Design of a Novel Auxiliary Diagnostic Test for the Determination of Authenticity of Tequila 100% Agave Silver Class Based on Chemometrics Analysis of the Isotopic Fingerprint of the Beverage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Determination of the Isotopic Ratio of Carbon 13 in Congeners Present in Tequila 100% Agave Silver Class
2.3. Quantitative Analysis of Problem Samples
2.4. Statistical Analysis
3. Results
3.1. Statistical Analysis
3.2. Linear Discriminant Analysis
3.3. Auxiliar Diagnostic Test to Determine the Authenticity of the Beverage
3.4. Auxiliar Diagnostic Test to Determine the Authenticity of Suspected Beverages
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NOM-006-SCFI-2012; Bebidas alcohólicas-Tequila-Especificaciones. Diario Oficial de la Federación México: Mexico City, Mexico, 2012.
- Kotelnikova, Z. Explaining Counterfeit Alcohol Purchases in Russia. Alcohol. Clin. Exp. Res. 2017, 41, 810–819. [Google Scholar] [CrossRef] [PubMed]
- Lecat, B.; Brouard, J.; Chapuis, C. Fraud and counterfeit wines in France: An overview and perspectives. Br. Food J. 2017, 119, 84–104. [Google Scholar] [CrossRef]
- Aylott, R.; Aylott, I. Investigation and occurrence of counterfeit distilled spirits. In Whisky and Other Spirits, 3rd ed.; Russell, I., Stewart, G.G., Kellershohn, J., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 363–386. ISBN 978-0-12-822076-4. [Google Scholar]
- Chapa, S.; Minor, M.S.; Maldonado, C. Product Category and Origin Effects on Consumer Responses to Counterfeits. J. Int. Consum. Mark. 2006, 18, 79–99. [Google Scholar] [CrossRef]
- De Leon-Rodriguez, A.; Escalante-Minakata, P.; Jimenez-Garcia, M.I.; Ordonez-Acevedo, L.G.; Flores, J.L.F.; de la Rosa, A.P.B. Characterization of Volatile Compounds from Ethnic Agave Alcoholic Beverages by Gas Chromatography-Mass Spectrometry. Food Technol. Biotechnol. 2008, 46, 448–455. [Google Scholar]
- Peña-Alvarez, A.; Díaz, L.; Medina, A.; Labastida, C.; Capella, S.; Vera, L.E. Characterization of three Agave species by gas chromatography and solid-phase microextraction-gas chromatography-mass spectrometry. J. Chromatogr. A 2004, 1027, 131–136. [Google Scholar] [CrossRef]
- Cardeal, Z.L.; Marriott, P.J. Comprehensive two-dimensional gas chromatography-mass spectrometry analysis and comparison of volatile organic compounds in Brazilian cachaca and selected spirits. Food Chem. 2009, 112, 747–755. [Google Scholar] [CrossRef]
- Aguilar-Cisneros, B.O.; López, M.G.; Richling, E.; Heckel, F.; Schreier, P. Tequila authenticity assessment by headspace SPME-HRGC-IRMS analysis of 13C/12C and 18O/16O ratios of ethanol. J. Agric. Food Chem. 2002, 50, 7520–7523. [Google Scholar] [CrossRef]
- Vallejo-Cordoba, B.; González-Córdova, A.F.; del Carmen Estrada-Montoya, M. Tequila volatile characterization and ethyl ester determination by solid phase microextraction gas chromatography/mass spectrometry analysis. J. Agric. Food Chem. 2004, 52, 5567–5571. [Google Scholar] [CrossRef]
- Lachenmeier, D.W.; Sohnius, E.M.; Attig, R.; López, M.G. Quantification of selected volatile constituents and anions in Mexican Agave spirits (Tequila, Mezcal, Sotol, Bacanora). J. Agric. Food Chem. 2006, 54, 3911–3915. [Google Scholar] [CrossRef]
- Mellado-Mojica, E.; López, M.G. Identification, classification, and discrimination of agave syrups from natural sweeteners by infrared spectroscopy and HPAEC-PAD. Food Chem. 2015, 167, 349–357. [Google Scholar] [CrossRef] [Green Version]
- Lachenmeier, D.W.; Richling, E.; López, M.G.; Frank, W.; Schreier, P. Multivariate analysis of FTIR and ion chromatographic data for the quality control of tequila. J. Agric. Food Chem. 2005, 53, 2151–2157. [Google Scholar] [CrossRef] [PubMed]
- Contreras, U.; Barbosa-García, O.; Pichardo-Molina, J.L.; Ramos-Ortíz, G.; Maldonado, J.L.; Meneses-Nava, M.A.; Ornelas-Soto, N.E.; López-de-Alba, P.L. Screening method for identification of adulterate and fake tequilas by using UV-VIS spectroscopy and chemometrics. Food Res. Int. 2010, 43, 2356–2362. [Google Scholar] [CrossRef]
- Pérez-Caballero, G.; Andrade, J.M.; Olmos, P.; Molina, Y.; Jiménez, I.; Durán, J.J.; Fernandez-Lozano, C.; Miguel-Cruz, F. Authentication of tequilas using pattern recognition and supervised classification. TrAC Trends Anal. Chem. 2017, 94, 117–129. [Google Scholar] [CrossRef] [Green Version]
- de la Rosa Vázquez, J.M.; Fabila-Bustos, D.A.; de Jesús Quintanar-Hernández, L.F.; Valor, A.; Stolik, S. Detection of Counterfeit Tequila by Fluorescence Spectroscopy. J. Spectrosc. 2015, 2015, 403160. [Google Scholar] [CrossRef] [Green Version]
- Barbosa-García, O.; Ramos-Ortíz, G.; Maldonado, J.L.; Pichardo-Molina, J.L.; Meneses-Nava, M.A.; Landgrave, J.E.A.; Cervantes-Martínez, J. UV-vis absorption spectroscopy and multivariate analysis as a method to discriminate tequila. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2007, 66, 129–134. [Google Scholar] [CrossRef]
- Ruiz-Pérez, A.; Pérez-Castañeda, J.I.; Castañeda-Guzmán, R.; Pérez-Ruiz, S.J. Determination of Tequila Quality by Photoacoustic Analysis. Int. J. Thermophys. 2013, 34, 1695–1702. [Google Scholar] [CrossRef]
- Luna-Moreno, D.; Monzón-Hernández, D.; Noé-Arias, E.; Regalado, L.E. Determination of quality and adulteration of tequila through the use of surface plasmon resonance. Appl. Opt. 2012, 51, 5161–5167. [Google Scholar] [CrossRef]
- Cross, J.L.; Gallaher, T.N.; Leary, J.J.; Schreiner, S. The Application of Site-Specific Natural Isotope Fractionation-Nuclear Magnetic Resonance (SNIF-NMR) to the Analysis of Alcoholic Beverages. Chem. Educ. 1998, 3, 1–9. [Google Scholar] [CrossRef]
- Thomas, F.; Randet, C.; Gilbert, A.; Silvestre, V.; Jamin, E.; Akoka, S.; Remaud, G.; Segebarth, N.; Guillou, C. Improved characterization of the botanical origin of sugar by carbon-13 SNIF-NMR applied to ethanol. J. Agric. Food Chem. 2010, 58, 11580–11585. [Google Scholar] [CrossRef]
- Warren-Vega, W.M.; Fonseca-Aguiñaga, R.; González-Gutiérrez, L.V.; Romero-Cano, L.A. A critical review on the assessment of the quality and authenticity of Tequila by different analytical techniques: Recent advances and perspectives. Food Chem. 2023, 408, 135223. [Google Scholar] [CrossRef]
- Fonseca-Aguiñaga, R.; Gómez-Ruiz, H.; Miguel-Cruz, F.; Romero-Cano, L.A. Analytical characterization of tequila (silver class) using stable isotope analyses of C, O and atomic absorption as additional criteria to determine authenticity of beverage. Food Control 2020, 112, 107161. [Google Scholar] [CrossRef]
- Fonseca-Aguiñaga, R.; Warren-Vega, W.M.; Miguel-Cruz, F.; Romero-Cano, L.A. Isotopic characterization of 100% agave tequila (silver, aged and extra-aged class) for its use as an additional parameter in the determination of the authenticity of the beverage maturation Time. Molecules 2021, 26, 1719. [Google Scholar] [CrossRef] [PubMed]
- del Real Laborde, J.I. Agave, materia prima del Tequila. In Manual del Técnico Tequilero; Consejo Regulador del Tequila: Guadalajara, Mexico, 2019; pp. 128–157. [Google Scholar]
- Brown-Valencia, G. Uso de los derivados del maíz en el proceso del Tequila. In Manual del Técnico Tequilero; Consejo Regulador del Tequila: Guadalajara, Mexico, 2019; pp. 187–224. [Google Scholar]
- Michel-Cuello, C.; Fonseca, G.G.; Cervantes, E.M.; Rivera, N.A. Effect of temperature and pH environment on the hydrolysis of maguey fructans to obtain fructose syrup. Rev. Mex. Ing. Química 2015, 14, 615–622. [Google Scholar]
- NOM-070-SCFI-2016; Bebidas alcohólicas-Mezcal-Especificaciones. Diario Oficial de la Federación México: Mexico City, Mexico, 2016.
- NOM-159-SCFI-2004; Bebidas alcohólicas-Sotol-Especificaciones y métodos de prueba. Diario Oficial de la Federación México: Mexico City, Mexico, 2004.
- NOM-168-SCFI-2005; Bebidas alcohólicas-Bacanora-Especificaciones de elaboración, envasado y etiquetado. Diario Oficial de la Federación México: Mexico City, Mexico, 2005.
- Diario Oficial de la Federación México. Declaración General De Protección De La Denominación De Origen “Raicilla”; Diario Oficial de la Federación México: Mexico City, Mexico, 2019.
- Acosta-Salazar, E.; Fonseca-Aguiñaga, R.; Warren-Vega, W.M.; Zárate-Guzmán, A.I.; Zárate-Navarro, M.A.; Romero-Cano, L.A.; Campos-Rodríguez, A. Effect of age of Agave tequilana Weber blue variety on quality and authenticity parameters for the tequila 100% agave silver class: Evaluation at the industrial scale level. Foods 2021, 10, 3103. [Google Scholar] [CrossRef]
- Arrizon, J.; Arizaga, J.J.; Hernandez, R.E.; Estarron, M.; Gschaedler, A. Production of Volatile Compounds in Tequila and Raicilla Musts by Different Yeasts Isolated from Mexican Agave Beverages. In Hispanic Foods; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2006; pp. 167–177. ISBN 9780841239739. [Google Scholar]
- Cedeño, M.C. Tequila production. Crit. Rev. Biotechnol. 1995, 15, 1–11. [Google Scholar] [CrossRef]
- Lopez-Alvarez, A.; Diaz-Perez, A.L.; Sosa-Aguirre, C.; Macias-Rodriguez, L.; Campos-Garcia, J. Ethanol yield and volatile compound content in fermentation of agave must by Kluyveromyces marxianus UMPe-1 comparing with Saccharomyces cerevisiae baker’s yeast used in tequila production. J. Biosci. Bioeng. 2012, 113, 614–618. [Google Scholar] [CrossRef]
- Pinal, L.; Cedeño, M.; Gutierrez, H.; Alvarez-Jacobs, J. Fermentation parameters influencing higher alcohol production in the tequila process. Biotechnol. Lett. 1997, 19, 45–47. [Google Scholar] [CrossRef]
- Pinal, L.; Cornejo, E.; Arellano, M.; Herrera, E.; Nunez, L.; Arrizon, J.; Gschaedler, A. Effect of Agave tequilana age, cultivation field location and yeast strain on tequila fermentation process. J. Ind. Microbiol. Biotechnol. 2009, 36, 655–661. [Google Scholar] [CrossRef]
- Alvarez-Ainza, M.L.; Zamora-Quinonez, K.A.; Moreno-Ibarra, G.M.; Acedo-Felix, E. Genomic Diversity of Saccharomyces cerevisiae Yeasts Associated with Alcoholic Fermentation of Bacanora Produced by Artisanal Methods. Appl. Biochem. Biotechnol. 2015, 175, 2668–2676. [Google Scholar] [CrossRef]
- Escalante-Minakata, P.; Blaschek, H.P.; de la Rosa, A.P.B.; Santos, L.; De Leon-Rodriguez, A. Identification of yeast and bacteria involved in the mezcal fermentation of Agave salmiana. Lett. Appl. Microbiol. 2008, 46, 626–630. [Google Scholar] [CrossRef]
- Zavala-Díaz de la Serna, F.J.; Contreras-López, R.; Lerma-Torres, L.P.; Ruiz-Terán, F.; Rocha-Gutiérrez, B.A.; Pérez-Vega, S.B.; Elías-Ogaz, L.R.; Salmerón, I. Understanding the Biosynthetic Changes that Give Origin to the Distinctive Flavor of Sotol: Microbial Identification and Analysis of the Volatile Metabolites Profiles During Sotol (Dasylirion sp.) Must Fermentation. Biomolecules 2020, 10, 1063. [Google Scholar] [CrossRef] [PubMed]
- Nolasco-Cancino, H.; Santiago-Urbina, J.A.; Wacher, C.; Ruíz-Terán, F. Predominant Yeasts During Artisanal Mezcal Fermentation and Their Capacity to Ferment Maguey Juice. Front. Microbiol. 2018, 9, 2900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutiérrez-Coronado, M.L.; Acedo-Félix, E.; Valenzuela-Quintanar, A.I. Industria del bacanora y su proceso de elaboración bacanora industry and its process of production. Cienc. Tecnol. Aliment. 2007, 5, 394–404. [Google Scholar] [CrossRef]
- Perini, M.; Guzzon, R.; Simoni, M.; Malacarne, M.; Larcher, R.; Camin, F. The effect of stopping alcoholic fermentation on the variability of H, C and O stable isotope ratios of ethanol. Food Control 2014, 40, 368–373. [Google Scholar] [CrossRef]
- Prado-Jaramillo, N.; Estarrón-Espinosa, M.; Escalona-Buendía, H.; Cosío-Ramírez, R.; Martín-del-Campo, S.T. Volatile compounds generation during different stages of the Tequila production process. A preliminary study. LWT-Food Sci. Technol. 2015, 61, 471–483. [Google Scholar] [CrossRef]
- Amaya-Delgado, L.; Herrera-López, E.J.; Arrizon, J.; Arellano-Plaza, M.; Gschaedler, A. Performance evaluation of Pichia kluyveri, Kluyveromyces marxianus and Saccharomyces cerevisiae in industrial tequila fermentation. World J. Microbiol. Biotechnol. 2013, 29, 875–881. [Google Scholar] [CrossRef]
- Kemp, P.R.; Gardetto, P.E. Photosynthetic pathway types of evergreen rosette plants (Liliaceae) of the Chihuahuan desert. Oecologia 1982, 55, 149–156. [Google Scholar] [CrossRef]
- Humberto Reyes-Valdés, M.; Palacios, R.; Rivas-Martínez, E.N.; Robledo-Olivo, A.; Antonio-Bautista, A.; Valdés-Dávila, C.M.; Villarreal-Quintanilla, J.Á.; Benavides-Mendoza, A. 4—The Sustainability of Mexican Traditional Beverage Sotol: Ecological, Historical, and Technical Issues. In Processing and Sustainability of Beverages; Grumezescu, A.M., Holban, A.M., Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 103–137. ISBN 978-0-12-815259-1. [Google Scholar]
- De León-Rodríguez, A.; González-Hernández, L.; De La Rosa, A.P.B.; Escalante-Minakata, P.; López, M.G. Characterization of volatile compounds of mezcal, an ethnic alcoholic beverage obtained from Agave salmiana. J. Agric. Food Chem. 2006, 54, 1337–1341. [Google Scholar] [CrossRef]
- Prado-Ramírez, R.; Gonzáles-Alvarez, V.; Pelayo-Ortiz, C.; Casillas, N.; Estarrón, M.; Gómez-Hernández, H.E. The role of distillation on the quality of tequila. Int. J. Food Sci. Technol. 2005, 40, 701–708. [Google Scholar] [CrossRef]
- Bayle, K.; Akoka, S.; Remaud, G.S.; Robins, R.J. Nonstatistical C-13 Distribution during Carbon Transfer from Glucose to Ethanol during Fermentation Is Determined by the Catabolic Pathway Exploited. J. Biol. Chem. 2015, 290, 4118–4128. [Google Scholar] [CrossRef] [Green Version]
- Mancilla-Margalli, N.A.; Lopez, M.G. Generation of Maillard compounds from inulin during the thermal processing of Agave tequilana Weber var. azul. J. Agric. Food Chem. 2002, 50, 806–812. [Google Scholar] [CrossRef] [PubMed]
- Arellano, M.; Pelayo, C.; Ramirez, J.; Rodriguez, I. Characterization of kinetic parameters and the formation of volatile compounds during the tequila fermentation by wild yeasts isolated from agave juice. J. Ind. Microbiol. Biotechnol. 2008, 35, 835–841. [Google Scholar] [CrossRef] [PubMed]
- Ida, K.; Ishii, J.; Matsuda, F.; Kondo, T.; Kondo, A. Eliminating the isoleucine biosynthetic pathway to reduce competitive carbon outflow during isobutanol production by Saccharomyces cerevisiae. Microb. Cell Factories 2015, 14, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wess, J.; Brinek, M.; Boles, E. Improving isobutanol production with the yeast Saccharomyces cerevisiae by successively blocking competing metabolic pathways as well as ethanol and glycerol formation. Biotechnol. Biofuels 2019, 12, 173. [Google Scholar] [CrossRef]
Region | Total Number of Tequila Producers Active in the Region | % | Samples | % |
---|---|---|---|---|
Valles (Jalisco) | 62 | 42 | 28 | 41 |
Altos Sur (Jalisco) | 46 | 31 | 21 | 31 |
Cienega (Jalisco) | 21 | 14 | 10 | 14 |
Centro (Jalisco) | 14 | 9 | 7 | 10 |
Guanajuato | 4 | 3 | 2 | 3 |
Michoacan | 2 | 1 | 1 | 1 |
Total | 149 | 100 | 69 | 100 |
Statistic | Acetaldehyde | Ethyl Acetate | Methanol | n-Propanol | Isoamyl Alcohol | Ethyl Lactate | Ethanol |
---|---|---|---|---|---|---|---|
(‰) | (‰) | (‰) | (‰) | (‰) | (‰) | (‰) | |
) | −15.7 | −15.3 | −24.8 | −11.7 | −6.5 | −10.7 | −12.9 |
Standard deviation (s) | 4.2 | 1.5 | 1.0 | 4.1 | 1.6 | 2.6 | 0.4 |
−2s | −24.02 | −18.32 | −26.82 | −19.89 | −9.63 | −15.98 | −13.76 |
+2s | −7.40 | −12.28 | −22.80 | −3.47 | −3.33 | −5.39 | −12.09 |
Lower quartile (QL) | −18.63 | −16.23 | −25.45 | −14.23 | −7.46 | −11.39 | −13.23 |
Upper Quartile (QU) | −13.53 | −14.22 | −24.13 | −8.88 | −5.40 | −9.38 | −12.67 |
Median () | −15.85 | −15.49 | −24.78 | −10.48 | −6.55 | −10.38 | −12.94 |
Coefficient of Variation (C.V.) | −0.26 | −0.10 | −0.04 | −0.35 | −0.24 | −0.25 | −0.03 |
number of observations | 63 | 67 | 69 | 68 | 69 | 65 | 69 |
Minimum value (min) | −23.60 | −18.82 | −27.71 | −21.77 | −11.76 | −23.73 | −13.78 |
Maximum value (max) | −5.39 | −10.22 | −22.99 | −4.84 | −3.51 | −4.41 | −11.34 |
Molecule | Function | ||
---|---|---|---|
1 | 2 | 3 | |
Ethyl acetate | 0.717 | 0.211 | −0.052 |
Methanol | −0.415 | 0.220 | 0.363 |
Isoamyl alcohol | −0.024 | −0.635 | 0.633 |
Ethanol | 0.160 | 0.479 | 0.102 |
Isobutanol | 0.005 | −0.336 | −0.050 |
Acetaldehyde | 0.174 | 0.174 | 0.429 |
n-propanol | 0.381 | 0.155 | 0.760 |
Ethyl lactate | 0.017 | −0.064 | −0.308 |
Threshold Criteria | AUC * | Standard Error (%) | Sensibility (%) | Specificity (%) | Youden’s Index | Positive if the Test Value Is Greater Than |
---|---|---|---|---|---|---|
±1s | 0.81 | 5.1 | 98.6 | 63.9 | 0.62 | 0.0311 |
±2s | 0.91 | 3.6 | 94.2 | 83.3 | 0.78 | 0.0311 |
±3s | 0.84 | 4.0 | 78.3 | 83.3 | 0.62 | 0.0024 |
Congeners (mg/100 mL A.A. *) |
Problem Sample 1 (PS1) |
Problem Sample 2 (PS2) |
Problem Sample 3 (PS3) |
Limits Established by the Official Mexican Standard NOM-006-SCFI-2012 |
---|---|---|---|---|
Methanol | 2350.6 | 137.1 | 144.13 | 30–300 |
Higher alcohols | 14,548.6 | 244.7 | 312.88 | 20–500 |
Esters | 180.3 | 40.3 | 60.63 | 2–200 |
Aldehydes | 20.3 | 16.5 | 23.38 | 0–40 |
Sample | Ethyl Acetate (‰) | Methanol (‰) | n-Propanol (‰) | Isoamyl Alcohol (‰) | Ethanol (‰) | Test Value ±2s | Positive if the Test Value Is Greater Than: | Test ±2s |
---|---|---|---|---|---|---|---|---|
PS1 | −9.48 | −37.22 | −9.43 | −7.53 | −12.88 | 0.0018 | 0.0311 | Negative |
PS2 | −31.89 | −45.45 | −13.77 | −32.66 | −12.15 | 0.0006 | 0.0311 | Negative |
PS3 | −36.92 | −46.18 | −27.23 | −22.68 | −13.08 | 0.0003 | 0.0311 | Negative |
Reference values for Tequila 100% agave silver class * | −13.8 to −16.8 | −23.8 to −25.8 | −7.6 to −15.8 |
−4.9 to −8.1 | −12.5 to −13.3 | --- | --- | --- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fonseca-Aguiñaga, R.; Navarro-Arteaga, U.E.; Muñoz-Sánchez, M.; Gómez-Ruiz, H.; Warren-Vega, W.M.; Romero-Cano, L.A. Design of a Novel Auxiliary Diagnostic Test for the Determination of Authenticity of Tequila 100% Agave Silver Class Based on Chemometrics Analysis of the Isotopic Fingerprint of the Beverage. Foods 2023, 12, 2605. https://doi.org/10.3390/foods12132605
Fonseca-Aguiñaga R, Navarro-Arteaga UE, Muñoz-Sánchez M, Gómez-Ruiz H, Warren-Vega WM, Romero-Cano LA. Design of a Novel Auxiliary Diagnostic Test for the Determination of Authenticity of Tequila 100% Agave Silver Class Based on Chemometrics Analysis of the Isotopic Fingerprint of the Beverage. Foods. 2023; 12(13):2605. https://doi.org/10.3390/foods12132605
Chicago/Turabian StyleFonseca-Aguiñaga, Rocío, Uriel E. Navarro-Arteaga, Martin Muñoz-Sánchez, Humberto Gómez-Ruiz, Walter M. Warren-Vega, and Luis A. Romero-Cano. 2023. "Design of a Novel Auxiliary Diagnostic Test for the Determination of Authenticity of Tequila 100% Agave Silver Class Based on Chemometrics Analysis of the Isotopic Fingerprint of the Beverage" Foods 12, no. 13: 2605. https://doi.org/10.3390/foods12132605
APA StyleFonseca-Aguiñaga, R., Navarro-Arteaga, U. E., Muñoz-Sánchez, M., Gómez-Ruiz, H., Warren-Vega, W. M., & Romero-Cano, L. A. (2023). Design of a Novel Auxiliary Diagnostic Test for the Determination of Authenticity of Tequila 100% Agave Silver Class Based on Chemometrics Analysis of the Isotopic Fingerprint of the Beverage. Foods, 12(13), 2605. https://doi.org/10.3390/foods12132605