Quantitative Risk Assessment of Five Foodborne Viruses in Shellfish Based on Multiplex qPCR
Abstract
:1. Introduction
2. Materials and Methods
2.1. PCR Primers and Probes
2.2. Experimental Design for the Multiplex qPCR Method
2.3. Sample Collection and Pretreatment
2.4. Risk Model Framework
2.4.1. Hazard Identification
2.4.2. Exposure Assessment
2.4.3. Dose–Response Assessment
2.4.4. Risk Characterization
2.4.5. Risk Assessment Ranking
3. Results
3.1. Establishment of Multiplex qPCR Method
3.2. Quantitative Detection of Foodborne Viruses in Shellfish via Multiplex qPCR
3.3. Simulation of the Probability of Foodborne Virus Infection by Eating Shellfish
3.4. Risk Ranking of Viral Infection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, L.P.; Zhou, S.X.; Wang, X.; Lu, Q.B.; Shi, L.S.; Ren, X.; Zhang, H.Y.; Wang, Y.F.; Lin, S.H.; Zhang, C.H.; et al. Etiological, epidemiological, and clinical features of acute diarrhea in China. Nat. Commun. 2021, 12, 2464–2476. [Google Scholar] [CrossRef] [PubMed]
- Tohma, K.; Saito, M.; Pajuelo, M.J.; Mayta, H.; Zimic, M.; Lepore, C.J.; Ford-Siltz, L.A.; Gilman, R.H.; Parra, G.I. Viral intra-host evolution in immunocompetent children contributes to human norovirus diversification at the global scale. Emerg. Microbes Infect. 2021, 10, 1717–1730. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Shao, Q.; Xu, Z.; Chen, C.; Li, M.; Jiang, Y.; Cheng, D. Immunogenicity and Blocking Efficacy of Norovirus GII.4 Recombinant P Protein Vaccine. Vaccines 2023, 11, 1053. [Google Scholar] [CrossRef] [PubMed]
- De Graaf, M.; van Beek, J.; Koopmans, M.P. Human norovirus transmission and evolution in a changing world. Nat. Rev. Microbiol. 2016, 14, 421–433. [Google Scholar] [CrossRef] [PubMed]
- Ruscher, C.; Faber, M.; Werber, D.; Stark, K.; Bitzegeio, J.; Michaelis, K.; Sagebiel, D.; Wenzel, J.J.; Enkelmann, J. Resurgence of an international hepatitis A outbreak linked to imported frozen strawberries, Germany, 2018 to 2020. Eurosurveillance 2020, 25, 1900670–1900679. [Google Scholar] [CrossRef]
- Nelson, N.P.; Weng, M.K.; Hofmeister, M.G.; Moore, K.L.; Doshani, M.; Kamili, S.; Koneru, A.; Haber, P.; Hagan, L.; Romero, J.R.; et al. Prevention of Hepatitis A Virus Infection in the United States: Recommendations of the Advisory Committee on Immunization Practices, 2020. MMWR Recomm. Rep. 2020, 69, 1–38. [Google Scholar] [CrossRef]
- Aliabadi, N.; Antoni, S.; Mwenda, J.M.; Weldegebriel, G.; Biey, J.N.M.; Cheikh, D.; Fahmy, K.; Teleb, N.; Ashmony, H.A.; Ahmed, H.; et al. Global impact of rotavirus vaccine introduction on rotavirus hospitalisations among children under 5 years of age, 2008–2016: Findings from the Global Rotavirus Surveillance Network. Lancet Glob. Health 2019, 7, e893–e903. [Google Scholar] [CrossRef]
- Nascimento, L.G.; Sarmento, S.K.; Leonardo, R.; Gutierrez, M.B.; Malta, F.C.; de Oliveira, J.M.; Guerra, C.R.; Coutinho, R.; Miagostovich, M.P.; Fumian, T.M. Detection and Molecular Characterization of Enteric Viruses in Bivalve Mollusks Collected in Arraial do Cabo, Rio de Janeiro, Brazil. Viruses 2022, 14, 2359. [Google Scholar] [CrossRef]
- Grembi, J.A.; Lin, A.; Karim, M.A.; Islam, M.O.; Miah, R.; Arnold, B.F.; McQuade, E.T.R.; Ali, S.; Rahman, M.Z.; Hussain, Z.; et al. Effect of water, sanitation, handwashing and nutrition interventions on enteropathogens in children 14 months old: A cluster-randomized controlled trial in rural Bangladesh. J. Infect. Dis. 2020, 227, 434–447. [Google Scholar] [CrossRef]
- Nagarajan, V.; Chen, J.S.; Hsu, G.J.; Chen, H.P.; Chao, H.C.; Huang, S.W.; Tsai, I.S.; Hsu, B.M. Surveillance of Adenovirus and Norovirus Contaminants in the Water and Shellfish of Major Oyster Breeding Farms and Fishing Ports in Taiwan. Pathogens 2022, 11, 316. [Google Scholar] [CrossRef]
- Zhu, Y.; Kawai, H.; Hashiba, S.; Amarasiri, M.; Kitajima, M.; Okabe, S.; Sano, D. The Effect of GD1a Ganglioside-Expressing Bacterial Strains on Murine Norovirus Infectivity. Molecules 2020, 25, 4084. [Google Scholar] [CrossRef] [PubMed]
- Gonzales-Gustavson, E.; Rusinol, M.; Medema, G.; Calvo, M.; Girones, R. Quantitative risk assessment of norovirus and adenovirus for the use of reclaimed water to irrigate lettuce in Catalonia. Water Res. 2019, 153, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Burch, T.R.; Stokdyk, J.P.; Rice, N.; Anderson, A.C.; Walsh, J.F.; Spencer, S.K.; Firnstahl, A.D.; Borchardt, M.A. Statewide Quantitative Microbial Risk Assessment for Waterborne Viruses, Bacteria, and Protozoa in Public Water Supply Wells in Minnesota. Environ. Sci. Technol. 2022, 56, 6315–6324. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Liao, N.; Tian, P.; Shen, K.; Liu, C.; Ruan, L.; Wu, G. Use of bentonite-coated activated carbon for improving the sensitivity of RT-qPCR detection of norovirus from vegetables and fruits: The ISO 15216-1:2017 standard method extension. Food Microbiol. 2023, 110, 104165. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, Z.; Zhang, B.; Cai, J.; Yao, X.; Zhang, M.; Deng, Y.; Hu, B. Inter-bacterial mutualism promoted by public goods in a system characterized by deterministic temperature variation. Nat. Commun. 2023, 14, 5394. [Google Scholar] [CrossRef] [PubMed]
- Raymond, P.; Paul, S.; Perron, A.; Deschenes, L. Norovirus Extraction from Frozen Raspberries Using Magnetic Silica Beads. Food Environ. Virol. 2021, 13, 248–258. [Google Scholar] [CrossRef]
- Hennechart-Collette, C.; Dehan, O.; Laurentie, M.; Fraisse, A.; Martin-Latil, S.; Perelle, S. Detection of norovirus, hepatitis A and hepatitis E viruses in multicomponent foodstuffs. Int. J. Food Microbiol. 2021, 337, 108931–108941. [Google Scholar] [CrossRef]
- Rashid, M.; Khan, M.N.; Jalbani, N. Detection of Human Adenovirus, Rotavirus, and Enterovirus in Tap Water and Their Association with the Overall Quality of Water in Karachi, Pakistan. Food Environ. Virol. 2021, 13, 44–52. [Google Scholar] [CrossRef]
- Dirks, R.A.M.; Jansen, C.C.C.; Hagele, G.; Zwartkruis-Nahuis, A.J.T.; Tijsma, A.S.L.; Boxman, I.L.A. Quantitative levels of norovirus and hepatitis A virus in bivalve molluscs collected along the food chain in the Netherlands, 2013–2017. Int. J. Food Microbiol. 2021, 344, 109089–109097. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, Y.; Zhang, B.; Wang, J.; Zhu, L.; Hu, B. Deterministic Effect of pH on Shaping Soil Resistome Revealed by Metagenomic Analysis. Environ. Sci. Technol. 2023, 57, 985–996. [Google Scholar] [CrossRef]
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union One Health 2020 Zoonoses Report. EFSA J. 2021, 19, e06971. [Google Scholar]
- Chatonnat, E.; Manseau-Ferland, K.; Jubinville, E.; Goulet-Beaulieu, V.; Jean, J. Prevalence of Foodborne Viruses in Berries Harvested in Canada. Foods 2023, 12, 723. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Ding, G.; Wang, S.; Cai, Y.; Xu, J.; Cheng, J.; Zhou, D. Preliminary Quantitative Risk Assessment of Norovirus in Shellfish in the Yellow Sea and Bohai Sea of China. Foodborne Pathog. Dis. 2021, 18, 668–674. [Google Scholar] [CrossRef]
- Jeannoel, M.; Antona, D.; Lazarus, C.; Lina, B.; Schuffenecker, I. Risk Assessment and Virological Monitoring Following an Accidental Exposure to Concentrated Sabin Poliovirus Type 3 in France, November 2018. Vaccines 2020, 8, 331. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.M.; Martin, S.L.; Verhougstraete, M.P.; Kendall, A.D.; Zimmer-Faust, A.G.; Rose, J.B.; Bell, M.L.; Hyndman, D.W. Detangling Seasonal Relationships of Fecal Contamination Sources and Correlates with Indicators in Michigan Watersheds. Microbiol. Spectr. 2022, 10, e0041522. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Billings, W.Z.; Opekun, A.; Estes, M.; Graham, D.; Leon, J.; Koelle, K.; Shen, Y.; Atmar, R.; Lopman, B.; et al. Effect of Norovirus Inoculum Dose on Virus Kinetics, Shedding, and Symptoms. Emerg. Infect. Dis. 2023, 29, 1349–1356. [Google Scholar] [CrossRef]
- Ruchusatsawat, K.; Nuengjamnong, C.; Tawatsin, A.; Thiemsing, L.; Kawidam, C.; Somboonna, N.; Nuanualsuwan, S. Quantitative Risk Assessments of Hepatitis A Virus and Hepatitis E Virus from Raw Oyster Consumption. Risk Anal. 2022, 42, 953–965. [Google Scholar] [CrossRef]
- Sobolik, J.S.; Sajewski, E.T.; Jaykus, L.A.; Cooper, D.K.; Lopman, B.A.; Kraay, A.N.M.; Ryan, P.B.; Guest, J.L.; Webb-Girard, A.; Leon, J.S. Decontamination of SARS-CoV-2 from cold-chain food packaging provides no marginal benefit in risk reduction to food workers. Food Control 2022, 136, 108845. [Google Scholar] [CrossRef]
- Fuzawa, M.; Smith, R.L.; Ku, K.M.; Shisler, J.L.; Feng, H.; Juvik, J.A.; Nguyen, T.H. Roles of Vegetable Surface Properties and Sanitizer Type on Annual Disease Burden of Rotavirus Illness by Consumption of Rotavirus-Contaminated Fresh Vegetables: A Quantitative Microbial Risk Assessment. Risk Anal. 2020, 40, 741–757. [Google Scholar] [CrossRef]
- Bortagaray, V.; Girardi, V.; Pou, S.; Lizasoain, A.; Tort, L.F.L.; Spilki, F.R.; Colina, R.; Victoria, M. Detection, Quantification, and Microbial Risk Assessment of Group A Rotavirus in Rivers from Uruguay. Food Environ. Virol. 2020, 12, 89–98. [Google Scholar] [CrossRef]
- Kongprajug, A.; Denpetkul, T.; Chyerochana, N.; Mongkolsuk, S.; Sirikanchana, K. Human Fecal Pollution Monitoring and Microbial Risk Assessment for Water Reuse Potential in a Coastal Industrial-Residential Mixed-Use Watershed. Front. Microbiol. 2021, 12, 647602–647616. [Google Scholar] [CrossRef] [PubMed]
- Lanzarini, N.M.; Federigi, I.; Marinho Mata, R.; Neves Borges, M.D.; Mendes Saggioro, E.; Cioni, L.; Verani, M.; Carducci, A.; Costa Moreira, J.; Ferreira Mannarino, C.; et al. Human adenovirus in municipal solid waste leachate and quantitative risk assessment of gastrointestinal illness to waste collectors. Waste Manag. 2022, 138, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Gao, T.; Xu, P.; Chen, R.; Wang, X.C.; Dzakpasu, M. Environmental risk assessment by using disability adjusted life year via constructing of a generalized linear model for morbidity estimation of waterborne pathogens. J. Environ. Manag. 2021, 299, 113566–113577. [Google Scholar] [CrossRef] [PubMed]
- Brusa, V.; Costa, M.; Oteiza, J.M.; Galli, L.; Barril, P.A.; Leotta, G.A.; Signorini, M. Prioritization of vegetable-borne biological hazards in Argentina using a multicriteria decision analysis tool. Food Sci. Technol. Int. 2023, 10820132231180640. [Google Scholar] [CrossRef]
- Hernandez-Jover, M.; Culley, F.; Heller, J.; Ward, M.P.; Jenson, I. Semi-quantitative food safety risk profile of the Australian red meat industry. Int. J. Food Microbiol. 2021, 353, 109294–109306. [Google Scholar] [CrossRef]
- Govaris, A.; Pexara, A. Inactivation of Foodborne Viruses by High-Pressure Processing (HPP). Foods 2021, 10, 215. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.; Abney, S.E.; Reynolds, K.A.; Gerba, C.P.; Wilson, A.M. Evaluating infection risks and importance of hand hygiene during the household laundry process using a quantitative microbial risk assessment approach. Am. J. Infect. Control 2023, 23, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Pasalari, H.; Akbari, H.; Ataei-Pirkooh, A.; Adibzadeh, A.; Akbari, H. Assessment of rotavirus and norovirus emitted from water spray park: QMRA, diseases burden and sensitivity analysis. Heliyon 2022, 8, e10957. [Google Scholar] [CrossRef]
- Jahne, M.A.; Schoen, M.E.; Kaufmann, A.; Pecson, B.M.; Olivieri, A.; Sharvelle, S.; Anderson, A.; Ashbolt, N.J.; Garland, J.L. Enteric pathogen reduction targets for onsite non-potable water systems: A critical evaluation. Water Res. 2023, 233, 119742. [Google Scholar] [CrossRef]
- Pogreba-Brown, K.; Austhof, E.; Armstrong, A.; Schaefer, K.; Villa Zapata, L.; McClelland, D.J.; Batz, M.B.; Kuecken, M.; Riddle, M.; Porter, C.K.; et al. Chronic Gastrointestinal and Joint-Related Sequelae Associated with Common Foodborne Illnesses: A Scoping Review. Foodborne Pathog. Dis. 2020, 17, 67–86. [Google Scholar] [CrossRef]
- Foddai, A.C.G.; Grant, I.R. Methods for detection of viable foodborne pathogens: Current state-of-art and future prospects. Appl. Microbiol. Biotechnol. 2020, 104, 4281–4288. [Google Scholar] [CrossRef]
- Sun, C.; Chen, J.; Li, H.; Fang, L.; Wu, S.; Jayavanth, P.; Tang, S.; Sanchez, G.; Wu, X. One-step duplex RT-droplet digital PCR assay for the detection of norovirus GI and GII in lettuce and strawberry. Food Microbiol. 2021, 94, 103653–103660. [Google Scholar] [CrossRef] [PubMed]
- Pouillot, R.; Smith, M.; Van Doren, J.M.; Catford, A.; Holtzman, J.; Calci, K.R.; Edwards, R.; Goblick, G.; Roberts, C.; Stobo, J.; et al. Risk Assessment of Norovirus Illness from Consumption of Raw Oysters in the United States and in Canada. Risk Anal. 2022, 42, 344–369. [Google Scholar] [CrossRef] [PubMed]
- Fouillet, A.; Fournet, N.; Forgeot, C.; Jones, G.; Septfons, A.; Franconeri, L.; Ambert-Balay, K.; Schmidt, J.; Guerin, P.; de Valk, H.; et al. Large concomitant outbreaks of acute gastroenteritis emergency visits in adults and food-borne events suspected to be linked to raw shellfish, France, December 2019 to January 2020. Eurosurveillance 2020, 25, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Rowan, N.J. Current decontamination challenges and potentially complementary solutions to safeguard the vulnerable seafood industry from recalcitrant human norovirus in live shellfish: Quo Vadis? Sci. Total Environ. 2023, 874, 162380. [Google Scholar] [CrossRef] [PubMed]
- Weaver, L.; Abraham, P.; Pang, L.; Karki, N.; McGill, E.; Lin, S.; Webber, J.; Banasiak, L.; Close, M. Comparative reductions of norovirus, echovirus, adenovirus, Campylobacter jejuni and process indicator organisms during water filtration in alluvial sand. Sci. Total Environ. 2023, 888, 164178. [Google Scholar] [CrossRef]
- Ahmed, W.; Payyappat, S.; Cassidy, M.; Harrison, N.; Besley, C. Reduction of human fecal markers and enteric viruses in Sydney estuarine waters receiving wet weather overflows. Sci. Total Environ. 2023, 896, 165008. [Google Scholar] [CrossRef]
- Sowby, R.B. Emergency preparedness after COVID-19: A review of policy statements in the U.S. water sector. Util. Policy 2020, 64, 101058–101064. [Google Scholar] [CrossRef]
- Wang, Y.; Mairinger, W.; Raj, S.J.; Yakubu, H.; Siesel, C.; Green, J.; Durry, S.; Joseph, G.; Rahman, M.; Amin, N.; et al. Quantitative assessment of exposure to fecal contamination in urban environment across nine cities in low-income and lower-middle-income countries and a city in the United States. Sci. Total Environ. 2022, 806, 151273–151285. [Google Scholar] [CrossRef]
- Bhatt, A.; Dada, A.C.; Prajapati, S.K.; Arora, P. Integrating life cycle assessment with quantitative microbial risk assessment for a holistic evaluation of sewage treatment plant. Sci. Total Environ. 2023, 862, 160842–160854. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kim, M.J.; Kim, H.J.; Jeong, K.C.; Kim, H.Y. Simultaneous Detection of Four Foodborne Viruses in Food Samples Using a One-Step Multiplex Reverse Transcription PCR. J. Microbiol. Biotechnol. 2018, 28, 210–217. [Google Scholar] [CrossRef] [PubMed]
Primer | Sequence (5′-3′) |
---|---|
NoV GI-F | GCCATGTTCCGITGGATG |
NoV GI-R | TCCTTAGACGCCATCATCAT |
NoV GI-P | HEX-AGATYGCGRCTCCCTGCTCACA-BHQ1 |
NoV GII-F | CAAGAGTCAATGTTTAGGTGGATGAG |
NoV GII-R | TCGACGCCATCTTCATTCACA |
NoV GII-P | FAM-AGATTGCGATCGCCCTCCCA-BHQ1 |
HAV-F | TCACCGCCGTTTGCCTAG |
HAV-R | GGAGAGCCCTGGAAGAAAG |
HAV-P | ROX-CCTGAACCTGCAGGAATTAA-BHQ2 |
RoV-F | ATGGATGTCCTGTACTCCTTGTCAAAA |
RoV-R | TTCCTCCAGTTTGRAASTCATTTCC |
RoV-P | CY5-AATGTACCTTCAACAATYTTRTCCCTAGC-BHQ2 |
AdV-F | GCCCCAGTGGTCTTACATGCACATC |
AdV-R | GCCACGGTGGGGTTTCTAAACTT |
AdV-P | CY3-TGCACCAGACCCGGGCTCAGGTACTCCGA-TAMRA |
NoV GI | NoV GII | HAV | RoV | AdV | |
---|---|---|---|---|---|
0.7378 | 0.7934 | 2.1113 | 1.5001 | 2.6975 | |
sigma | 0.0237 | 0.0501 | 0.1633 | 0.3812 | 0.1623 |
Risk of Infection per Meal | Annual Consumption Risk of Infection | |
---|---|---|
NoV GI | 9.7 × 10−3 | 1.61 × 10−1 |
NoV GII | 1.02 × 10−2 | 1.66 × 10−1 |
HAV | 5.41 × 10−2 | 5.14 × 10−1 |
RoV | 5.93 × 10−2 | 6.07 × 10−1 |
AdV | 4.97 × 10−2 | 5.98 × 10−1 |
Age | Risk of Infection per Meal | ||||
---|---|---|---|---|---|
NoV GI | NoV GII | HAV | RoV | AdV | |
0–4 | 1.70 × 10−3 | 1.90 × 10−3 | 1.15 × 10−2 | 1.82 × 10−2 | 3.39 × 10−2 |
5–18 | 8.90 × 10−3 | 9.30 × 10−3 | 5.03 × 10−2 | 5.64 × 10−2 | 4.91 × 10−2 |
19–64 | 1.31 × 10−2 | 1.37 × 10−2 | 6.92 × 10−2 | 6.99 × 10−2 | 5.17 × 10−2 |
≥65 | 6.40 × 10−3 | 6.70 × 10−3 | 3.76 × 10−2 | 4.60 × 10−2 | 4.64 × 10−2 |
Age | Annual Consumption Risk of Infection | ||||
---|---|---|---|---|---|
NoV GI | NoV GII | HAV | RoV | AdV | |
0–4 | 1.54 × 10−2 | 1.61 × 10−2 | 9.22 × 10−2 | 1.42 × 10−1 | 2.49 × 10−1 |
5–18 | 1.07 × 10−1 | 1.11 × 10−1 | 4.07 × 10−1 | 4.81 × 10−1 | 4.69 × 10−1 |
19–64 | 2.61 × 10−1 | 2.69 × 10−1 | 6.46 × 10−1 | 7.42 × 10−1 | 7.11 × 10−1 |
≥65 | 8.37 × 10−2 | 8.72 × 10−2 | 3.52 × 10−1 | 4.37 × 10−1 | 4.71 × 10−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Z.; Xu, Z.; Chen, J.; Chen, L.; Liao, N.; Zhang, R.; Cheng, D. Quantitative Risk Assessment of Five Foodborne Viruses in Shellfish Based on Multiplex qPCR. Foods 2023, 12, 3462. https://doi.org/10.3390/foods12183462
Yu Z, Xu Z, Chen J, Chen L, Liao N, Zhang R, Cheng D. Quantitative Risk Assessment of Five Foodborne Viruses in Shellfish Based on Multiplex qPCR. Foods. 2023; 12(18):3462. https://doi.org/10.3390/foods12183462
Chicago/Turabian StyleYu, Zhendi, Zhangkai Xu, Jiang Chen, Lili Chen, Ningbo Liao, Ronghua Zhang, and Dongqing Cheng. 2023. "Quantitative Risk Assessment of Five Foodborne Viruses in Shellfish Based on Multiplex qPCR" Foods 12, no. 18: 3462. https://doi.org/10.3390/foods12183462
APA StyleYu, Z., Xu, Z., Chen, J., Chen, L., Liao, N., Zhang, R., & Cheng, D. (2023). Quantitative Risk Assessment of Five Foodborne Viruses in Shellfish Based on Multiplex qPCR. Foods, 12(18), 3462. https://doi.org/10.3390/foods12183462