Harnessing Natural Antioxidants for Enhancing Food Shelf Life: Exploring Sources and Applications in the Food Industry
Abstract
:1. Introduction
2. Sources of Natural Antioxidants
3. Natural Antioxidants Used in Meat and Meat Products
4. Natural Antioxidants Used in the Milk Industry
5. Natural Antioxidants from Bee Products
6. Natural Antioxidants Used to Obtain Plant-Based Origin Foods
7. Antibacterial Properties of Natural Antioxidant Sources
8. Future Trends Regarding Antioxidants in Food Industry
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shah, M.A.; Bosco, S.J.D.; Mir, S.A. Plant Extracts as Natural Antioxidants in Meat and Meat Products. Meat Sci. 2014, 98, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Biasi, V.; Huber, E.; Goldoni, T.S.H.; de Melo, A.P.Z.; Hoff, R.B.; Verruck, S.; Barreto, P.L.M. Goldenberry Flour as a Natural Antioxidant in Bologna-Type Mortadella during Refrigerated Storage and in Vitro Digestion. Meat Sci. 2023, 196, 109041. [Google Scholar] [CrossRef] [PubMed]
- Kumar, Y.; Yadav, D.N.; Ahmad, T.; Narsaiah, K. Recent Trends in the Use of Natural Antioxidants for Meat and Meat Products. Compr. Rev. Food Sci. Food Saf. 2015, 14, 796–812. [Google Scholar] [CrossRef]
- Aminzare, M.; Hashemi, M.; Ansarian, E.; Bimkar, M.; Azar, H.H.; Mehrasbi, M.R.; Daneshamooz, S.; Raeisi, M.; Behrooz, J. Asma A Using Natural Antioxidants in Meat and Meat Products as Preservatives: A Review. Adv. Anim. Vet. Sci. 2019, 7, 417–426. [Google Scholar] [CrossRef]
- Uzombah, T.A. The Implications of Replacing Synthetic Antioxidants with Natural Ones in the Food Systems; IntechOpen: London, UK, 2022; ISBN 978-1-83968-960-4. [Google Scholar]
- Cheftel, J. Food and Nutrition Labelling in the European Union. Food Chem. 2005, 93, 531–550. [Google Scholar] [CrossRef]
- Rather, S.A.; Masoodi, F.; Akhter, R.; Rather, J.A.; Shiekh, K.A. Advances in Use of Natural Antioxidants as Food Additives for Improving the Oxidative Stability of Meat Products. Madridge J. Food Technol. 2016, 1, 10–17. [Google Scholar]
- Pasqualone, A.; Bianco, A.M.; Paradiso, V.M.; Summo, C.; Gambacorta, G.; Caponio, F.; Blanco, A. Production and Characterization of Functional Biscuits Obtained from Purple Wheat. Food Chem. 2015, 180, 64–70. [Google Scholar] [CrossRef]
- Caleja, C.; Barros, L.; Antonio, A.L.; Oliveira, M.B.P.P.; Ferreira, I.C.F.R. A Comparative Study between Natural and Synthetic Antioxidants: Evaluation of Their Performance after Incorporation into Biscuits. Food Chem. 2017, 216, 342–346. [Google Scholar] [CrossRef]
- Petcu, C.D.; Mihai, O.D.; Tăpăloagă, D.; Gheorghe-Irimia, R.-A.; Pogurschi, E.N.; Militaru, M.; Borda, C.; Ghimpețeanu, O.-M. Effects of Plant-Based Antioxidants in Animal Diets and Meat Products: A Review. Foods 2023, 12, 1334. [Google Scholar] [CrossRef]
- Serra, V.; Salvatori, G.; Pastorelli, G. Dietary Polyphenol Supplementation in Food Producing Animals: Effects on the Quality of Derived Products. Animals 2021, 11, 401. [Google Scholar] [CrossRef]
- Mahboubi, A.; Asgarpanah, J.; Sadaghiyani, P.N.; Faizi, M. Total Phenolic and Flavonoid Content and Antibacterial Activity of Punica Granatum L. Var. Pleniflora Flowers (Golnar) against Bacterial Strains Causing Foodborne Diseases. BMC Complement. Altern. Med. 2015, 15, 366. [Google Scholar] [CrossRef] [PubMed]
- Khalil, N.; Elbeltagy, A.E.; Aljutaily, T.; Ali, A.; Gadallah, M. Organoleptic, Antioxidant Activity and Microbial Aspects of Functional Biscuit Formulated with Date Fruit Fibers Grown in Qassim Region. Food Sci. Technol. 2023, 43. [Google Scholar] [CrossRef]
- Gil, K.A.; Wojdyło, A.; Nowicka, P.; Montoro, P.; Tuberoso, C.I.G. Effect of Apple Juice Enrichment with Selected Plant Materials: Focus on Bioactive Compounds and Antioxidant Activity. Foods 2023, 12, 105. [Google Scholar] [CrossRef] [PubMed]
- Lourenço Sofia, C.; Moldão-Martins, M.; Alves Vítor, D. Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules 2019, 24, 4132. [Google Scholar] [CrossRef] [PubMed]
- Złotek, U.; Mikulska, S.; Nagajek, M.; Świeca, M. The Effect of Different Solvents and Number of Extraction Steps on the Polyphenol Content and Antioxidant Capacity of Basil Leaves (Ocimum Basilicum L.) Extracts. Saudi J. Biol. Sci. 2016, 23, 628–633. [Google Scholar] [CrossRef]
- Biswas, A.K.; Chatli, M.K.; Sahoo, J. Antioxidant Potential of Curry (Murraya Koenigii L.) and Mint (Mentha Spicata) Leaf Extracts and Their Effect on Colour and Oxidative Stability of Raw Ground Pork Meat during Refrigeration Storage. Food Chem. 2012, 133, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Fernández-López, J.; Sevilla, L.; Sayas-Barberá, E.; Navarro, C.; Marín, F.; Pérez-Alvarez, J.A. Evaluation of the Antioxidant Potential of Hyssop (Hyssopus Officinalis L.) and Rosemary (Rosmarinus Officinalis L.) Extracts in Cooked Pork Meat. J. Food Sci. 2003, 68, 660–664. [Google Scholar] [CrossRef]
- Akarpat, A.; Turhan, S.; Ustun, S. Effects of Hot-Water Extracts from Myrtle, Rosemary, Nettle and Lemon Balm Leaves on Lipid Oxidation and Color of Beef Patties during Frozen Storage. J. Food Process. Preserv. 2008, 32, 117–132. [Google Scholar] [CrossRef]
- Shan, B.; Cai, Y.-Z.; Brooks, J.D.; Corke, H. Antibacterial and Antioxidant Effects of Five Spice and Herb Extracts as Natural Preservatives of Raw Pork. J. Sci. Food Agric. 2009, 89, 1879–1885. [Google Scholar] [CrossRef]
- Kim, S.J.; Cho, A.R.; Han, J. Antioxidant and Antimicrobial Activities of Leafy Green Vegetable Extracts and Their Applications to Meat Product Preservation. Food Control 2013, 29, 112–120. [Google Scholar] [CrossRef]
- Pinela, J.; Prieto, M.; Barros, L.; Carvalho, A.; Oliveira, M.; Saraiva, J.; Ferreira, I. Cold Extraction of Phenolic Compounds from Watercress by High Hydrostatic Pressure: Process Modelling and Optimization. Sep. Purif. Technol. 2018, 192, 501–512. [Google Scholar] [CrossRef]
- Fabrowska, J.; Ibañez, E.; Łęska, B.; Herrero, M. Supercritical Fluid Extraction as a Tool to Valorize Underexploited Freshwater Green Algae. Algal Res. 2016, 19, 237–245. [Google Scholar] [CrossRef]
- Vella, F.M.; Laratta, B.; La Cara, F.; Morana, A. Recovery of Bioactive Molecules from Chestnut (Castanea Sativa Mill.) by-Products through Extraction by Different Solvents. Nat. Prod. Res. 2018, 32, 1022–1032. [Google Scholar] [CrossRef] [PubMed]
- Nissen, L.R.; Byrne, D.V.; Bertelsen, G.; Skibsted, L.H. The Antioxidative Activity of Plant Extracts in Cooked Pork Patties as Evaluated by Descriptive Sensory Profiling and Chemical Analysis. Meat Sci. 2004, 68, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Marcheafave, G.G.; Tormena, C.D.; Pauli, E.D.; Rakocevic, M.; Bruns, R.E.; Scarminio, I.S. Experimental Mixture Design Solvent Effects on Pigment Extraction and Antioxidant Activity from Coffea Arabica L. Leaves. Microchem. J. 2019, 146, 713–721. [Google Scholar] [CrossRef]
- Amany, M.M.B.; Shaker, M.A.; Abeer, A.K. Antioxidant Activities of Date Pits in a Model Meat System. Int. Food Res. J. 2012, 19, 223–227. [Google Scholar]
- Garrido, M.D.; Auqui, M.; Martí, N.; Linares, M.B. Effect of Two Different Red Grape Pomace Extracts Obtained under Different Extraction Systems on Meat Quality of Pork Burgers. LWT-Food Sci. Technol. 2011, 44, 2238–2243. [Google Scholar] [CrossRef]
- Sánchez-Camargo, A.d.P.; Gutiérrez, L.-F.; Vargas, S.M.; Martinez-Correa, H.A.; Parada-Alfonso, F.; Narváez-Cuenca, C.-E. Valorisation of Mango Peel: Proximate Composition, Supercritical Fluid Extraction of Carotenoids, and Application as an Antioxidant Additive for an Edible Oil. J. Supercrit. Fluids 2019, 152, 104574. [Google Scholar] [CrossRef]
- Guandalini, B.B.V.; Rodrigues, N.P.; Marczak, L.D.F. Sequential Extraction of Phenolics and Pectin from Mango Peel Assisted by Ultrasound. Food Res. Int. 2019, 119, 455–461. [Google Scholar] [CrossRef]
- Şahin, S.; Samli, R.; Tan, A.S.B.; Barba, F.J.; Chemat, F.; Cravotto, G.; Lorenzo, J.M. Solvent-Free Microwave-Assisted Extraction of Polyphenols from Olive Tree Leaves: Antioxidant and Antimicrobial Properties. Molecules 2017, 22, 1056. [Google Scholar] [CrossRef]
- López, C.J.; Caleja, C.; Prieto, M.A.; Barreiro, M.F.; Barros, L.; Ferreira, I.C.F.R. Optimization and Comparison of Heat and Ultrasound Assisted Extraction Techniques to Obtain Anthocyanin Compounds from Arbutus Unedo L. Fruits. Food Chem. 2018, 264, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Massini, L.; Rico, D.; Martín-Diana, A.B.; Barry-Ryan, C. Quality Markers of Functional Tomato Juice with Added Apple Phenolic Antioxidants. Beverages 2016, 2, 4. [Google Scholar] [CrossRef]
- Al Amri, F.S.; Hossain, M.A. Comparison of Total Phenols, Flavonoids and Antioxidant Potential of Local and Imported Ripe Bananas. Egypt. J. Basic Appl. Sci. 2018, 5, 245–251. [Google Scholar] [CrossRef]
- Bastida, S.; Muniz, F.; Olivero-David, R.; Pérez-Olleros, L.; Ruiz-Roso, B.; Jiménez-Colmenero, F. Antioxidant Activity of Carob Fruit Extracts in Cooked Pork Meat Systems during Chilled and Frozen Storage. Food Chem. 2009, 116, 748–754. [Google Scholar] [CrossRef]
- Tripodo, G.; Ibáñez, E.; Cifuentes, A.; Gilbert-López, B.; Fanali, C. Optimization of Pressurized Liquid Extraction by Response Surface Methodology of Goji Berry (Lycium Barbarum L.) Phenolic Bioactive Compounds. Electrophoresis 2018, 39, 1673–1682. [Google Scholar] [CrossRef] [PubMed]
- Briones-Labarca, V.; Plaza-Morales, M.; Giovagnoli-Vicuña, C.; Jamett, F. High Hydrostatic Pressure and Ultrasound Extractions of Antioxidant Compounds, Sulforaphane and Fatty Acids from Chilean Papaya (Vasconcellea Pubescens) Seeds: Effects of Extraction Conditions and Methods. LWT-Food Sci. Technol. 2015, 60, 525–534. [Google Scholar] [CrossRef]
- Mokrani, A.; Madani, K. Effect of Solvent, Time and Temperature on the Extraction of Phenolic Compounds and Antioxidant Capacity of Peach (Prunus Persica L.) Fruit. Sep. Purif. Technol. 2016, 162, 68–76. [Google Scholar] [CrossRef]
- Li, X.-W.; Xie, Y.-F.; Li, C.-L.; Zhao, H.-N.; Zhao, H.; Wang, N.; Wang, J.-F. Investigation of Residual Fluoroquinolones in a Soil-Vegetable System in an Intensive Vegetable Cultivation Area in Northern China. Sci Total Env. 2014, 468–469, 258–264. [Google Scholar] [CrossRef]
- Tayel, A.A.; El-Tras, W.F. Plant Extracts as Potent Biopreservatives for Salmonella Typhimurium Control and Quality Enhancement in Ground Beef. J. Food Saf. 2012, 32, 115–121. [Google Scholar] [CrossRef]
- Devatkal, S.K.; Narsaiah, K.; Borah, A. Anti-Oxidant Effect of Extracts of Kinnow Rind, Pomegranate Rind and Seed Powders in Cooked Goat Meat Patties. Meat Sci. 2010, 85, 155–159. [Google Scholar] [CrossRef]
- Kaderides, K.; Papaoikonomou, L.; Serafim, M.; Goula, A.M. Microwave-Assisted Extraction of Phenolics from Pomegranate Peels: Optimization, Kinetics, and Comparison with Ultrasounds Extraction. Chem. Eng. Process.-Process Intensif. 2019, 137, 1–11. [Google Scholar] [CrossRef]
- Bamba, B.S.B.; Shi, J.; Tranchant, C.C.; Xue, S.J.; Forney, C.F.; Lim, L. Influence of Extraction Conditions on Ultrasound-Assisted Recovery of Bioactive Phenolics from Blueberry Pomace and Their Antioxidant Activity. Molecules 2018, 23, 1685. [Google Scholar] [CrossRef] [PubMed]
- Torres-Ossandón, M.; Vega-Galvez, A.; López, J.; Stucken, K.; Romero, J.; Di Scala, K. Effects of High Hydrostatic Pressure Processing and Supercritical Fluid Extraction on Bioactive Compounds and Antioxidant Capacity of Cape Gooseberry Pulp (Physalis Peruviana L.). J. Supercrit. Fluids 2018, 138, 215–220. [Google Scholar] [CrossRef]
- Corazza, G.O.; Bilibio, D.; Zanella, O.; Nunes, A.L.; Bender, J.P.; Carniel, N.; dos Santos, P.P.; Priamo, W.L. Pressurized Liquid Extraction of Polyphenols from Goldenberry: Influence on Antioxidant Activity and Chemical Composition. Food Bioprod. Process. 2018, 112, 63–68. [Google Scholar] [CrossRef]
- Denev, P.N.; Kratchanov, C.G.; Ciz, M.; Lojek, A.; Kratchanova, M.G. Bioavailability and Antioxidant Activity of Black Chokeberry (Aronia Melanocarpa) Polyphenols: In Vitro and in Vivo Evidences and Possible Mechanisms of Action: A Review. Compr. Rev. Food Sci. Food Saf. 2012, 11, 471–489. [Google Scholar] [CrossRef]
- Sidor, A.; Gramza-Michałowska, A. Black Chokeberry Aronia Melanocarpa L.—A Qualitative Composition, Phenolic Profile and Antioxidant Potential. Molecules 2019, 24, 3710. [Google Scholar] [CrossRef] [PubMed]
- Tamkutė, L.; Gil, B.M.; Carballido, J.R.; Pukalskienė, M.; Venskutonis, P.R. Effect of Cranberry Pomace Extracts Isolated by Pressurized Ethanol and Water on the Inhibition of Food Pathogenic/Spoilage Bacteria and the Quality of Pork Products. Food Res. Int. 2019, 120, 38–51. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, M.; Domaradzki, P.; Materska, M.; Florek, M.; Kaliniak-Dziura, A.; Skałecki, P.; Żółkiewski, P.; Grenda, T.; Pabich, M. Effect of the Addition of Chokeberry Leaf Extract on the Physicochemical and Sensory Properties of Burgers from Dark Cutting Veal. Food Chem. 2023, 399, 133978. [Google Scholar] [CrossRef]
- Kobus-Cisowska, J.; Flaczyk, E.; Rudzińska, M.; Kmiecik, D. Antioxidant Properties of Extracts from Ginkgo Biloba Leaves in Meatballs. Meat Sci. 2014, 97, 174–180. [Google Scholar] [CrossRef]
- Kim, S.J.; Min, S.C.; Shin, H.J.; Lee, Y.J.; Cho, A.R.; Kim, S.Y.; Han, J. Evaluation of the Antioxidant Activities and Nutritional Properties of Ten Edible Plant Extracts and Their Application to Fresh Ground Beef. Meat Sci. 2013, 93, 715–722. [Google Scholar] [CrossRef]
- Karabacak, S.; Bozkurt, H. Effects of Urtica Dioica and Hibiscus Sabdariffa on the Quality and Safety of Sucuk (Turkish Dry-Fermented Sausage). Meat Sci. 2008, 78, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Alp, E.; Aksu, M.I. Effects of Water Extract of Urtica Dioica L. and Modified Atmosphere Packaging on the Shelf Life of Ground Beef. Meat Sci. 2010, 86, 468–473. [Google Scholar] [CrossRef]
- Naveena, B.M.; Vaithiyanathan, S.; Muthukumar, M.; Sen, A.R.; Kumar, Y.P.; Kiran, M.; Shaju, V.A.; Chandran, K.R. Relationship between the Solubility, Dosage and Antioxidant Capacity of Carnosic Acid in Raw and Cooked Ground Buffalo Meat Patties and Chicken Patties. Meat Sci. 2013, 95, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Gu, W.; Zhang, J.; Chu, Y.; Ye, X.; Hu, Y.; Chen, J. Effects of Chitosan, Aqueous Extract of Ginger, Onion and Garlic on Quality and Shelf Life of Stewed-Pork during Refrigerated Storage. Food Chem. 2013, 141, 1655–1660. [Google Scholar] [CrossRef] [PubMed]
- Das, A.K.; Rajkumar, V.; Verma, A.K.; Swarup, D. Moringa Oleiferia Leaves Extract: A Natural Antioxidant for Retarding Lipid Peroxidation in Cooked Goat Meat Patties. Int. J. Food Sci. Technol. 2012, 47, 585–591. [Google Scholar] [CrossRef]
- Muthukumar, M.; Naveena, B.M.; Vaithiyanathan, S.; Sen, A.R.; Sureshkumar, K. Effect of Incorporation of Moringa Oleifera Leaves Extract on Quality of Ground Pork Patties. J. Food Sci. Technol. 2014, 51, 3172–3180. [Google Scholar] [CrossRef]
- Banerjee, R.; Verma, A.K.; Das, A.K.; Rajkumar, V.; Shewalkar, A.A.; Narkhede, H.P. Antioxidant Effects of Broccoli Powder Extract in Goat Meat Nuggets. Meat Sci. 2012, 91, 179–184. [Google Scholar] [CrossRef]
- Mustafa, A.; Trevino, L.M.; Turner, C. Pressurized Hot Ethanol Extraction of Carotenoids from Carrot By-Products. Molecules 2012, 17, 1809–1818. [Google Scholar] [CrossRef]
- Boulekbache-Makhlouf, L.; Medouni, L.; Medouni-Adrar, S.; Arkoub, L.; Madani, K. Effect of Solvents Extraction on Phenolic Content and Antioxidant Activity of the Byproduct of Eggplant. Ind. Crops Prod. 2013, 49, 668–674. [Google Scholar] [CrossRef]
- Fu, Z.; Tu, Z.; Zhang, L.; Wang, H.; Wen, Q.; Huang, T. Antioxidant Activities and Polyphenols of Sweet Potato (Ipomoea Batatas L.) Leaves Extracted with Solvents of Various Polarities. Food Biosci. 2016, 15, 11–18. [Google Scholar] [CrossRef]
- Novakovic, S.; Djekic, I.; Klaus, A.; Vunduk, J.; Djordjevic, V.; Tomović, V.; Šojić, B.; Kocić-Tanackov, S.; Lorenzo, J.M.; Barba, F.J.; et al. The Effect of Cantharellus Cibarius Addition on Quality Characteristics of Frankfurter during Refrigerated Storage. Foods 2019, 8, 635. [Google Scholar] [CrossRef] [PubMed]
- Kanatt, S.R.; Siddiqui, A.; Chawla, S.P. Antioxidant/antimicrobial potential of Emblica officinalis Gaertn and its application as a natural additive for shelf life extension of minced chicken meat. J. Biointerface Res. Appl. Chem. 2018, 8, 3344–3350. [Google Scholar]
- Available online: https://www.kemin.com/eu/en/markets/food/products (accessed on 11 August 2023).
- Available online: https://boublenza.com/ (accessed on 11 August 2023).
- Available online: https://www.kalsec.com/natural-food-protection/antioxidants/herbalox-rosemary-extract (accessed on 11 August 2023).
- Available online: https://www.naturalproductsinsider.com/specialty-nutrients/rad-natural-technologies-ltd (accessed on 11 August 2023).
- Manessis, G.; Kalogianni, A.I.; Lazou, T.; Moschovas, M.; Bossis, I.; Gelasakis, A.I. Plant-Derived Natural Antioxidants in Meat and Meat Products. Antioxidants 2020, 9, 1215. [Google Scholar] [CrossRef] [PubMed]
- Falowo, A.B.; Fayemi, P.O.; Muchenje, V. Natural Antioxidants against Lipid–Protein Oxidative Deterioration in Meat and Meat Products: A Review. Food Res. Int. 2014, 64, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Xiong, Y. Natural Antioxidants as Food and Feed Additives to Promote Health Benefits and Quality of Meat Products: A Review. Meat Sci. 2016, 120, 107–117. [Google Scholar] [CrossRef] [PubMed]
- García-Lomillo, J.; Gonzalez-SanJose, M.L.; Del Pino-García, R.; Ortega-Heras, M.; Muñiz-Rodríguez, P. Antioxidant Effect of Seasonings Derived from Wine Pomace on Lipid Oxidation in Refrigerated and Frozen Beef Patties. LWT 2017, 77, 85–91. [Google Scholar] [CrossRef]
- de Paiva, G.B.; Trindade, M.A.; Romero, J.T.; da Silva-Barretto, A.C. Antioxidant Effect of Acerola Fruit Powder, Rosemary and Licorice Extract in Caiman Meat Nuggets Containing Mechanically Separated Caiman Meat. Meat Sci. 2021, 173, 108406. [Google Scholar] [CrossRef]
- Cuong, T.V.; Chin, K.B. Effects of Annatto (Bixa Orellana L.) Seeds Powder on Physicochemical Properties, Antioxidant and Antimicrobial Activities of Pork Patties during Refrigerated Storage. Korean J. Food Sci. Anim. Resour. 2016, 36, 476–486. [Google Scholar] [CrossRef]
- Munekata, P.; Fernandes, R.; Melo, M.; Trindade, M.; Lorenzo, J.M. Influence of Peanut Skin Extract on Shelf-Life of Sheep Patties. Asian Pac. J. Trop. Biomed. 2016, 6, 586–596. [Google Scholar] [CrossRef]
- Ansorena, D.; Astiasarán, I. Effect of Storage and Packaging on Fatty Acid Composition and Oxidation in Dry Fermented Sausages Made with Added Olive Oil and Antioxidants. Meat Sci. 2004, 67, 237–244. [Google Scholar] [CrossRef]
- Asuming-Bediako, N.; Jaspal, M.; Hallett, K.; Bayntun, J.; Baker, A.; Sheard, P. Effects of Replacing Pork Backfat with Emulsified Vegetable Oil on Fatty Acid Composition and Quality of UK-Style Sausages. Meat Sci. 2013, 96, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Cardenia, V.; Rodriguez-Estrada, M.T.; Cumella, F.; Sardi, L.; Della Casa, G.; Lercker, G. Oxidative Stability of Pork Meat Lipids as Related to High-Oleic Sunflower Oil and Vitamin E Diet Supplementation and Storage Conditions. Meat Sci. 2011, 88, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Trindade, M.; Oliveira, J.M.; Nogueira, N.M.G.; Filho, P.; Alencar, S.; Contreras-Castillo, C. Mortadella Sausage Produced with Soybean Oil Instead of Pork Fat. Ital. J. Food Sci. 2011, 23, 72–79. [Google Scholar]
- Brewer, M.S. Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 221–247. [Google Scholar] [CrossRef]
- Tang, S.; Kerry, J.P.; Sheehan, D.; Buckley, J.D. A Comparative Study of Tea Catechins and α-Tocopherol as Antioxidants in Cooked Beef and Chicken Meat. Eur. Food Res. Technol. 2001, 213, 286–289. [Google Scholar] [CrossRef]
- Rojas, M.C.; Brewer, M.S. Effect of natural antioxidants on oxidative stability of frozen, vacuum-packaged beef and pork. J. Food Qual. 2008, 31, 173–188. [Google Scholar] [CrossRef]
- Banerjee, R.; Verma, A.K.; Siddiqui, M.W. Antioxidants—Applications in Foods of Animal Origin; Apple Academic Press: New York, NY, USA, 2017; ISBN 978-1-315-36591-6. [Google Scholar]
- Stobiecka, M.; Król, J.; Brodziak, A. Antioxidant Activity of Milk and Dairy Products. Animals 2022, 12, 245. [Google Scholar] [CrossRef] [PubMed]
- Alenisan, M.A.; Alqattan, H.H.; Tolbah, L.S.; Shori, A.B. Antioxidant Properties of Dairy Products Fortified with Natural Additives: A Review. J. Assoc. Arab Univ. Basic Appl. Sci. 2017, 24, 101–106. [Google Scholar] [CrossRef]
- Grażyna, C.; Hanna, C.; Adam, A.; Magdalena, B.M. Natural Antioxidants in Milk and Dairy Products. Int. J. Dairy Technol. 2017, 70, 165–178. [Google Scholar] [CrossRef]
- Annie, V.R.; Karthiayini, K.; Sreekumar, T.R.; Rajesh, K.; Lucy, K.M. Estimation of total antioxidant capacity of milk of Malabari goat and Vechur cattle during different lactation. Pharma Innov. J. 2019, 8, 150–152. Available online: https://www.thepharmajournal.com/archives/2019/vol8issue10/PartC/8-9-80-383.pdf (accessed on 20 July 2023).
- Kapusta, A.; Puppel, K.; Kamaszewski, M. The Relationship between Early Stages of Lactation and Antioxidant Capacity of Milk and Blood Plasma of PHF Cows. Anim. Sci. Pap. Reports 2018, 36, 149–158. [Google Scholar]
- Liu, H.C.; Chen, W.L.; Mao, S.J.T. Antioxidant Nature of Bovine Milk β-Lactoglobulin. J. Dairy Sci. 2007, 90, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Santos, N.W.; Santos, G.T.D.; Silva-Kazama, D.C.; Grande, P.A.; Pintro, P.M.; de Marchi, F.E.; Jobim, C.C.; Petit, H.V. Production, Composition and Antioxidants in Milk of Dairy Cows Fed Diets Containing Soybean Oil and Grape Residue Silage. Livest. Sci. 2014, 159, 37–45. [Google Scholar] [CrossRef]
- Khan, I.T.; Bule, M.; Ullah, R.; Nadeem, M.; Asif, S.; Niaz, K. The Antioxidant Components of Milk and Their Role in Processing, Ripening, and Storage: Functional Food. Vet. World 2019, 12, 12–33. [Google Scholar] [CrossRef] [PubMed]
- Karaaslan, M.; Ozden, M.; Vardin, H.; Turkoglu, H. Phenolic Fortification of Yogurt Using Grape and Callus Extracts. LWT-Food Sci. Technol. 2011, 44, 1065–1072. [Google Scholar] [CrossRef]
- El-Said, M.; Haggagb, H.F.; El-Dina, H.; Gada, A.S.; Farahat, A. Antioxidant Activities and Physical Properties of Stirred Yoghurt Fortified with Pomegranate Peel Extracts. Ann. Agric. Sci. 2014, 59, 207–212. [Google Scholar] [CrossRef]
- Bertolino, M.; Belviso, S.; Dal Bello, B.; Ghirardello, D.; Giordano, M.; Rolle, L.; Gerbi, V.; Zeppa, G. Influence of the Addition of Different Hazelnut Skins on the Physicochemical, Antioxidant, Polyphenol and Sensory Properties of Yogurt. LWT-Food Sci. Technol. 2015, 63, 1145–1154. [Google Scholar] [CrossRef]
- Pauletto, M.; Elgendy, R.; Ianni, A.; Marone, E.; Giantin, M.; Grotta, L.; Ramazzotti, S.; Bennato, F.; Dacasto, M.; Martino, G. Nutrigenomic Effects of Long-Term Grape Pomace Supplementation in Dairy Cows. Animals 2020, 10, 714. [Google Scholar] [CrossRef]
- Bennato, F.; Ianni, A.; Florio, M.; Grotta, L.; Pomilio, F.; Saletti, M.A.; Martino, G. Nutritional Properties of Milk from Dairy Ewes Fed with a Diet Containing Grape Pomace. Foods 2022, 11, 1878. [Google Scholar] [CrossRef]
- Tian, X.Z.; Paengkoum, P.; Paengkoum, S.; Chumpawadee, S.; Ban, C.; Thongpea, S. Short Communication: Purple Corn (Zea Mays L.) Stover Silage with Abundant Anthocyanins Transferring Anthocyanin Composition to the Milk and Increasing Antioxidant Status of Lactating Dairy Goats. J. Dairy Sci. 2019, 102, 413–418. [Google Scholar] [CrossRef]
- Introduction of Distillate Rosemary Leaves into the Diet of the Murciano-Granadina Goat: Transfer of Polyphenolic Compounds to Goats’ Milk and the Plasma of Suckling Goat Kids. J. Agric. Food Chem. 2010, 58, 8265–8270. Available online: https://pubs.acs.org/doi/abs/10.1021/jf100921z (accessed on 31 January 2023). [CrossRef] [PubMed]
- Ramos, L.R.; Santos, J.S.; Daguer, H.; Valese, A.C.; Cruz, A.G.; Granato, D. Analytical Optimization of a Phenolic-Rich Herbal Extract and Supplementation in Fermented Milk Containing Sweet Potato Pulp. Food Chem. 2017, 221, 950–958. [Google Scholar] [CrossRef] [PubMed]
- Saraiva, B.R.; Vital, A.C.P.; Anjo, F.A.; Ribas, J.C.R.; Matumoto Pintro, P.T. Effect of Yerba Mate (Ilex Paraguariensis A. St.-Hil.) Addition on the Functional and Technological Characteristics of Fresh Cheese. J. Food Sci. Technol. 2019, 56, 1256–1265. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Lee, M.; Kim, K.-T.; Park, E.; Paik, H.-D. Antioxidant and Antigenotoxic Effect of Dairy Products Supplemented with Red Ginseng Extract. J. Dairy. Sci. 2018, 101, 8702–8710. [Google Scholar] [CrossRef] [PubMed]
- Szołtysik, M.; Kucharska, A.Z.; Sokół-Łętowska, A.; Dąbrowska, A.; Bobak, Ł.; Chrzanowska, J. The Effect of Rosa Spinosissima Fruits Extract on Lactic Acid Bacteria Growth and Other Yoghurt Parameters. Foods 2020, 9, 1167. [Google Scholar] [CrossRef]
- Mohamed Ahmed, I.A.; Alqah, H.A.S.; Saleh, A.; Al-Juhaimi, F.Y.; Babiker, E.E.; Ghafoor, K.; Hassan, A.B.; Osman, M.A.; Fickak, A. Physicochemical Quality Attributes and Antioxidant Properties of Set-Type Yogurt Fortified with Argel (Solenostemma Argel Hayne) Leaf Extract. LWT 2021, 137, 110389. [Google Scholar] [CrossRef]
- Martinello, M.; Mutinelli, F. Antioxidant Activity in Bee Products: A Review. Antioxidants 2021, 10, 71. [Google Scholar] [CrossRef]
- Crane, E. Bees and Beekeeping: Science, Practice and World Resources; Comstock Pub. Associates: Sacramento, CA, USA, 1990. [Google Scholar]
- Durazzo, A.; Lucarini, M.; Plutino, M.; Pignatti, G.; Karabagias, I.K.; Martinelli, E.; Souto, E.B.; Santini, A.; Lucini, L. Antioxidant Properties of Bee Products Derived from Medicinal Plants as Beekeeping Sources. Agriculture 2021, 11, 1136. [Google Scholar] [CrossRef]
- Kocot, J.; Kiełczykowska, M.; Luchowska-Kocot, D.; Kurzepa, J.; Musik, I. Antioxidant Potential of Propolis, Bee Pollen, and Royal Jelly: Possible Medical Application. Oxidative Med. Cell. Longev. 2018, 2018, 7074209. [Google Scholar] [CrossRef]
- Silici, S.; Sagdic, O.; Ekici, L. Total Phenolic Content, Antiradical, Antioxidant and Antimicrobial Activities of Rhododendron Honeys. Food Chem. 2010, 121, 238–243. [Google Scholar] [CrossRef]
- Bodó, A.; Radványi, L.; Koszegi, T.; Csepregi, R.; Nagy, U.D.; Farkas, A.; Kocsis, M. Melissopalynology, Antioxidant Activity and Multielement Analysis of Two Types of Early Spring Honeys from Hungary. Food Biosci. 2020, 35, 100587. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Karabournioti, S.; Karabagias, V.K.; Badeka, A.V. Palynological, Physico-Chemical and Bioactivity Parameters Determination, of a Less Common Greek Honeydew Honey: “Dryomelo”. Food Control 2020, 109, 106940. [Google Scholar] [CrossRef]
- Bartkiene, E.; Lele, V.; Sakiene, V.; Zavistanaviciute, P.; Zokaityte, E.; Dauksiene, A.; Jagminas, P.; Klupsaite, D.; Bliznikas, S.; Ruzauskas, M. Variations of the Antimicrobial, Antioxidant, Sensory Attributes and Biogenic Amines Content in Lithuania-Derived Bee Products. LWT 2019, 118, 108793. [Google Scholar] [CrossRef]
- Postali, E.; Peroukidou, P.; Giaouris, E.; Papachristoforou, A. Investigating Possible Synergism in the Antioxidant and Antibacterial Actions of Honey and Propolis from the Greek Island of Samothrace through Their Combined Application. Foods 2022, 11, 2041. [Google Scholar] [CrossRef]
- Juszczak, L.; Gałkowska, D.; Ostrowska, M.; Socha, R. Antioxidant Activity of Honey Supplemented with Bee Products. Nat. Prod. Res. 2016, 30, 1436–1439. [Google Scholar] [CrossRef] [PubMed]
- Sawicki, T.; Starowicz, M.; Kłębukowska, L.; Hanus, P. The Profile of Polyphenolic Compounds, Contents of Total Phenolics and Flavonoids, and Antioxidant and Antimicrobial Properties of Bee Products. Molecules 2022, 27, 1301. [Google Scholar] [CrossRef] [PubMed]
- Nepote, V.; Mestrallet, M.G.; Grosso, N.R. Natural antioxidant effect from peanut skins in honey-roasted peanuts. J. Food Sci. 2004, 69, 295–300. [Google Scholar] [CrossRef]
- Gebreselassie, E.; Clifford, H. Oxidative Stability and Shelf Life of Crackers, Cookies, and Biscuits; AOCS Press: Urbana, IL, USA, 2016; pp. 461–478. ISBN 978-1-63067-056-6. [Google Scholar]
- Topka, P.; Poliński, S.; Sawicki, T.; Szydłowska-Czerniak, A.; Tańska, M. Effect of Enriching Gingerbread Cookies with Elder (Sambucus Nigra L.) Products on Their Phenolic Composition, Antioxidant and Anti-Glycation Properties, and Sensory Acceptance. Int. J. Mol. Sci. 2023, 24, 1493. [Google Scholar] [CrossRef]
- Indiarto, R.; Reni, R.; Utama, G.L.; Subroto, E.; Pangawikan, A.D.; Djali, M. The Physicochemical, Antioxidant, and Sensory Properties of Chocolate Biscuits Incorporated with Encapsulated Mangosteen (Garcinia Mangostana L.) Peel Extract. Int. J. Food Prop. 2023, 26, 122–138. [Google Scholar] [CrossRef]
- Pernice, R.; Borriello, G.; Ferracane, R.; Borrelli, R.C.; Cennamo, F.; Ritieni, A. Bergamot: A Source of Natural Antioxidants for Functionalized Fruit Juices. Food Chem. 2009, 112, 545. [Google Scholar] [CrossRef]
- Pokorný, J.; Yanishlieva, N.; Gordon, M. Antioxidants in Food—1st Edition. Available online: https://www.elsevier.com/books/antioxidants-in-food/pokorny/978-1-85573-463-0 (accessed on 29 January 2023).
- Taghvaei, M.; Jafari, S.M. Application and stability of natural antioxidants in edible oils in order to substitute synthetic additives. J. Food Sci. Technol. 2015, 52, 1272–1282. [Google Scholar] [CrossRef]
- Michotte, D.; Rogez, H.; Chirinos, R.; Mignolet, E.; Campos, D.; Larondelle, Y. Linseed Oil Stabilisation with Pure Natural Phenolic Compounds. Food Chem. 2011, 129, 1228–1231. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elghany, M.; Ammar, M.; Hegazy, A. Use of Olive Waste Cake Extract as a Natural Antioxidant for Improving the Stability of Heated Sunflower Oil. World Appl. Sci. J. 2010, 111, 106–113. [Google Scholar]
- Nanditha, B.; Prabhasankar, P. Antioxidants in Bakery Products: A Review. Crit. Rev. Food Sci. Nutr. 2009, 49, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Chanda, S.; Kaneria, M.; Baravalia, Y.; Vaghasiya, Y. Determination of antibacterial and antioxidant potential of some medicinal plants from Saurashtra Region, India. Indian J. Pharm. Sci. 2009, 71, 406–412. [Google Scholar] [CrossRef] [PubMed]
- López-Romero, J.C.; González-Ríos, H.; Peña-Ramos, A.; Velazquez, C.; Navarro, M.; Robles-Zepeda, R.; Martínez-Benavidez, E.; Higuera-Ciapara, I.; Virués, C.; Olivares, J.L.; et al. Seasonal Effect on the Biological Activities of Litsea glaucescens Kunth Extracts. Evid.-Based Complement. Altern. Med. 2018, 2018, 2738489. [Google Scholar] [CrossRef]
- Abu-Lafi, S.; Al-Natsheh, M.S.; Yaghmoor, R.; Al-Rimawi, F. Enrichment of Phenolic Compounds from Olive Mill Wastewater and In Vitro Evaluation of Their Antimicrobial Activities. Evid.-Based Complement. Altern. Med. 2017, 2017, 3706915. [Google Scholar] [CrossRef]
- Appiah, T.; Boakye, Y.D.; Agyare, C. Antimicrobial Activities and Time-Kill Kinetics of Extracts of Selected Ghanaian Mushrooms. Evid.-Based Complement. Altern. Med. 2017, 2017, 4534350. [Google Scholar] [CrossRef]
- Estévez, M. Critical Overview of the Use of Plant Antioxidants in the Meat Industry: Opportunities, Innovative Applications and Future Perspectives. Meat Sci. 2021, 181, 108610. [Google Scholar] [CrossRef]
Field of Research | Number of Scientific Publications |
---|---|
Natural antioxidants used in food industry | 6852 |
Natural antioxidants in animal-origin food | 218 |
Natural antioxidants in non-animal-origin food | 8 |
Natural antioxidants in meat | 3303 |
Natural antioxidants in meat products | 2018 |
Natural antioxidants in fishery products | 221 |
Natural antioxidants in milk | 1724 |
Natural antioxidants in dairy products | 653 |
Natural antioxidants used to obtain plant-based foods | 41 |
Source Categories | Plant | Scientific Name | Part Used in Food Industry | References |
---|---|---|---|---|
Aromatic herbs | Basil | Ocimum basilicum | Leaves | [15,16] |
Curry | Murraya koenigii | Leaves | [1,17] | |
Fennel | Foeniculum vulgare | Leaves | [9,15] | |
Hyssop | Hyssopus officinalis | Leaves and secondary branches | [18] | |
Lemon balm | Melissa officinalis | Leaves | [19] | |
Lemon grass | Cymbopogon citratus | Leaves | [15] | |
Mint | Mentha spicata | Leaves | [1,17] | |
Myrtle | Myrtus communis myrtillus | Leaves | [15,19] | |
Oregano | Origanum vulgare | Leaves | [1,20] | |
Rosemary | Rosmarinus officinalis | Leaves and secondary branches | [1,15,18,19] | |
Stonecrop | Sedum sarmentosum Bunge | Leaves | [21] | |
Summer savory | Satureja hortensis | Leaves | [1] | |
Watercress | Nasturtium officinale | Leaves Flower | [15,22] | |
Algae | Green algae | Green algae | Algae | [15,23] |
Dried fruits and seeds | Chestnut | Castanea | Leaves Peel | [15,24] |
Peanut | Arachis hypogaea | Skin | [1,4] | |
Sesame | Sesamum indicum | Leaves | [21] | |
Fruit | Coffee | Coffea | Leaves | [15,25,26] |
Date palm | Phoenix dactylifera | Pits | [1,27] | |
Grape | Vitis vinifera | Seed Pomace | [1,15,20,28] | |
Kinnow | Citrus reticulate | Peel | [1,4] | |
Mango | Mangifera indica | Peel | [15,29,30] | |
Olive | Olea europaea | Tree leaves | [1,4,15,31] | |
Strawberry | Fragaria × ananassa | Leaves Fruit | [4,32] | |
Acanthopanax | Acanthopanax sessiliflorum | Leaves | [1,21] | |
Apple | Malus pumila | Peel | [15,33] | |
Banana | Musa | Peel Fruit | [4,15,34] | |
Carob fruit | Ceratonia siliqua | Leaves | [35] | |
Goji berry | Lycium barbarum | Fruit | [15,36] | |
Papaya | Carica papaya | Seeds | [15,37] | |
Peach | Prunus persica | Fruit | [15,38] | |
Pineapple | Ananas comosus | Peel | [15,39] | |
Pomegranate | Punica granatum | Flower Peel | [4,15,20,40,41,42] | |
Blueberry | Vaccinium sect. Cyanococcus | Leaves Fruit | [15,43] | |
Cape gooseberry | Physalis peruviana | Leaves Fruit | [15,44,45] | |
Chokeberry | Aronia melanocarpa | Leaves Fruits | [46,47,48,49] | |
Cranberry | Vaccinium myrtillus | Leaves Fruit | [25] | |
Herbal teas | Ginkgo biloba | Ginkgo biloba | Leaves | [15,50] |
Butterbur | Petasites japonicus Maxim | Leaves | [1,51] | |
Chamomile | Matricaria recutita L. | Flower | [9,15] | |
Green tea | Camellia sinensis | Leaves | [1] | |
Nettle | Urtica dioica | Leaves Flower | [1,19,52,53,54] | |
Roselle | Hibiscus sabdariffa | Flower water | [1] | |
Spice | Fenugreek | Trigonella foenum-graecum | Seed | [1] |
Clove | Eugenia caryophylata | Bud | [1,20] | |
Black seed | Nigella sativa | Seeds | [40] | |
Cinnamon stick | Cinnamomum burmannii | Cortex | [1,20] | |
Cinnamon | Cinnamomum verum | Bark | [1,15,40] | |
Ginger | Zingiber officinale | Rhizome Flowering head | [1,55] | |
Vegetable | Licorice | Glycyrrhiza glabra | Root | [40] |
Lotus | Nelumbo nucifera | Rhizome knot Leaves | [1,56,57] | |
Potato | Solanum tuberosum | Peel | [1] | |
Pumpkin | Cucurbita moschata Duch | Leaves | [1,21,51] | |
Bok choy | Brassica campestris L. ssp. chinensis | Leaves | [1,21,51] | |
Broccoli | Brassica oleracea L. var. italica | Flowering head | [1,21,51,58] | |
Carrot | Daucus carota | Peel | [15,59] | |
Chamnamul | Pimpinella brachycarpa | Leaves | [1] | |
Chinese chives/Leek | Allium tuberosum Rottler ex Spreng | Leaves | [21,51] | |
Crown daisy | Chrysanthemum coronarium | Leaves | [21,51] | |
Eggplant | Solanum melongena | Peel | [15,60] | |
Eleutherine | Eleutherine americana | Bulb | [1,20] | |
Fatsia | Aralia elata Seem | Leaves | [21,51] | |
Garlic | Allium sativum | Aerial parts Bulb | [1,40,55] | |
Onion | Allium cepa L. | Bulb | [55] | |
Soybean | Glycine max L. Merr | Leaves | [4,51] | |
Sweet potato | Ipomoea batatas | Peel | [15,61] | |
Tomato | Solanum lycopersicum | Pulp | [15,32] |
Source Categories | Antioxidant/ Plants with Antioxidant Activity | Endo- (EN)/ Exogenous (EX) | Species/Product | Dose/Treatment | Tested Effect | Results | Ref. |
---|---|---|---|---|---|---|---|
FRUITS | Grape pomace (GP) | EN | Bovine (Holstein-Friesian) | Control and 7.5% GP-supplemented diet | Whole-blood transcriptome, milk production, and composition | GP supplementation affected 40 genes in the transcriptome, but milk production and composition were not different between groups. | [94] |
EN | Sheep (dairy ewes) | Control and 10% GP-supplemented diet | Milk yield, chemical-nutritional characteristics, total phenolic compounds, antioxidant activity, fatty acids, and proteins profile | Increase in monounsaturated fatty acids and a decrease in medium-chain saturated fatty acids. It can be fed to lactating ewes without changing milk gross composition but drastically modifying fatty acid profile. | [95] | ||
VEGETABLES | Anthocyanin-rich purple corn (Zea mays L.) | EN | Goats (Saanen dairy goats) | Control (sticky corn stover silage) and anthocyanin-rich purple corn diet (TPSS) | Transferring anthocyanin composition to the milk and increasing antioxidant status of lactating dairy goats | Anthocyanin-rich purple corn can increase the antioxidant levels in lactating dairy goats’ milk. | [96] |
SPICES, HERBAL TEAS, AND AROMATIC HERBS | Distillate rosemary leaves | EN | Goats (Murciano-Granadina goats) | Basal diet (BD), 10% and 20% (BD) with 50% barley and 50% distilled leaves | Polyphenolic profile of the goats’ milk during the physiological stages of gestation and lactation | Increased polyphenolic content in goat’s milk and kid’s plasma | [97] |
Herbal extract of green mate (Ilex paraguariensis), clove (Syzygium aromaticum), and lemongrass (Cymbopogon citratus) | EX | Fermented milk (FM) with/without sweet potato pulp | N—natural fermented milk, E—phenolic-rich herbal extract (1 g/100 g−1), EB—phenolic-rich herbal extract (1 g/100 g−1) and sweet potato pulp (15 g/100 g−1), and B—sweet potato pulp | Proximate composition, pH, acidity, instrumental texture profile, total phenolic content (TPC), antioxidant activity (AA) of all formulations were measured and sensory attributes | FM with sweet potato pulp showed the best sensory acceptability, while the lyophilized extract containing 87.5% clove and 12.5% green mate improved the antioxidant activity and total phenolic content. | [98] | |
Yerba mate (Ilex paraguariensis A. St.-Hil.-YM) | EX | Fresh cheese | 0.0% (control), 0.5% (FC5), 1.0% (FC10) and 2.0% (FC20) | Bioactive compound concentration, antioxidant activity, color, texture, structure, and sensory acceptance | YM conferred antioxidant activity to FC and affected the color, texture, and structure | [99] | |
RGE | EX | Milk (M) and yogurt (Y) | Control and 2% red ginseng extract in milk (RM) and yogurt (RY) | Antioxidant and antigenotoxic effects | Red ginseng can boost dairy products’ antioxidant and antigenotoxic effects. | [100] | |
Rosa spinosissima fruits extract | EX | Yogurt | Control, 0.1%, and 0.2% extract | Physicochemical properties, microbiology, and antioxidant properties | Significantly affected the yogurts’ antioxidant properties | [101] | |
Solenostemma argel Hayne leaf extract (ALE) | EX | Yogurt | 0.0, 0.1, and 0.2 g/100 mL | Physicochemical, antioxidant, and sensory qualities | ALE increased the antioxidant properties. | [102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petcu, C.D.; Tăpăloagă, D.; Mihai, O.D.; Gheorghe-Irimia, R.-A.; Negoiță, C.; Georgescu, I.M.; Tăpăloagă, P.R.; Borda, C.; Ghimpețeanu, O.M. Harnessing Natural Antioxidants for Enhancing Food Shelf Life: Exploring Sources and Applications in the Food Industry. Foods 2023, 12, 3176. https://doi.org/10.3390/foods12173176
Petcu CD, Tăpăloagă D, Mihai OD, Gheorghe-Irimia R-A, Negoiță C, Georgescu IM, Tăpăloagă PR, Borda C, Ghimpețeanu OM. Harnessing Natural Antioxidants for Enhancing Food Shelf Life: Exploring Sources and Applications in the Food Industry. Foods. 2023; 12(17):3176. https://doi.org/10.3390/foods12173176
Chicago/Turabian StylePetcu, Carmen Daniela, Dana Tăpăloagă, Oana Diana Mihai, Raluca-Aniela Gheorghe-Irimia, Carmen Negoiță, Ioana Mădălina Georgescu, Paul Rodian Tăpăloagă, Cristin Borda, and Oana Mărgărita Ghimpețeanu. 2023. "Harnessing Natural Antioxidants for Enhancing Food Shelf Life: Exploring Sources and Applications in the Food Industry" Foods 12, no. 17: 3176. https://doi.org/10.3390/foods12173176
APA StylePetcu, C. D., Tăpăloagă, D., Mihai, O. D., Gheorghe-Irimia, R. -A., Negoiță, C., Georgescu, I. M., Tăpăloagă, P. R., Borda, C., & Ghimpețeanu, O. M. (2023). Harnessing Natural Antioxidants for Enhancing Food Shelf Life: Exploring Sources and Applications in the Food Industry. Foods, 12(17), 3176. https://doi.org/10.3390/foods12173176