The Comparative Effect of Lactic Acid Fermentation and Germination on the Levels of Neurotoxin, Anti-Nutrients, and Nutritional Attributes of Sweet Blue Pea (Lathyrus sativus L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Chemicals
2.2. Preparation of Raw and Processed Grass Pea (GP) Powder
2.3. Nutritional Composition
2.4. Determination of Vitamin A and C Content
2.5. Determination of Anti-Nutritional Factors
2.6. Determination of Amino Acid Content
2.7. Determination of In Vitro Protein Digestibility (IVPD%)
2.8. Statistical Analysis
3. Results
3.1. Effects of Processing on the Nutritional Profile of Grass Pea
3.2. Mineral Composition
3.3. Vitamin Content of Grass Pea
3.4. Anti-Nutrient Composition of Grass Pea
3.5. Amino Acid Composition of Grass Pea
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. Definition and Classification of Commodities: Pulses and Derived Products. Available online: http://www.fao.org/es/faodef/fdef04e.htm (accessed on 6 March 2022).
- Ramakrishna, V.; Rani, P.J.; Rao, P.R. Anti-nutritional factors during germination in Indian bean (Dolichos lablab L.) seeds. World J. Dairy Food Sci. 2006, 1, 6–11. [Google Scholar]
- Bernstein, A.M.; Sun, Q.; Hu, F.B.; Stampfer, M.J.; Manson, J.E.; Willett, W.C. Major dietary protein sources and risk of coronary heart disease in women. Circulation 2010, 122, 876–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, A.; Sun, Q.; Bernstein, A.M.; Schulze, M.B.; Manson, J.E.; Stampfer, M.J.; Willett, W.C.; Hu, F.B. Red Meat Consumption and Mortality: Results from Two Prospective Cohort Studies. Arch. Intern. Med. 2012, 172, 555–563. [Google Scholar]
- Zhu, F.; Du, B.; Xu, B. Anti-inflammatory effects of phytochemicals from fruits, vegetables, and food legumes: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 1260–1270. [Google Scholar] [CrossRef] [PubMed]
- Hanbury, C.D.; White, C.L.; Mullanc, B.P.; Siddique, K.H.M. A review of the potential of Lathyrus sativus L. and L. cicera L. grain for use as animal feed. Anim. Feed Sci. Technol. 2000, 87, 1–27. [Google Scholar] [CrossRef]
- Grela, E.R.; Rybiński, W.; Klebaniuk, R.; Matras, J. Morphological characteristics of some accessions of grass pea (Lathyrus sativus L.) grown in Europe and nutritional traits of their seeds. Genet. Resour. Crop Evol. 2010, 57, 693–701. [Google Scholar] [CrossRef]
- Rizvi, A.H.; Sarker, A.; Dogra, A. Enhancing grasspea (Lathyrus sativus L.) production in problematic soils of South Asia for nutritional security. Indian J. Genet. Plant Breed. 2016, 76, 583–592. [Google Scholar] [CrossRef]
- Ghirma, M.; Negussie, W.; Lo, G.; Yirgalem, Y.; Kurt, K.; Abebaw, B.; Girma, A.; Baboo, M.N.; Theodros, S. Glutamate oxidase advances the selective bioanalytical detection of the neurotoxic amino acid β-ODAP I grass pea: A decade of progress. Pure Appl. Chem. 2004, 6, 765–775. [Google Scholar]
- Tamburino, R.; Guida, V.; Pacifico, S.; Rocco, M.; Zarelli, A.; Parente, A.; Di Maro, A. Nutritional values and radical scavenging capacities of grass pea (‘Lathyrus sativus’ L.) seeds in Valle Agricola district, Italy. Aust. J. Crop Sci. 2012, 6, 149–156. [Google Scholar]
- Arslan, M. Diversity for vitamin and amino acid content in grass pea (Lathyrus sativus L.). Legume Res. 2017, 40, 803–810. [Google Scholar] [CrossRef] [Green Version]
- Urga, K.; Fufa, H.; Biratu, E.; Husain, A. Evaluation of Lathyrus sativus cultivated in Ethiopia for proximate composition, minerals, β-ODAP and anti-nutritional components. Afr. J. Food Agric. Nutr. Dev. 2005, 5, 1–16. [Google Scholar]
- Mahler-Slasky, Y.; Kislev, M.E. Lathyrus consumption in late bronze and iron age sites in Israel: An Aegean affinity. J. Archaeol. Sci. 2010, 37, 2477–2485. [Google Scholar] [CrossRef]
- Amara, A.; Coussemacq, M.; Geffard, M. Molecular detection of methionine in rat brain using specific antibodies. Neurosci. Lett. 1995, 185, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Lambein, F.; Kuo, Y.-H. Prevention of neurolathyrism during drought. Lancet 2004, 363, 657. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.S.; Rao, S.L.N. Lessons from neurolathyrism: A disease of the past & the future of Lathyrus sativus (Khesari dal). Indian J. Med. Res. 2013, 138, 32–37. [Google Scholar] [PubMed]
- Van Wyk, S.G.; Kunert, K.J.; Cullis, C.A.; Pillay, P.; Makgopa, M.E.; Schlüter, U.; Vorster, B.J. The future of cystatin engineering. Plant Sci. 2016, 246, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Llorent-Martínez, E.J.; Zengin, G.; Fernández-de Córdova, M.L.; Bender, O.; Atalay, A.; Ceylan, R.; Mollica, A.; Mocan, A.; Uysal, S.; Guler, G.; et al. Traditionally used Lathyrus species: Phytochemical composition, antioxidant activity, enzyme inhibitory properties, cytotoxic effects, and in silico studies of L. czeczottianus and L. nissolia. Front. Pharmacol. 2017, 8, 83. [Google Scholar] [CrossRef] [Green Version]
- Soetan, K.O. Pharmacological and other beneficial effects of antinutritional factors in plants—A review. Afr. J. Biotechnol. 2008, 7, 4713–4721. [Google Scholar]
- Lambein, F.; Khan, J.K.; Kuo, Y.-H.; Campell, C.G.; Briggs, C.J. Toxins in the seedlings of some varieties of grass pea (Lathyrussativus). Nat. Toxins 1993, 1, 246–249. [Google Scholar] [CrossRef]
- Ramachandran, S.; Ray, A. Effect of Different Processing Techniques on the Nutritive Value of Grass Pea, Lathyrus sativus L., Seed Meal in Compound Diets for Indian Major Carp Rohu, Labeo rohita (Hamilton), Fingerlings. Fish. Aquat. Life 2008, 16, 189–202. [Google Scholar] [CrossRef] [Green Version]
- Azeke, M.A.; Egielewa, S.J.; Eigbogbo, M.U.; Ihimire, I.G. Effect of germination on the phytase activity, phytate and total phosphorus contents of rice (Oryza sativa), maize (Zea mays), millet (Panicum miliaceum), sorghum (Sorghum bicolor) and wheat (Triticum aestivum). J. Food Sci. Technol. 2011, 48, 724–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, V.; Sinha, A.K.; Makkar, H.P.S.; Becker, K. Dietary roles of phytate and phytase in human nutrition: A review. Food Chem. 2010, 120, 945–959. [Google Scholar] [CrossRef]
- Vijayakumari, K.; Pugalenthi, M.; Vadivel, V. Effect of soaking and hydrothermal processing methods on the levels of antinutrients and in vitro protein digestibility of Bauhinia purpurea L. seeds. Food Chem. 2007, 103, 968–975. [Google Scholar] [CrossRef]
- Tacon, A.G.J. Fishmeal Replacers: Review of Antinutrients within Oilseeds and Pulses—A Limiting Factor for the Aquafeed Green Revolution; Option Mediterraneennes; CIHEAM: Zaragoza, Spain, 1995; pp. 153–182. [Google Scholar]
- Patto, M.V.; Rubiales, D. Resistance to rust and powdery mildew in Lathyrus crops. Czech J. Genet. Plant Breed. 2014, 50, 116–122. [Google Scholar] [CrossRef] [Green Version]
- Lambein, F.; Kuo, Y.-H. Lathyrism. Grain Legumes 2009, 54, 8–9. [Google Scholar]
- Shah, S.A.; Zeb, A.; Masood, T.; Noreen, N.; Abbas, S.J.; Samiullah, M.; Muhammad, A. Effects of sprouting time on biochemical and nutritional qualities of Mungbean varieties. Afr. J. Agric. Res. 2011, 6, 5091–5098. [Google Scholar]
- Khattab, R.Y.; Arntfield, S.D. Nutritional quality of legume seeds as affected by some physical treatments 2: Antinutritional factors. LWT Food Sci. Technol. 2009, 42, 1113–1118. [Google Scholar] [CrossRef]
- Mubarak, A.E. Nutritional composition and antinutritional factors of mung bean seeds (Phaseolus aureus) as affected by some home traditional process. Food Chem. 2005, 89, 489–495. [Google Scholar] [CrossRef]
- Hotz, C.; Gibson, R.S. Traditional food-processing and preparation practices to enhance the bioavailability of micronutrients in plants-based diets. J. Nutr. 2007, 137, 1031–1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaushik, G.; Satya, S.; Naik, S.N. Effect of domestic processing techniques on the nutritional quality of the soybean. Med. J. Nutr. Metab. 2010, 3, 39–46. [Google Scholar]
- Khalil, A.W.; Zeb, A.; Mahmood, F.; Tariq, S.; Khattak, A.B.; Shah, H. Comparison of sprout quality characteristics of desi and kabuli type chickpea cultivars (Cicer arietinum L.). LWT Food Sci. Technol. 2007, 40, 937–945. [Google Scholar] [CrossRef]
- Audu, S.S.; Aremu, M.O. Effect of processing on chemical composition of red kidney bean (Phaseolus vulgaris L.) flour. Pak. J. Nutr. 2011, 10, 1069–1075. Available online: https://www.researchgate.net/publication/267995127 (accessed on 25 May 2023). [CrossRef] [Green Version]
- Yang, F.; Basu, T.K.; Ooraikul, B. Studies on germination: Conditions and antioxidant contents of wheat grain. Int. J. Food Sci. Nutr. 2001, 52, 319–330. [Google Scholar] [CrossRef]
- Budryn, G.; Klewicka, E.; Grzelczyk, J.; Gałązka-Czarnecka, I.; Mostowski, R. Lactic acid fermentation of legume seed sprouts as a method of increasing the content of isoflavones and reducing microbial contamination. Food Chem. 2019, 285, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Latimer, G.W., Jr. Official Methods of Analysis, 19th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2019. [Google Scholar]
- Sinkovič, L.; Sinkovič, D.K.; Meglič, V. Milling fractions composition of common (Fagopyrum esculentum Moench) and Tartary (Fagopyrum tataricum (L.) Gaertn.) buckwheat. Food Chem. 2021, 365, 130459. [Google Scholar] [CrossRef] [PubMed]
- Jadoon, S.; Malik, A.; Qazi, M.H.; Aziz, M. Spectrophotometric method for the determination of Vitamin A and E using Ferrozine-Fe (II) complex. Asian J. Res. Chem. 2013, 6, 334–340. [Google Scholar]
- Desai, A.P.; Desai, S. UV spectroscopic method for determination of vitamin C (ascorbic acid) content in different fruits in south Gujarat Region. Int. J. Environ. Sci Nat. Resour. 2019, 21, 2–44. [Google Scholar] [CrossRef]
- Wolfgang, H.; Lantzach, H.J. Sensitive method for the rapid determination of phytate in cereal and cereal products. J. Sci. Food Agric. 1983, 34, 1423–1426. [Google Scholar]
- Schanderi, S.H. Methods in Food Analysis; Academic Press: New York, NY, USA, 1970; p. 709. [Google Scholar]
- Rao, S.L.N. A sensitive and specific colorimetric method for the determination of α, β-diaminopropionic acid and the Lathyrus sativus neurotoxin. Anal. Biochem. 1978, 86, 386–395. [Google Scholar] [CrossRef]
- Abegaz, B.M.; Nunn, P.B.; De Bruyn, A.; Lambein, F. Thermal isomerization of N-oxalyl derivatives of diamino acids. Phytochemistry 1993, 33, 1121–1123. [Google Scholar] [CrossRef]
- Schuster, R. Determination of amino acids in biological, pharmaceutical, plant and food samples by automated precolumn derivatization and high-performance liquid chromatography. J. Chromatogr. B Biomed. Appl. 1988, 431, 271–284. [Google Scholar] [CrossRef]
- Mertz, E.T.; Hassen, M.M.; Cairns-Whittern, C.; Kirleis, A.W.; Tu, L.; Axtell, J.D. Pepsin digestibility of proteins in sorghum and other major cereals. Proc. Natl. Acad. Sci. USA 1984, 81, 1–2. [Google Scholar] [CrossRef]
- Curiel, J.A.; Coda, R.; Centomani, I.; Summo, C.; Gobbetti, M.; Rizzello, C.G. Exploitation of the nutritional and functional characteristics of traditional Italian legumes: The potential of sourdough fermentation. Int. J. Food Microbiol. 2015, 196, 51–61. [Google Scholar] [CrossRef]
- Masood, T.; Shah, H.U.; Zeb, A. Effect of Sprouting time on Proximate Composition and Ascorbic acid level of Mung bean (Vigna radiate L.) and Chickpea (Cicerarietinum L.) seeds. J. Anim. Plant Sci. 2014, 24, 850–859. [Google Scholar]
- Granito, M.; Torres, A.; Frías, J.; Guerra, M.; Vidal-Valverde, C. Influence of fermentation on the nutritional value of two varieties of Vigna sinensis. Eur. Food Res. Technol. 2005, 220, 176–181. [Google Scholar] [CrossRef]
- Esenwah, C.N.; Ikenebomeh, M.J. Processing Effects on the Nutritional and Anti-Nutritional Contents of African Locust Bean (Parkiabiglobosa Benth.) seed. Pak. J. Nutr. 2008, 7, 214–217. [Google Scholar] [CrossRef] [Green Version]
- Urga, K.; Fite, A.; Kebede, B. Nutritional and antinutritional factors of grass pea (Lathyrus sativus) germplasms. Bull. Chem. Soc. Ethiop. 1995, 9, 9–16. [Google Scholar]
- Kumitch, H.M.; Stone, A.; Nosworthy, M.G.; Nickerson, M.T.; House, J.D.; Korber, D.R.; Tanaka, T. Effect of fermentation time on the nutritional properties of pea protein-enriched flour fermented by Aspergillus oryzae and Aspergillus niger. Cereal Chem. 2020, 97, 104–113. [Google Scholar] [CrossRef] [Green Version]
- Kavitha, S.; Parimalavalli, R. Effect of Processing Methods on Proximate Composition of Cereal and Legume flours. J. Hum. Nutr. Food Sci. 2014, 2, 1051. [Google Scholar]
- Bueno, D.B.; da Silva Júnior, S.I.; Chiarotto, A.B.S.; Cardoso, T.M.; Neto, J.A.; dos Reis, G.C.L.; Tavano, O.L. The germination of soybeans increases the water-soluble components and could generate innovations in soy-based foods. LWT Food Sci. Technol. 2020, 117, 108599. [Google Scholar] [CrossRef]
- Ayernor, G.S.; Ocloo, F.C.K. Physico-chemical changes and diastatic activity associated with germinating paddy rice. Afr. J. Food Sci. 2007, 1, 37–41. [Google Scholar]
- Rani, K.U.; Rao, U.P.; Leelavathi, K.; Rao, P.H. Distribution of enzymes in wheat flour mill streams. J. Cereal Sci. 2001, 34, 233–242. [Google Scholar] [CrossRef]
- Rakcejeva, T.; Zagorska, J.; Zvezdina, E. Gassy ozone effect on quality parameters of flaxes made from biologically activated whole wheat grains. Int. J. Nutr. Food Eng. 2014, 8, 396–399. [Google Scholar]
- Megat, R.M.R.; Azrina, A.; Norhaizan, M.E. Effect of germination on total dietary fibre and total sugar in selected legumes. Int. Food Res. J. 2016, 23, 257–261. [Google Scholar]
- Benítez, V.; Cantera, S.; Aguilera, Y.; Mollá, E.; Esteban, R.M.; Díaz, M.F.; Martín-Cabrejas, M.A. Impact of germination on starch, dietary fiber and physicochemical properties in non-conventional legumes. Food Res. Int. 2013, 50, 64–69. [Google Scholar] [CrossRef]
- Laxmi, G.; Chaturvedi, N.; Richa, S. The impact of malting on nutritional composition of foxtail millet, wheat and chickpea. J. Nutr. Food Sci. 2015, 5, 407. [Google Scholar]
- Unander, D. Grass Pea. Lathyrus sativus L. Promoting the conservation and use of underutilized and neglected crops. Econ. Bot. 2002, 56, 105. [Google Scholar] [CrossRef]
- Jan, R.; Saxena, D.C.; Singh, S. Physico-chemical, textural, sensory and antioxidant characteristics of gluten e Free cookies made from raw and germinated Chenopodium (Chenopodium album) flour. LWT Food Sci. Technol. 2017, 71, 281–287. [Google Scholar] [CrossRef]
- Onoja, U.S.; Obizoba, I.C. Nutrient composition and organoleptic attributes of gruel based on fermented cereal, legume, tuber and root flour. Agro Sci. J. Trop. Agric. Food Environ. Ext. 2009, 8, 162–168. [Google Scholar] [CrossRef] [Green Version]
- Igbabul, B.; Hiikyaa, O.; Amove, J. Effect of fermentation on the proximate composition and functional properties of mahogany bean (Afzeliaafricana) flour. Curr. Res. Nutr. Food Sci. J. 2014, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Oghbaei, M.; Prakash, J. Effect of primary processing of cereals and legumes on its nutritional quality: A comprehensive review. Cogent Food Agric. 2016, 2, 1136015. [Google Scholar] [CrossRef] [Green Version]
- Olagunju, O.F.; Ezekiel, O.O.; Ogunshe, A.O.; Oyeyinka, S.A.; Ijabadeniyi, O.A. Effects of fermentation on proximate composition, mineral profile and antinutrients of tamarind (Tamarindus indica L.) seed in the production of daddawa-type condiment. LWT Food Sci. Technol. 2018, 90, 455–459. [Google Scholar] [CrossRef]
- Osman, M.A. Changes in sorghum enzyme inhibitors, phytic acid, tannins and in vitro protein digestibility occurring during Khamir (local bread) fermentation. Food Chem. 2004, 88, 129–134. [Google Scholar] [CrossRef]
- Kuo, Y.; Rozan, P.; Lambein, F.; Frias, J.; Vidal Valverde, C. Effects of different germination conditions on the contents of free protein and nonprotein amino acids of commercial legumes. Food Chem. 2003, 86, 537–545. [Google Scholar] [CrossRef]
- Chaves-Lopez, C.; Serio, A.; Grande-Tovar, C.D.; Cuervo-Mulet, R.; Delgado-Ospina, J.; Paparella, A. Traditional fermented foods and beverages from a microbiological and nutritional perspective: The Colombian Heritage. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1031–1048. [Google Scholar] [CrossRef]
- Onwurafor, E.U.; Onweluzo, J.C.; Ezeoke, A.M. Effect of fermentation methods on chemical and microbial properties of mung bean (Vigna radiata) flour. Niger. Food J. 2014, 32, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Day, C.N.; Morawicki, R.O. Effects of fermentation by yeast and amylolytic lactic acid bacteria on grain sorghum protein content and digestibility. J. Food Qual. 2016, 2018, 3964392. [Google Scholar] [CrossRef]
- Sangronis, E.; Machado, C.J. Influence of germination on the nutritional quality of Phaseolus vulgaris and Cajanus cajan. LWT Food Sci. Technol. 2007, 40, 116–120. [Google Scholar] [CrossRef]
- Nout, M.J.R.; Motarjemi, Y. Assessment of fermentation as a household technology for improving food safety: A joint FAO/WHO workshop. Food Control 1997, 8, 2011–2236. [Google Scholar] [CrossRef]
- Idris, W.H.; AbdelRahaman, S.M.; Elmaki, H.B.; Babikar, E.E.; Eltinay, A.H. Effect of malt pre-treatment on HCL extractability of calcium, phosphorus and iron of sorghum (Sorghum bicolor) cultivars. Int. J. Food Sci. 2007, 42, 194–199. [Google Scholar] [CrossRef]
- Elemo, G.N.; Elemo, B.O.; Okafor, J.N.C. Preparation and nutritional composition of a weaning food formulated from sprouted sorghum (Sorghum bicolor) and steam cooked cowpea (Vigna unguiculata Walp). Am. J. Food Technol. 2011, 6, 413–421. [Google Scholar] [CrossRef]
- Luo, Y.W.; Xie, W.H.; Jin, X.X.; Wang, Q.; He, Y.J. Effects of germination on iron, zinc, calcium, manganese and copper availability from cereals and legumes. CyTA J. Food Sci. 2014, 12, 22–26. [Google Scholar] [CrossRef] [Green Version]
- Ungureanu-Iuga, M.; Atudorei, D.; Codină, G.G.; Mironeasa, S. Rheological Approaches of Wheat Flour Dough Enriched with Germinated Soybean and Lentil. Appl. Sci. 2021, 11, 11706. [Google Scholar] [CrossRef]
- Desai, A.D.; Kulkarni, S.S.; Sahoo, A.K.; Ranveer, R.C.; Dandge, P.B. Effect of supplementation of malted ragi flour on the nutritional and sensorial quality characteristics of cake. Adv. J. Food Sci. Technol. 2010, 2, 67–71. [Google Scholar]
- Tamene, A.; Kariluoto, S.; Baye, K.; Humblot, C. Quantification of folate in the main steps of traditional processing of tef injera, a cereal based fermented staple food. J. Cereal Sci. 2019, 87, 225–230. [Google Scholar] [CrossRef]
- Adefegha, S.A.; Oboh, G. Cooking enhances the antioxidant properties of some tropical green leafy vegetables. Afr. J. Biotechnol. 2011, 10, 632–639. [Google Scholar]
- Igwemmar, N.C.; Kolawole, S.A.; Imran, I.A. Effect of heating on vitamin C content of some selected vegetables. Int. J. Sci. Technol. Res. 2013, 2, 209–212. [Google Scholar]
- Ramachandran, S.; Ray, A.K. Inclusion of Extruded Grass pea, Lathyrus sativus seed meal in compound diets for rohu, labeorohita (Hamilton, 1822) Fingerlings. Acta Ichthyol. Piscatorial 2004, 34, 205–218. [Google Scholar] [CrossRef] [Green Version]
- Fouad, A.A.; Rehab, F.M.A. Effect of germination time on proximate analysis, bioactive compounds and antioxidant activityof lentil (Lens culinaris Medik.) sprouts. Acta Sci. Pol. Technol. Aliment. 2015, 14, 233–246. [Google Scholar] [CrossRef] [Green Version]
- Van Vo, B.; Bui, D.P.; Nguyen, H.Q.; Fotedar, R. Optimized fermented lupin (Lupinus angustifolius) inclusion in juvenile barramundi (Lates calcarifer) diets. Aquaculture 2015, 444, 62–69. [Google Scholar] [CrossRef] [Green Version]
- Duhan, A.; Khetarpaul, N.; Bishnoi, S. Changes in phytates and HCl extractability of calcium, phosphorus, and iron of soaked, dehulled, cooked, and sprouted pigeon pea cultivar (UPAS-120). Plant Foods Hum. Nutr. 2002, 57, 275–284. [Google Scholar] [CrossRef]
- Rodríguez, H.; Curiel, J.A.; Landete, J.M.; de las Rivas, B.; de Felipe, F.L.; Gómez-Cordovés, C.; Muñoz, R. Food phenolics and lactic acid bacteria. Int. J. Food Microbiol. 2009, 132, 79–90. [Google Scholar] [CrossRef] [Green Version]
- Omojokun, A.O.; Jokoh, A.O. Effects of fermentation and extrusion on the mineral and antinutrient composition of plantain cowpea flour blends. Asian J. Emerg. Res. 2020, 2, 190–199. [Google Scholar]
- Coda, R.; Melama, L.; Rizzello, C.G.; Curiel, J.A.; Sibakov, J.; Holopainen, U.; Sozer, N. Effect of air classification and fermentation by Lactobacillus plantarum VTT E-133328 on faba bean (Vicia faba L.) flour nutritional properties. Int. J. Food Microbiol. 2015, 193, 34–42. [Google Scholar] [CrossRef]
- Khandelwal, S.; Udipi, S.A.; Ghugre, P. Polyphenols and tannins in Indian pulses: Effect of soaking, germination and pressure cooking. Food Res. Int. 2010, 43, 526–530. [Google Scholar] [CrossRef]
- Megat Rusydi, M.R.; Azrina, A. Effect of germination on total phenolic, tannin and phytic acid contents in soy bean and peanut. Int. Food Res. J. 2012, 19, 673–677. [Google Scholar]
- Fikre, A.; Korbu, L.; Kuo, Y.-H.; Lambein, F. The contents of the neuroexcitatory amino acid b-ODAP (b-N-oxalyl-L-,-diaminopropionic acid), and other free and protein amino acids in the seeds of different genotypes of grass pea (Lathyrus sativus L.). Food Chem. 2008, 110, 422–427. [Google Scholar] [CrossRef]
- Kumar, S.; Bejiga, G.; Ahmed, S.; Nakkoul, H.; Sarker, A. Genetic improvement of grass pea for low neurotoxin (β-ODAP) content. Food Chem. Toxicol. 2011, 49, 589–600. [Google Scholar] [CrossRef]
- Kuo, Y.-H.; Bau, H.-M.; Quemener, B.; Khan, J.K.; Lambein, F. Solidstate fermentation of Lathyrus sativus seeds using Aspergillus oryzae and Rhizopus oligosporus sp T-3 to eliminate the neurotoxin β-ODAP without loss of nutritional value. J. Sci. Food Agric. 1995, 69, 81–89. [Google Scholar] [CrossRef]
- Ma, Z.; Boye, J.I.; Hu, X. Nutritional quality and techno-functional changes in raw, germinated and fermented yellow field pea (Pisum sativum L.) upon pasteurization. LWT Food Sci. Technol. 2018, 92, 147–154. [Google Scholar] [CrossRef]
- Samtiya, M.; Aluko, R.E.; Dhewa, T. Plant food anti-nutritional factors and their reduction strategies: An overview. J. Food Process. Preserv. 2020, 2, 6. [Google Scholar] [CrossRef] [Green Version]
- Linsberger-Martin, G.; Weiglhofer, K.; Thi Phuong, T.; Berghofer, E. High hydrostatic pressure influences antinutritional factors and in vitro protein digestibility of split peas and whole white beans. LWT Food Sci. Technol. 2013, 51, 331–336. [Google Scholar] [CrossRef]
- Sánchez-Velázquez, O.A.; Ribéreau, S.; Mondor, M.; Cuevas-Rodríguez, E.O.; Arcand, Y.; Hernández-Álvarez, A.J. Impact of processing on the in vitro protein quality, bioactive compounds, and antioxidant potential of 10 selected pulses. Legume Sci. 2021, 3, e88. [Google Scholar] [CrossRef]
- Singh, A.K.; Rehal, J.; Kaur, A.; Jyot, G. Enhancement of attributes of cereals by germination and fermentation: A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1575–1589. [Google Scholar] [CrossRef]
- Di, Y.; Li, X.; Chang, X.; Gu, R.; Duan, X.; Liu, F.; Wang, Y. Impact of germination on structural, functional properties and in vitro protein digestibility of sesame (Sesamum indicum L.) protein. LWT Food Sci. Technol. 2022, 154, 112651. [Google Scholar] [CrossRef]
- Mir, N.A.; Riar, C.S.; Singh, S. Structural modification in album (Chenopodium album) protein isolates due to controlled thermal modification and its relationship with protein digestibility and functionality. Food Hydrocoll. 2020, 103, 105708. [Google Scholar] [CrossRef]
- Rathore, T.; Singh, R.; Kamble, D.B.; Upadhyay, A.; Thangalakshmi, S. Review on finger millet: Processing and value addition. Pharma Innov. J. 2019, 8, 283–291. [Google Scholar]
- Bartkiene, E.; Bartkevics, V.; Starkute, V.; Zadeike, D.; Juodeikiene, G. The nutritional and safety challenges associated with lupin lacto-fermentation. Front. Plant Sci. 2016, 7, 951. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Wang, A.; Shen, R.; Qu, L. Effect of processing on the contents of amino acids and fatty acids, and glucose release from the starch of quinoa. Food Sci. Nutr. 2020, 8, 4877–4887. [Google Scholar] [CrossRef]
- Bintsis, T. Lactic acid bacteria as starter cultures: An update in their metabolism and genetics. AIMS Microbiol. 2018, 4, 665. [Google Scholar] [CrossRef]
- Reuben, R.C.; Roy, P.C.; Sarkar, S.L.; Alam, A.R.U.; Jahid, I.K. Characterization and evaluation of lactic acid bacteria from indigenous raw milk for potential probiotic properties. J. Dairy Sci. 2020, 103, 1223–1237. [Google Scholar] [CrossRef]
- Çabuk, B.; Nosworthy, M.G.; Stone, A.K.; Korber, D.R.; Tanaka, T.; House, J.D.; Nickerson, M.T. Effect of fermentation on the protein digestibility and levels of non-nutritive compounds of pea protein concentrate. Food Technol. Biotechnol. 2018, 56, 257–264. [Google Scholar] [CrossRef]
- Verni, M.; De Mastro, G.; De Cillis, F.; Gobbetti, M.; Rizzello, C.G. Lactic acid bacteria fermentation to exploit the nutritional potential of Mediterranean faba bean local biotypes. Food Res. Int. 2019, 125, 108571. [Google Scholar] [CrossRef]
- Espinosa-Páez, E.; Alanis-Guzmán, M.G.; Hernández-Luna, C.E.; Báez-González, J.G.; Amaya-Guerra, C.A.; Andrés-Grau, A.M. Increasing antioxidant activity and protein digestibility in Phaseolus vulgaris and Avena sativa by fermentation with the Pleurotus ostreatus Fungus. Molecules 2017, 22, 2275. [Google Scholar] [CrossRef] [Green Version]
Treatments | Moisture | Ash | Protein | Fiber | Fat | Carbohydrates | Calories (Kcal/100 g) |
---|---|---|---|---|---|---|---|
T0 | 1.0 ± 0.03 a | 2.66 ± 0.02 e | 22.61 ± 0.02 d | 15.09 ± 0.02 e | 0.57 ± 0.02 a | 59.05 ± 0.02 b | 331.77 ± 0.1 a |
T1 | 1.52 ± 0.02 b | 2.77 ± 0.02 d | 27.96 ± 0.02 c | 16.07 ± 0.02 c | 0.18 ± 0.01 d | 53.02 ± 0.06 c | 325.54 ± 0.1 c |
T2 | 0.866 ± 0.02 c | 2.83 ± 0.02 c | 20.43 ± 0.02 e | 15.88 ± 0.02 d | 0.19 ± 0.01 c | 60.67 ± 0.03 a | 326.11 ± 0.2 b |
T3 | 0.773 ± 0.02 d | 3.613 ± 0.02 a | 30.71 ± 0.02 a | 19.42 ± 0.02 b | 0.24 ± 0.02 e | 46.017 ± 0.05 e | 309.068 ± 0.1 d |
T4 | 0.667 ± 0.02 e | 3.08 ± 0.01 b | 28.72 ± 0.03 b | 19.75 ± 0.03 a | 0.13 ± 0.01 b | 48.32 ± 0.07 d | 309.33 ± 0.2 d |
Treatment | Ca | Mg | K | Na | Fe | Zn |
---|---|---|---|---|---|---|
T0 | 4020 ± 0.02 b | 3910 ± 0.01 c | 3570 ± 0.02 d | 3020 ± 0.01 b | 3.97 ± 0.01 b | 3.52 ± 0.01 b |
T1 | 3980 ± 0.01 c | 4080 ± 0.01 b | 3960 ± 0.01 c | 2430 ± 0.02 d | 2.98 ± 0.01 d | 3.13 ± 0.06 c |
T2 | 3020 ± 0.02 e | 2940 ± 0.01 e | 2050 ± 0.02 e | 2170 ± 0.01 e | 2.89 ± 0.02 e | 2.69 ± 0.02 d |
T3 | 3550 ± 0.02 d | 3020 ± 0.02 d | 4030 ± 0.03 b | 2860 ± 0.02 c | 3.07 ± 0.01 c | 3.57 ± 0.01 b |
T4 | 5100 ± 0.01 a | 5080 ± 0.01 a | 4970 ± 0.01 a | 4970 ± 0.02 a | 4.35 ± 0.01 a | 4.97 ± 0.01 a |
Treatment | Vitamin A | Ascorbic Acid |
---|---|---|
T0 | 610 ± 7 a | 246.6 ± 9 a |
T1 | 290 ± 5 d | 215 ± 5 b |
T2 | 217 ± 4 e | 169.5 ± 7 c |
T3 | 520 ± 9 b | 235 ± 7 a |
T4 | 390 ± 8 e | 156.5 ± 8 e |
Treatment | Phytic Acid | Tannin | Β-ODAP | IVPDɬ (%) |
---|---|---|---|---|
T0 | 438.32 ± 2.33 a | 424.43 ± 2.07 a | 427.17 ± 4.51 a | 74.95 ± 0.01 e |
T1 | 168.33 ± 1.01 c | 159.49 ± 4.37 c | 337.92 ± 2.10 c | 76.36 ± 0.02 d |
T2 | 291.42 ± 6.61 b | 308.75 ± 5.87 b | 410.75 ± 1.30 b | 78.75 ± 0.01 c |
T3 | 38.65 ± 2.73 d | 59.36 ± 1.97 d | 271.85 ± 2.56 d | 79.64 ± 0.01 b |
T4 | 64.78 ± 0.43 e | 48.52 ± 0.38 e | 297.94 ± 2.53 e | 81.02 ± 0.01 a |
T | AA | Th | Se | GA | Pr | Gl | Al | Me | Va | Is | Le | Ty | Hs | Tr | Pa | Ly | Ar |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T0 | 2.92 ± 0.02 c | 4.23 ± 0.02 c | 3.17 ± 0.01 a | 1.80 ± 0.01 b | 0.37 ± 0.02 d | 0.65 ± 0.02 c | 1.13 ± 0.02 a | 0.17 ± 0.01 b | 0.53 ± 0.02 a | 0.66 ± 0.01 c | 1.85 ± 0.01 b | 1.07 ± 0.01 c | 0.21 ± 0.01 e | 0.03 ± 0.01 c | 1.33 ± 0.01 b | 0.51 ± 0.01 d | 4.07 ± 0.01 d |
T1 | 3.37 ± 0.01 a | 3.92 ± 0.01 e | 2.96 ± 0.01 b | 1.65 ± 0.02 d | 0.41 ± 0.01 b c | 0.93 ± 0.02 a | 0.85 ± 0.07 c | 0.13 ± 0.02 c | 0.46 ± 0.01 b | 0.82 ± 0.01 b | 1.76 ± 0.02 c | 1.28 ± 0.01 a | 0.85 ± 0.01 c | 0.08 ± 0.01 b | 1.38 ± 0.01 a | 0.97 ± 0.01 b | 5.73 ± 0.01 a |
T2 | 2.64 ± 0.03 d | 3.97 ± 0.01 d | 2.99 ± 0.02 b | 1.71 ± 0.01 c | 0.39 ± 0.02 c d | 0.57 ± 0.01 d | 1.04 ± 0.02 b | 0.21 ± 0.01 a | 0.5 ± 0.01 a | 0.61 ± 0.01 d | 1.62 ± 0.01 d | 0.87 ± 0.01 d | 1.36 ± 0.02 a | 0.05 ± 0.01 c | 1.07 ± 0.01 d | 0.62 ± 0.01 c | 4.35 ± 0.02 b |
T3 | 1.66 ± 0.02 e | 8.67 ± 0.01 a | 1.87 ± 0.01 c | 1.86 ± 0.01 a | 0.47 ± 0.01 a | 0.23 ± 0.05 e | 0.75 ± 0.01 d | 0.13 ± 0.02 c | 0.32 ± 0.02 c | 0.36 ± 0.01 e | 1.13 ± 0.01 e | 0.54 ± 0.01 e | 0.40 ± 0.01 d | 0.09 ± 0.01 b | 0.75 ± 0.01 e | 0.25 ± 0.03 e | 4.29 ± 0.01 c |
T4 | 3.15 ± 0.02 b | 4.32 ± 0.02 b | 1.83 ± 0.02 d | 1.82 ± 0.01 b | 0.42 ± 0.01 b | 0.76 ± 0.02 b | 1.03 ± 0.03 b | 0.08 ± 0.01 d | 0.51 ± 0.01 a | 0.85 ± 0.01 a | 1.96 ± 0.01 a | 1.26 ± 0.01 b | 0.92 ± 0.01 b | 0.14 ± 0.03 a | 1.24 ± 0.01 c | 1.03 ± 0.02 a | 1.07 ± 0.01 e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arshad, N.; Akhtar, S.; Ismail, T.; Saeed, W.; Qamar, M.; Özogul, F.; Bartkiene, E.; Rocha, J.M. The Comparative Effect of Lactic Acid Fermentation and Germination on the Levels of Neurotoxin, Anti-Nutrients, and Nutritional Attributes of Sweet Blue Pea (Lathyrus sativus L.). Foods 2023, 12, 2851. https://doi.org/10.3390/foods12152851
Arshad N, Akhtar S, Ismail T, Saeed W, Qamar M, Özogul F, Bartkiene E, Rocha JM. The Comparative Effect of Lactic Acid Fermentation and Germination on the Levels of Neurotoxin, Anti-Nutrients, and Nutritional Attributes of Sweet Blue Pea (Lathyrus sativus L.). Foods. 2023; 12(15):2851. https://doi.org/10.3390/foods12152851
Chicago/Turabian StyleArshad, Nimra, Saeed Akhtar, Tariq Ismail, Wisha Saeed, Muhammad Qamar, Fatih Özogul, Elena Bartkiene, and João Miguel Rocha. 2023. "The Comparative Effect of Lactic Acid Fermentation and Germination on the Levels of Neurotoxin, Anti-Nutrients, and Nutritional Attributes of Sweet Blue Pea (Lathyrus sativus L.)" Foods 12, no. 15: 2851. https://doi.org/10.3390/foods12152851
APA StyleArshad, N., Akhtar, S., Ismail, T., Saeed, W., Qamar, M., Özogul, F., Bartkiene, E., & Rocha, J. M. (2023). The Comparative Effect of Lactic Acid Fermentation and Germination on the Levels of Neurotoxin, Anti-Nutrients, and Nutritional Attributes of Sweet Blue Pea (Lathyrus sativus L.). Foods, 12(15), 2851. https://doi.org/10.3390/foods12152851