W. Composition and Biological Properties of Agaricus bisporus Fruiting Bodies—A Review. Pol. J. Food Nutr. Sci. 2017, 67, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Morales, P.; Ferreira, I.C.F.R.; Carvalho, A.M.; Sánchez-Mata, M.C.; Cámara, M.; Tardío, J. Fatty Acids Profiles of Some Spanish Wild Vegetables. Food Sci. Technol. Int. Cienc. Tecnol. Los Aliment. Int. 2012, 18, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Barros, L.; Cruz, T.; Baptista, P.; Estevinho, L.M.; Ferreira, I.C.F.R. Wild and Commercial Mushrooms as Source of Nutrients and Nutraceuticals. Food Chem. Toxicol. 2008, 46, 2742–2747. [Google Scholar] [CrossRef] [PubMed]
- Baars, J.J.P.; Sonnenberg, A.S.M.; Mumm, R.; Stijger, I.; Wehrens, H.R.M.J. Metabolites Contributing to Taste in Agaricus bisporus; Plant Research International: Wageningen, The Netherlands, 2016. [Google Scholar]
- Gänzle, M.G. Enzymatic and Bacterial Conversions during Sourdough Fermentation. Food Microbiol. 2014, 37, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Shahzadi, T.; Abbasi, M.A.; Riaz, T.; Rehman, A.-U.; Siddiqui, S.Z.; Ajaib, M. Caryopteris odorata: A rich source of antioxidants for protection against chronic diseases and food products. J. Chil. Chem. Soc. 2011, 56, 678–681. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, J.; Matsumura, K.; Kishino, S.; Omura, Y.; Shimizu, S. Conjugated Linoleic Acid Accumulation via 10-Hydroxy-12-Octadecaenoic Acid during Microaerobic Transformation of Linoleic Acid by Lactobacillus Acidophilus. Appl. Environ. Microbiol. 2001, 67, 1246–1252. [Google Scholar] [CrossRef] [Green Version]
- Volkov, A.; Liavonchanka, A.; Kamneva, O.; Fiedler, T.; Goebel, C.; Kreikemeyer, B.; Feussner, I. Myosin Cross-Reactive Antigen of Streptococcus Pyogenes M49 Encodes a Fatty Acid Double Bond Hydratase That Plays a Role in Oleic Acid Detoxification and Bacterial Virulence. J. Biol. Chem. 2010, 285, 10353–10361. [Google Scholar] [CrossRef] [Green Version]
- Feng, T.; Yang, M.; Ma, B.; Zhao, Y.; Zhuang, H.; Zhang, J.; Chen, D. Volatile Profiles of Two Genotype Agaricus bisporus Species at Different Growth Stages. Food Res. Int. Ott. Ont 2021, 140, 109761. [Google Scholar] [CrossRef]
- Wang, B.; Zhao, N.; Li, J.; Xu, R.; Wang, T.; Guo, L.; Ma, M.; Fan, M.; Wei, X. Selenium-Enriched Lactobacillus Plantarum Improves the Antioxidant Activity and Flavor Properties of Fermented Pleurotus Eryngii. Food Chem. 2021, 345, 128770. [Google Scholar] [CrossRef]
- Du, X.; Sissons, J.; Shanks, M.; Plotto, A. Aroma and Flavor Profile of Raw and Roasted Agaricus bisporus Mushrooms Using a Panel Trained with Aroma Chemicals. LWT 2021, 138, 110596. [Google Scholar] [CrossRef]
- Selli, S.; GUCLU, G.; Sevindik, O.; Kelebek, H. Variations in the Key Aroma and Phenolic Compounds of Champignon (Agaricus bisporus) and Oyster (Pleurotus ostreatus) Mushrooms after Two Cooking Treatments as Elucidated by GC-MS-O and LC-DAD-ESI-MS/MS. Food Chem. 2021, 354, 129576. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.E.; Kim, J.; Kim, Y.; Bang, W.Y.; Yang, J.; Lee, S.J.; Jung, Y.H. Identification and Improvement of Volatile Profiles of Allomyrina Dichotoma Larvae by Fermentation with Lactic Acid Bacteria. Food Biosci. 2021, 43, 101257. [Google Scholar] [CrossRef]
- Lee, S.M.; Oh, J.; Hurh, B.-S.; Jeong, G.-H.; Shin, Y.-K.; Kim, Y.-S. Volatile Compounds Produced by Lactobacillus paracasei during Oat Fermentation. J. Food Sci. 2016, 81, C2915–C2922. [Google Scholar] [CrossRef] [PubMed]
- Davila, M.; Muniz, A.; Du, X. The Impact of Roasting and Steaming on Savory Flavors Contributed by Amino Acids, 5′-Nucleotides, and Volatiles in Agaricus bisporus Mushrooms. Int. J. Gastron. Food Sci. 2022, 30, 100590. [Google Scholar] [CrossRef]
- Wu, C.; Li, T.; Qi, J.; Jiang, T.; Xu, H.; Lei, H. Effects of Lactic Acid Fermentation-Based Biotransformation on Phenolic Profiles, Antioxidant Capacity and Flavor Volatiles of Apple Juice. LWT 2020, 122, 109064. [Google Scholar] [CrossRef]
- Liang, Z.; Yang, C.; He, Z.; Lin, X.; Chen, B.; Li, W. Changes in Characteristic Volatile Aroma Substances during Fermentation and Deodorization of Gracilaria Lemaneiformis by Lactic Acid Bacteria and Yeast. Food Chem. 2023, 405, 134971. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, C.; Liu, F.; Jin, Z.; Xia, X. Ecological Succession and Functional Characteristics of Lactic Acid Bacteria in Traditional Fermented Foods. Crit. Rev. Food Sci. Nutr. 2022, 1–15. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, D.; Dong, Y.; Ju, H.; Wu, C.; Lin, S. Characteristic Volatiles Fingerprints and Changes of Volatile Compounds in Fresh and Dried Tricholoma Matsutake Singer by HS-GC-IMS and HS-SPME-GC-MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2018, 1099, 46–55. [Google Scholar] [CrossRef]
- Xu, X.; Xu, R.; Jia, Q.; Feng, T.; Huang, Q.; Ho, C.-T.; Song, S. Identification of Dihydro-β-Ionone as a Key Aroma Compound in Addition to C8 Ketones and Alcohols in Volvariella volvacea Mushroom. Food Chem. 2019, 293, 333–339. [Google Scholar] [CrossRef]
- Kleofas, V.; Popa, F.; Fraatz, M.A.; Rühl, M.; Kost, G.; Zorn, H. Aroma Profile of the Anise-like Odour Mushroom Cortinarius Odorifer. Flavour Fragr. J. 2015, 30, 381–386. [Google Scholar] [CrossRef]
- Borthakur, M.; Gurung, A.B.; Bhattacharjee, A.; Joshi, S.R. Analysis of the Bioactive Metabolites of the Endangered Mexican Lost Fungi Campanophyllum—A Report from India. Mycobiology 2020, 48, 58–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, P.; Banerjee, A.; Castillo, A.; Bandopadhyay, R. Novel Phenolic Compound from Southern Ocean Microalgae Chlorella Sp. PR-1 and Its Antibacterial Activity. Gayana Bot. 2021, 78, 29–37. [Google Scholar] [CrossRef]
- Chun, S.; Chambers, E.; Han, I. Development of a Sensory Flavor Lexicon for Mushrooms and Subsequent Characterization of Fresh and Dried Mushrooms. Foods 2020, 9, 980. [Google Scholar] [CrossRef]
- Kaneko, D.; Toet, A.; Brouwer, A.-M.; Kallen, V.; van Erp, J.B.F. Methods for Evaluating Emotions Evoked by Food Experiences: A Literature Review. Front. Psychol. 2018, 9, 911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tepsongkroh, B.; Jangchud, K.; Jangchud, A.; Chonpracha, P.; Ardoin, R.; Prinyawiwatkul, W. Consumer Perception of Extruded Snacks Containing Brown Rice and Dried Mushroom. Int. J. Food Sci. Technol. 2020, 55, 46–54. [Google Scholar] [CrossRef]
Mushroom Samples | L* | a* | b* | pH | TTA, °N |
---|---|---|---|---|---|
NBS | |||||
Wnon-f | 76.7 ± 1.25 j | 6.28 ± 0.59 e | 18.5 ± 0.09 g | 6.80 ± 0.01 i | 0.10 ± 0.03 a |
Bnon-f | 65.4 ± 1.14 i | 7.90 ± 0.63 f | 17.9 ± 0.11 f | 6.66 ± 0.03 h | 0.10 ± 0.02 a |
W210 | 55.3 ± 0.98 h | 3.47 ± 0.28 b | 17.8 ± 0.13 f | 4.90 ± 0.02 c | 0.40 ± 0.03 d |
B210 | 33.0 ± 0.29 b | 4.88 ± 0.24 c | 9.36 ± 0.08 a | 5.44 ± 0.03 f | 0.20 ± 0.01 b |
W135 | 48.2 ± 0.47 f | 3.06 ± 0.21 a,b | 15.2 ± 0.10 e | 5.33 ± 0.01 e | 0.30 ± 0.02 c |
B135 | 39.6 ± 0.32 c | 6.07 ± 0.19 e | 12.6 ± 0.08 c | 5.72 ± 0.02 g | 0.20 ± 0.01 b |
W244 | 51.2 ± 0.49 g | 3.13 ± 0.18 b | 17.9 ± 0.09 f | 4.24 ± 0.01 a | 0.40 ± 0.03 d |
B244 | 32.1 ± 0.31 a | 5.43 ± 0.14 d | 9.84 ± 0.06 b | 4.33 ± 0.03 b | 0.20 ± 0.01 b |
W29 | 45.7 ± 0.43 e | 2.83 ± 0.11 a | 12.9 ± 0.09 d | 5.44 ± 0.01 f | 0.20 ± 0.02 b |
B29 | 43.7 ± 0.36 d | 4.54 ± 0.23 c | 12.8 ± 0.05 d | 5.27 ± 0.02 d | 0.30 ± 0.01 c |
Mushroom Samples | LAB Count, log10 CFU/g | Yeasts and Fungi Count, log10 CFU/g |
---|---|---|
Wnon-f | 1.56 ± 0.16 a | 1.32 ± 0.27 a |
Bnon-f | 1.48 ± 0.17 a | 1.45 ± 0.18 a |
W210 | 7.82 ± 0.22 d | 1.14 ± 0.21 a |
B210 | 7.79 ± 0.11 d | 1.12 ± 0.29 a |
W135 | 7.53 ± 0.15 c,d | 1.19 ± 0.22 a |
B135 | 7.41 ± 0.18 c | 1.25 ± 0.23 a |
W244 | 6.53 ± 0.22 b | 1.36 ± 0.37 a |
B244 | 6.49 ± 0.19 b | 1.28 ± 0.14 a |
W29 | 6.51 ± 0.14 b | 1.47 ± 0.25 a |
B29 | 6.47 ± 0.17 b | 1.33 ± 0.14 a |
Mushroom Samples | Biogenic Amine, mg/kg | ||||||||
---|---|---|---|---|---|---|---|---|---|
Tryp-Tamine | Phenyl-Ethylamine | Putrescine | Cada-Verine | Histamine | Tyramine | Spermi-Dine | Spermine | Total Content | |
Wnon-f | nd | nd | nd | nd | nd | nd | 183.9 ± 9.32 a,b | nd | 183.9 |
Bnon-f | nd | nd | nd | nd | nd | nd | 181.2 ± 8.54 a | nd | 181.2 |
W210 | nd | nd | nd | nd | nd | 75.1 ± 6.58 a | 184.9 ± 6.98 a | nd | 260.0 |
B210 | nd | nd | nd | nd | nd | 85.5 ± 7.89 a | 203.3 ±10.5 b | nd | 288.7 |
W135 | nd | nd | nd | nd | nd | 87.6 ± 7.74 a | 180.0 ± 8.69 a | nd | 267.6 |
B135 | nd | nd | nd | nd | nd | nd | 222.3 ± 8.56 b | nd | 222.3 |
W244 | nd | nd | nd | nd | nd | nd | 187.1 ± 9.54 a,b | nd | 187.1 |
B244 | nd | nd | nd | nd | nd | nd | 186.9 ± 7.54 a,b | nd | 186.9 |
W29 | nd | nd | nd | nd | nd | nd | 181.6 ± 9.76 a | nd | 181.6 |
B29 | nd | nd | nd | nd | nd | nd | 203.3 ± 11.35 b | nd | 203.3 |
Fatty Acids | Wnon-f | Bnon-f | W210 | B210 | W135 | B135 | W244 | B244 | W29 | B29 |
---|---|---|---|---|---|---|---|---|---|---|
Fatty Acid Content, % of the Total Fat Content | ||||||||||
C16:0 | 12.3 ± 0.03 b | 12.3 ± 0.02 b | 13.0 ± 0.02 f | 12.4 ± 0.04 c | 12.4 ± 0.03 c | 11.0 ± 0.02 a | 12.5 ± 0.03 d | 12.3 ± 0.02 b | 12.7 ± 0.03 e | 12.4 ± 0.02 c |
C16:1 | nd | 0.625 ± 0.005 c | 0.205 ± 0.002 a | 0.376 ± 0.004 b | nd | nd | nd | nd | nd | nd |
C18:0 | 2.07 ± 0.05 b | 3.12 ± 0.06 g | 2.33 ± 0.03 d | 2.70 ± 0.06 f | 1.75 ± 0.04 a | 2.58 ± 0.06 e | 2.23 ± 0.04 c | 2.17 ± 0.07 b,c | 1.69 ± 0.02 a | 2.76 ± 0.06 f |
C18:1 | 9.99 ± 0.05 h | 9.59 ± 0.07 g | 7.88 ± 0.05 f | 5.57 ± 0.04 b | 10.6 ± 0.09 i | 3.44 ± 0.05 a | 6.46 ± 0.07 d | 6.73 ± 0.06 e | 10.1 ± 0.09 h | 6.08 ± 0.05 c |
C18:2 | 75.6 ± 0.31 c | 72.2 ± 0.28 a | 74.9 ± 0.33 b | 76.9 ± 0.19 d | 75.3 ± 0.24 b,c | 80.6 ± 0.43 f | 78.8 ± 0.29 e | 78.9 ± 0.31 e | 75.5 ± 0.42 b,c | 78.8 ± 0.27 e |
C20:0 | nd | 1.11 ± 0.03 b | 0.830 ± 0.021 a | 1.04 ± 0.05 b | nd | 1.13 ± 0.04 b | nd | nd | nd | nd |
C22:0 | nd | 1.13 ± 0.02 c | 0.905 ± 0.011 a | 1.05 ± 0.02 b | nd | 1.23 ± 0.01 d | nd | nd | nd | nd |
Fatty acid profile (%) | ||||||||||
SFA | 14.4 ± 0.04 b | 17.6 ± 0.05 h | 17.1 ± 0.03 f | 17.2 ± 0.04 g | 14.2 ± 0.01 a | 15.9 ± 0.03 e | 14.7 ± 0.04 c | 14.4 ± 0.06 b | 14.4 ± 0.04 b | 15.1 ± 0.03 d |
MUFA | 9.99 ± 0.07 e | 10.2 ± 0.08 f | 8.09 ± 0.07 d | 5.94 ± 0.11 b | 10.6 ± 0.09 g | 3.44 ± 0.12 a | 6.46 ± 0.14 c | 6.73 ± 0.18 c | 10.1 ± 0.10 e,f | 6.08 ± 0.05 b |
PUFA | 75.6 ± 0.25 c | 72.2 ± 0.32 a | 74.9 ± 0.41 b | 76.9 ± 0.38 d | 75.3 ± 0.29 b,c | 80.6 ± 0.52 f | 78.8 ± 0.47 e | 78.9 ± 0.33 e | 75.5 ± 0.48 b,c | 78.8 ± 0.36 e |
Omega-3 | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
Omega-6 | 75.6 ± 0.48 b | 72.2 ± 0.31 a | 74.9 ± 0.47 b | 76.9 ± 0.44 c | 75.3 ± 0.38 b | 80.6 ± 0.51 e | 78.8 ± 0.39 d | 78.9 ± 0.61 d | 75.5 ± 0.52 b | 78.8 ± 0.54 d |
Omega-9 | 9.99 ± 0.08 e | 10.2 ± 0.10 f | 8.09 ± 0.08 d | 5.94 ± 0.15 b | 10.6 ± 0.09 g | 3.44 ± 0.14 a | 6.46 ± 0.23 c | 6.73 ± 0.11 c | 10.1 ± 0.09 e,f | 6.08 ± 0.18 b,c |
RT, min | Volatile Compounds | Mushroom Samples | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Wnon-f | Bnon-f | W210 | B210 | W135 | B135 | W244 | B244 | W29 | B29 | ||
4.41 | Acetoin | nd | nd | nd | 5.42 ± 0.48 a | 13.5 ± 1.14 b | 23.5 ± 2.22 c | nd | nd | nd | nd |
6.39 | 2,3-Butanediol | nd | nd | nd | 22.4 ± 2.25 b | 32.2 ± 3.29 c | 17.6 ± 0.16 a | nd | nd | 36.8 ± 2.41 c | nd |
11.78 | Benzaldehyde | 7.40 ± 0.41 e | 9.57 ± 0.52 f | 3.65 ± 0.34 d | 1.97 ± 0.15 b | 0.377 ± 0.041 a | 2.46 ± 0.25 c | 3.77 ± 0.38 d | 6.70 ± 0.54 e | nd | 4.14 ± 0.35 d |
12.43 | 1-Octen-3-ol | 33.6 ± 2.95 g | 20.8 ± 1.95 f | 0.819 ± 0.045 a | 2.89 ± 0.28 c,d | nd | 3.20 ± 0.27 d | 1.31 ± 0.12 b | 2.50 ± 0.22 c | 1.22 ± 0.11 b | 4.19 ± 0.36 e |
12.66 | 3-Octanone | 7.55 ± 0.53 f | 7.88 ± 0.47 f | 0.819 ± 0.056 b | 2.37 ± 0.25 d | 0.253 ± 0.018 a | 5.10 ± 0.49 e | 1.16 ± 0.15 c | 2.20 ± 0.21 d | 2.25 ± 0.23 d | 8.27 ± 0.41 f |
12.96 | 2-Ethylhexanol | 1.01 ± 0.10 a | 2.27 ± 0.23 b | nd | 0.871 ± 0.058 a | nd | 1.89 ± 0.17 b | nd | nd | nd | nd |
14.19 | Benzyl alcohol | 46.1 ± 3.44 b | 50.4 ± 4.39 b | 85.0 ± 5.32 d | 50.5 ± 4.11 b | 33.5 ± 2.98 a | 31.5 ± 2.72 a | 81.6 ± 6.35 d | 67.6 ± 4.74 c | 50.3 ± 4.11 b | 71.2 ± 5.69 c,d |
14.51 | Benzeneacetaldehyde | 1.47 ± 0.13 b | 5.79 ± 0.52 e | 1.88 ± 0.19 c | 7.23 ± 0.61 f | 0.782 ± 0.048 a | 4.21 ± 0.36 d | nd | 8.44 ± 0.53 g | 1.31 ± 0.10 b | 6.82 ± 0.52 e,f |
16.44 | Nonanal | 0.491 ± 0.036 b | 0.397 ± 0.035 a | 2.00 ± 0.19 f | 1.01 ± 0.09 d | 0.788 ± 0.069 c | 1.54 ± 0.14 e | 2.31 ± 0.22 f | 1.40 ± 0.13 e | 1.16 ± 0.11 d | 0.729 ± 0.041 c |
19.35 | Dodecane | 0.835 ± 0.071 a | 0.721 ± 0.069 a | 2.23 ± 0.21 d | 1.76 ± 0.16 c | 1.12 ± 0.11 b | 4.07 ± 0.28 f | 3.65 ± 0.34 e,f | 4.13 ± 0.39 f | 3.09 ± 0.25 e | 2.04 ± 0.19 c,d |
22.04 | Benzo-2,3-pyrrole | nd | nd | nd | nd | 15.5 ± 0.16 c | 1.32 ± 0.12 b | nd | 0.535 ± 0.043 a | nd | nd |
24.84 | Tetradecane | 0.732 ± 0.069 b | 0.599 ± 0.041 a | 2.40 ± 0.23 e | 1.60 ± 0.15 d | 0.977 ± 0.085 c | 2.88 ± 0.25 f | 3.71 ± 0.31 g | 4.01 ± 0.35 g | 3.10 ± 0.26 f | 1.47 ± 0.15 c |
27.74 | 2,4-bis(1,1-dimethylethyl)phenol | 0.828 ± 0.073 b | 1.56 ± 0.14 d | 1.21 ± 0.11 c | 1.97 ± 0.15 e | 1.09 ± 0.08 c | 0.694 ± 0.052 a | 2.46 ± 0.22 f | 2.54 ± 0.25 f | 0.770 ± 0.058 a,b | 1.12 ± 0.11 c |
Mushroom Samples | OA | Emotions Induced for Judges by Mushroom Samples (from 0 to 1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Neutral | Happy | Sad | Angry | Surprised | Scared | Disgusted | Contempt | Valence | ||
Wnon-f | 8.05 ± 1.48 a | 0.768 ± 0.039 a | 0.120 ± 0.011 e | 0.009 ± 0.002 a | 0.007 ± 0.001 b | 0.003 ± 0.001 a | nd | 0.020 ± 0.004 a,b | 0.001 ± 0.0005 a | 0.088 ± 0.024 d |
Bnon-f | 7.42 ± 1.35 a | 0.769 ± 0.061 a | 0.037 ± 0.004 c | 0.034 ± 0.004 b | 0.011 ± 0.002 b,c | 0.005 ± 0.002 b | 0.001 ± 0.0003 a | 0.065 ± 0.009 d | 0.001 ± 0.0006 a | −0.065 ± 0.014 b |
W210 | 6.06 ± 1.15 a | 0.763 ± 0.048 a | 0.022 ± 0.002 b | 0.055 ± 0.004 c,d | 0.004 ± 0.001 a | 0.004 ± 0.001 b | 0.001 ± 0.0004 a | 0.051 ± 0.007 d | 0.001 ± 0.0004 a | −0.068 ± 0.021 b |
B210 | 5.89 ± 1.48 a | 0.760 ± 0.065 a | 0.038 ± 0.003 c | 0.064 ± 0.005 d | 0.007 ± 0.002 b | 0.009 ± 0.003 b | 0.001 ± 0.0002 a | 0.039 ± 0.004 c | 0.006 ± 0.0007 b | −0.055 ± 0.009 b |
W135 | 5.25 ± 1.32 a | 0.768 ± 0.074 a | 0.011 ± 0.002 a | 0.057 ± 0.006 c,d | 0.015 ± 0.003 c | 0.009 ± 0.004 b | 0.002 ± 0.0005 b | 0.026 ± 0.003 b | 0.002 ± 0.0008 a | −0.077 ± 0.010 b |
B135 | 5.29 ± 1.21 a | 0.712 ± 0.069 a | 0.014 ± 0.003 a | 0.091 ± 0.008 e | 0.007 ± 0.002 b | 0.003 ± 0.001 a | nd | 0.056 ± 0.005 d | 0.001 ± 0.0005 a | −0.119 ± 0.014 a |
W244 | 6.69 ± 0.96 a | 0.718 ± 0.065 a | 0.028 ± 0.004 b | 0.063 ± 0.007 d | 0.003 ± 0.001 a | 0.002 ± 0.001 a | nd | 0.084 ± 0.007 e | 0.002 ± 0.0009 a | −0.096 ± 0.009 b |
B244 | 6.87 ± 1.02 a | 0.770 ± 0.072 a | 0.021 ± 0.003 b | 0.048 ± 0.005 c | 0.016 ± 0.002 c | 0.007 ± 0.002 b | 0.001 ± 0.0004 a | 0.015 ± 0.003 a | 0.002 ± 0.0008 a | −0.048 ± 0.005 b |
W29 | 5.88 ± 0.49 a | 0.699 ± 0.059 a | 0.028 ± 0.004 b | 0.094 ± 0.007 e | 0.004 ± 0.001 a | 0.008 ± 0.003 b | 0.003 ± 0.001 b | 0.047 ± 0.005 c,d | 0.002 ± 0.0006 a | −0.106 ± 0.012 a |
B29 | 5.69 ± 0.65 a | 0.666 ± 0.063 a | 0.097 ± 0.005 d | 0.057 ± 0.006 c,d | 0.011 ± 0.002 b,c | 0.035 ± 0.005 c | 0.007 ± 0.002 c | 0.016 ± 0.002 a | 0.001 ± 0.0005 a | 0.021 ± 0.005 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartkiene, E.; Zarovaite, P.; Starkute, V.; Mockus, E.; Zokaityte, E.; Zokaityte, G.; Rocha, J.M.; Ruibys, R.; Klupsaite, D. Changes in Lacto-Fermented Agaricus bisporus (White and Brown Varieties) Mushroom Characteristics, including Biogenic Amine and Volatile Compound Formation. Foods 2023, 12, 2441. https://doi.org/10.3390/foods12132441
Bartkiene E, Zarovaite P, Starkute V, Mockus E, Zokaityte E, Zokaityte G, Rocha JM, Ruibys R, Klupsaite D. Changes in Lacto-Fermented Agaricus bisporus (White and Brown Varieties) Mushroom Characteristics, including Biogenic Amine and Volatile Compound Formation. Foods. 2023; 12(13):2441. https://doi.org/10.3390/foods12132441
Chicago/Turabian StyleBartkiene, Elena, Paulina Zarovaite, Vytaute Starkute, Ernestas Mockus, Egle Zokaityte, Gintare Zokaityte, João Miguel Rocha, Romas Ruibys, and Dovile Klupsaite. 2023. "Changes in Lacto-Fermented Agaricus bisporus (White and Brown Varieties) Mushroom Characteristics, including Biogenic Amine and Volatile Compound Formation" Foods 12, no. 13: 2441. https://doi.org/10.3390/foods12132441
APA StyleBartkiene, E., Zarovaite, P., Starkute, V., Mockus, E., Zokaityte, E., Zokaityte, G., Rocha, J. M., Ruibys, R., & Klupsaite, D. (2023). Changes in Lacto-Fermented Agaricus bisporus (White and Brown Varieties) Mushroom Characteristics, including Biogenic Amine and Volatile Compound Formation. Foods, 12(13), 2441. https://doi.org/10.3390/foods12132441