Risk Assessment and Determination of Arsenic and Heavy Metals in Fishery Products in Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Collection and Preparations
2.3. Sample Preprocessing
2.3.1. Pb, Cd, and As Analysis
2.3.2. Me-Hg Analysis
2.4. Instrument Optimization for ICP-MS Analysis
2.5. Instrument Optimization for DMA Analysis
2.6. Method Validation for Quality Assurance of Analysis
2.7. Health Risk Assessment
2.7.1. Non-CR
2.7.2. CR
2.8. Statistical Analysis
3. Results and Discussion
3.1. Method Validation for Heavy Metals Analysis
3.2. Heavy Metal Contents in Fishery Products
3.3. Health Risk Assessment
3.3.1. Exposure Assessment
3.3.2. Non-CR
3.3.3. CR
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Channing, D.; Young, G. 503. Amino-acids and peptides. Part X. The nitrogenous constituents of some marine algae. J. Chem. Soc. 1953, 2481–2491. [Google Scholar] [CrossRef]
- Robledo, D.; Freile Pelegrín, Y. Chemical and mineral composition of six potentially edible seaweed species of Yucatan. Bot. Mar. 1997, 40, 301–306. [Google Scholar] [CrossRef]
- Sargent, J.; Bell, G.; McEvoy, L.; Tocher, D.; Estevez, A. Recent developments in the essential fatty acid nutrition of fish. Aquaculture 1999, 177, 191–199. [Google Scholar] [CrossRef]
- Zupanc, G. Neurogenesis and neuronal regeneration in the adult fish brain. J. Comp. Physiol. A 2006, 192, 649–670. [Google Scholar] [CrossRef] [PubMed]
- Kromhout, D.; Bosschieter, E.B.; Coulander, C.d.L. The inverse relation between fish consumption and 20-year mortality from coronary heart disease. N. Engl. J. Med. 1985, 312, 1205–1209. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations (FAO). The State of World Fisheries and Aquaculture (SOFIA); FAO: Rome, Italy, 2020.
- Korea Rural Economic Institute (KREI). 2019 Food Balance Sheet; Korea Rural Economic Institute (KREI): Naju-si, Republic of Korea, 2019. [Google Scholar]
- Amiard, J.; Amiard-Triquet, C.; Berthet, B.; Metayer, C. Comparative study of the patterns of bioaccumulation of essential (Cu, Zn) and non-essential (Cd, Pb) trace metals in various estuarine and coastal organisms. J. Exp. Mar. Biol. 1987, 106, 73–89. [Google Scholar] [CrossRef]
- Stoeppler, M. Hazardous Metals in the Environment, 1st ed.; Elsevier Science: Amsterdam, The Netherlands, 1992. [Google Scholar]
- Bryan, G.; Langston, W. Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: A review. Environ. Pollut. 1992, 76, 89–131. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.A.; Kim, Y.-N.; Cho, K.-D.; Kim, M.Y.; Kim, E.J.; Baek, O.-H.; Lee, B.-H. Blood heavy metal concentrations of Korean adults by seafood consumption frequency: Using the fourth Korea National Health and Nutrition Examination Survey (KNHANES IV), 2008. Korean J. Nut 2011, 44, 518–526. [Google Scholar] [CrossRef]
- Rahbar, M.H.; Samms-Vaughan, M.; Loveland, K.A.; Ardjomand-Hessabi, M.; Chen, Z.; Bressler, J.; Shakespeare-Pellington, S.; Grove, M.L.; Bloom, K.; Pearson, D.A. Seafood consumption and blood mercury concentrations in Jamaican children with and without autism spectrum disorders. Neurotox. Res. 2013, 23, 22–38. [Google Scholar] [CrossRef]
- Blakley, B. The effect of cadmium chloride on the immune response in mice. Can. J. Comp. Med. 1985, 49, 104. [Google Scholar]
- Voors, A.W.; Johnson, W.D.; Shuman, M.S. Additive statistical effects of cadmium and lead on heart related disease in a North Carolina autopsy series. Arch. Environ. Health 1982, 37, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Wasserman, G.A.; Liu, X.; Lolacono, N.J.; Factor-Litvak, P.; Kline, J.K.; Popovac, D.; Morina, N.; Musabegovic, A.; Vrenezi, N.; Capuni-Paracka, S. Lead exposure and intelligence in 7-year-old children: The Yugoslavia Prospective Study. Environ. Health Perspect. 1997, 105, 956–962. [Google Scholar] [CrossRef] [PubMed]
- Elinder, C.-G.; Kjellström, T.; Friberg, L.; Linnman, B.L.L. Cadmium in kidney cortex, liver, and pancreas from Swedish autopsies. Arch. Environ. Health 1976, 31, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Friberg, L. Cadmium and the kidney. Environ. Health Perspect. 1984, 54, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Waalkes, M.P. Cadmium carcinogenesis in review. J. Inorg. Biochem. 2000, 79, 241–244. [Google Scholar] [CrossRef] [PubMed]
- Graeme, K.A.; Pollack, C.V., Jr. Heavy metal toxicity, part I: Arsenic and mercury. J. Emerg. Med. 1998, 16, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Hunter, D.; Russell, D.S. Focal cerebral and cerebellar atrophy in a human subject due to organic mercury compounds. J. Neurol. Neurosurg. Psychiatry 1954, 17, 235. [Google Scholar] [CrossRef] [PubMed]
- O’shea, J. ‘Two minutes with venus, two years with mercury’-mercury as an antisyphilitic chemotherapeutic agent. J. R. Soc. Med. 1990, 83, 392–395. [Google Scholar] [CrossRef]
- Powell, P.P. Minamata disease: A story of mercury’s malevolence. South Med. J. 1991, 84, 1352–1358. [Google Scholar] [CrossRef]
- Obiri, S.; Dodoo, D.; Essumang, D.; Armah, F. Cancer and non-cancer risk assessment from exposure to arsenic, copper, and cadmium in borehole, tap, and surface water in the Obuasi municipality, Ghana. Hum Ecol Risk Assess 2010, 16, 651–665. [Google Scholar] [CrossRef]
- Djedjibegovic, J.; Marjanovic, A.; Tahirovic, D.; Caklovica, K.; Turalic, A.; Lugusic, A.; Omeragic, E.; Sober, M.; Caklovica, F. Heavy metals in commercial fish and seafood products and risk assessment in adult population in Bosnia and Herzegovina. Sci. Rep. 2020, 10, 13238. [Google Scholar] [CrossRef] [PubMed]
- Pandion, K.; Khalith, S.M.; Ravindran, B.; Chandrasekaran, M.; Rajagopal, R.; Alfarhan, A.; Chang, S.W.; Ayyamperumal, R.; Mukherjee, A.; Arunachalam, K.D. Potential health risk caused by heavy metal associated with seafood consumption around coastal area. Environ. Pollut. 2022, 294, 118553. [Google Scholar] [CrossRef] [PubMed]
- Yabanli, M.; Tay, S. Selenium and mercury balance in sea bream obtained from different living environments in Turkey: A risk assessment for the consumer health. Environ. Sci. Pollut. Res. 2021, 28, 36069–36075. [Google Scholar] [CrossRef] [PubMed]
- Yabanli, M.; Tay, S.; Giannetto, D. Human health risk assessment from arsenic exposure after sea bream (Sparus aurata) consumption in Aegean Region, Turkey. Bulg. J. Vet. Med. 2016, 19, 127–136. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (USEPA). Risk Assessment Guidance for Superfund, Vol. 1. Human Health Evaluation Manual (Part A). EPA/540/1-89/02. Office of Emergency and Remedial Response; U.S. Environmental Protection Agency (USEPA): Washington, DC, USA, 1989.
- Hwang, H.-J.; Hwang, G.-H.; Ahn, S.-M.; Kim, Y.-Y.; Shin, H.-S. Risk assessment and determination of heavy metals in home meal replacement products by using inductively coupled plasma mass spectrometry and direct mercury analyzer. Foods 2022, 11, 504. [Google Scholar] [CrossRef]
- de Souza-Araujo, J.; Hussey, N.E.; Hauser-Davis, R.A.; Rosa, A.H.; de Oliveira Lima, M.; Giarrizzo, T. Human risk assessment of toxic elements (As, Cd, Hg, Pb) in marine fish from the Amazon. Chemosphere 2022, 301, 134575. [Google Scholar] [CrossRef] [PubMed]
- Korea Disease Control and Prevention Agency (KDCA). Korea National Health and Nutrition Examination Survey; Korea Disease Control and Prevention Agency (KDCA): Cheongju-si, Republic of Korea, 2020.
- National Health Insurance Service (NHIS). National Health Check-Up Statistical Data; National Health Insurance Service (NHIS): Wonju-si, Republic of Korea, 2022.
- U.S. Environmental Protection Agency (USEPA). Integrated Risk Information System; U.S. Environmental Protection Agency (USEPA): Washington, DC, USA, 2022.
- Luo, L.; Wang, B.; Jiang, J.; Fitzgerald, M.; Huang, Q.; Yu, Z.; Li, H.; Zhang, J.; Wei, J.; Yang, C. Heavy metal contaminations in herbal medicines: Determination, comprehensive risk assessments, and solutions. Front. Pharmacol. 2021, 11, 595335. [Google Scholar] [CrossRef] [PubMed]
- Kopru, S.; Cadir, M.; Soylak, M. Investigation of trace elements in vegan foods by ICP-MS after microwave digestion. Biol. Trace Elem. Res. 2022, 200, 5298–5306. [Google Scholar] [CrossRef]
- Habte, G.; Choi, J.Y.; Nho, E.Y.; Oh, S.Y.; Khan, N.; Choi, H.; Park, K.S.; Kim, K.S. Determination of toxic heavy metal levels in commonly consumed species of shrimp and shellfish using ICP-MS/OES. Food Sci. Biotechnol. 2015, 24, 373–378. [Google Scholar] [CrossRef]
- Döker, S.; Uslu, M. Aerosol dilution technique for direct determination of ultra-trace levels of Cr, Mn, Fe, Co, Ni, Cu, and Zn in edible salt samples by collision/reaction cell inductively coupled plasma mass spectrometry (CRC-ICP-MS). Food Anal. Methods 2014, 7, 683–689. [Google Scholar] [CrossRef]
- AOAC. AOAC International Methods Committee Guidelines for Validation of Qualitative and Quantitative Food Microbiological Official Methods of Analysis; AOAC: Rockville, MD, USA, 2012; pp. 1060–3271. [Google Scholar]
- Ministry of Food and Drug Safety (MFDS). Food Standards and Specification; Ministry of Food and Drug Safety (MFDS): Cheongju-si, Republic of Korea, 2022.
- EU. Commission Regulation (EC) No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs; EU: Brussels, Belgium, 2006. [Google Scholar]
- CODEX. General Standard for Contaminants and Toxins in Food and Feed. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B193-1995%252FCXS_193e.pdf (accessed on 25 May 2023).
- China Food & Drug Administration (CFDA). GB 2762-2022 National Food Safety Standard—Maximum Levels of Contaminants in Foods; China Food & Drug Administration (CFDA): Beijing, China, 2022.
- Kim, H.-Y.; Kim, J.-I.; Kim, J.-C.; Park, J.-E.; Lee, K.-J.; Kim, S.-I.; Oh, J.-H.; Jang, Y.-M. Survey of heavy metal contents of circulating agricultural products in Korea. Korean J. Food Sci. Technol. 2009, 41, 238–244. [Google Scholar] [CrossRef]
- Masuda, H. Arsenic cycling in the Earth’s crust and hydrosphere: Interaction between naturally occurring arsenic and human activities. Prog. Earth Planet. Sci. 2018, 5, 1–11. [Google Scholar] [CrossRef]
- Hwang, I.M.; Lee, H.M.; Lee, H.-W.; Jung, J.-H.; Moon, E.W.; Khan, N.; Kim, S.H. Determination of toxic elements and arsenic species in salted foods and sea salt by ICP–MS and HPLC–ICP–MS. ACS Omega 2021, 6, 19427–19434. [Google Scholar] [CrossRef] [PubMed]
- Craig, P.J.; Jenkins, R. Organometallic compounds in the environment: An overview. In Organic Metal and Metalloid Species in the Environment: Analysis, Distribution, Processes and Toxicological Evaluation, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 1–15. [Google Scholar]
- Mason, R.P.; Reinfelder, J.R.; Morel, F.M. Bioaccumulation of mercury and methylmercury. Water Air Soil Pollut. 1995, 80, 915–921. [Google Scholar] [CrossRef]
- Jensen, S.; Jernelöv, A. Biological methylation of mercury in aquatic organisms. Nature 1969, 223, 753–754. [Google Scholar] [CrossRef] [PubMed]
- Agah, H.; Leermakers, M.; Elskens, M.; Fatemi, S.M.R.; Baeyens, W. Total mercury and methyl mercury concentrations in fish from the Persian Gulf and the Caspian Sea. Water Air Soil Pollut. 2007, 181, 95–105. [Google Scholar] [CrossRef]
- Yamashita, Y.; Omura, Y.; Okazaki, E. Total mercury and methylmercury levels in commercially important fishes in Japan. Fish. Sci. 2005, 71, 1029–1035. [Google Scholar] [CrossRef]
- Fernández, B.; Campillo, J.; Martínez-Gómez, C.; Benedicto, J. Antioxidant responses in gills of mussel (Mytilus galloprovincialis) as biomarkers of environmental stress along the Spanish Mediterranean coast. Aquat. Toxicol. 2010, 99, 186–197. [Google Scholar] [CrossRef]
- Kamimura, S. Influence of Copper and Zinc in Food Substance on the Accumulation of Cultured Oysters. Bull. Jpn. Soc. Sci. Fish. 1980, 46, 83–85. (In Japanese) [Google Scholar] [CrossRef]
- Phillips, D.J. The use of biological indicator organisms to monitor trace metal pollution in marine and estuarine environments—A review. Environ. Pollut. 1977, 13, 281–317. [Google Scholar] [CrossRef]
- Bustamante, P.; Grigioni, S.; Boucher-Rodoni, R.; Caurant, F.; Miramand, P. Bioaccumulation of 12 trace elements in the tissues of the nautilus Nautilus macromphalus from New Caledonia. Mar. Pollut. Bull. 2000, 40, 688–696. [Google Scholar] [CrossRef]
- Je, J.G. Preliminary study on the cephalopod molluscs of the Korean waters. Rep. Korea Ocean. Res. Dev. Inst. 1990. [Google Scholar]
- Kim, K.H.; Kim, Y.J.; Heu, M.S.; Kim, J.-S. Contamination and risk assessment of lead and cadmium in commonly consumed fishes as affected by habitat. Korean J. Fish Aquat. Sci. 2016, 49, 541–555. [Google Scholar] [CrossRef]
- Liu, Q.; Liao, Y.; Shou, L. Concentration and potential health risk of heavy metals in seafoods collected from Sanmen Bay and its adjacent areas, China. Mar. Pollut. Bull. 2018, 131, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Sunlu, U. Trace metal levels in mussels (Mytilus galloprovincialis L. 1758) from Turkish Aegean Sea coast. Environ. Monit. Assess. 2006, 114, 273–286. [Google Scholar] [CrossRef] [PubMed]
- Almela, C.; Algora, S.; Benito, V.; Clemente, M.; Devesa, V.; Suner, M.; Velez, D.; Montoro, R. Heavy metal, total arsenic, and inorganic arsenic contents of algae food products. J. Agric. Food Chem. 2002, 50, 918–923. [Google Scholar] [CrossRef] [PubMed]
- Hajrić, D.; Smajlović, M.; Antunović, B.; Smajlović, A.; Alagić, D.; Tahirović, D.; Brenjo, D.; Članjak-Kudra, E.; Djedjibegović, J.; Porobić, A. Risk assessment of heavy metal exposure via consumption of fish and fish products from the retail market in Bosnia and Herzegovina. Food Control 2022, 133, 108631. [Google Scholar] [CrossRef]
- Bonsignore, M.; Manta, D.S.; Mirto, S.; Quinci, E.M.; Ape, F.; Montalto, V.; Gristina, M.; Traina, A.; Sprovieri, M. Bioaccumulation of heavy metals in fish, crustaceans, molluscs and echinoderms from the Tuscany coast. Ecotoxicol. Environ. Saf. 2018, 162, 554–562. [Google Scholar] [CrossRef]
- Makedonski, L.; Peycheva, K.; Stancheva, M. Determination of heavy metals in selected black sea fish species. Food Control 2017, 72, 313–318. [Google Scholar] [CrossRef]
- Leatherland, T.; Burton, J.; Culkin, F.; McCartney, M.; Morris, R. Concentrations of some trace metals in pelagic organisms and of mercury in Northeast Atlantic Ocean water. Deep Sea Res. Oceanogr. Abstr. 1973, 20, 679–685. [Google Scholar] [CrossRef]
- Monteiro, L.; Costa, V.; Furness, R.; Santos, R. Mercury concentrations in prey fish indicate enhanced bioaccumulation in mesopelagic environments. Mar. Ecol. Prog. Ser. 1996, 141, 21–25. [Google Scholar] [CrossRef]
- Velez, C.; Figueira, E.; Soares, A.; Freitas, R. Spatial distribution and bioaccumulation patterns in three clam populations from a low contaminated ecosystem. Estuar. Coast. Shelf Sci. 2015, 155, 114–125. [Google Scholar] [CrossRef]
- Liu, J.; Cao, L.; Dou, S. Bioaccumulation of heavy metals and health risk assessment in three benthic bivalves along the coast of Laizhou Bay, China. Mar. Pollut. Bull. 2017, 117, 98–110. [Google Scholar] [CrossRef]
- The Joint FAO/WHO Expert Committee on Food Additives (JECFA). Evaluation of Certain Food Additives and Contaminants: Ninety Third Report of the Joint FAO/WHO Expert Committee on Food; The Joint FAO/WHO Expert Committee on Food Additives (JECFA): Geneva, Switzerland, 2022. [Google Scholar]
- Shaheen, N.; Irfan, N.M.; Khan, I.N.; Islam, S.; Islam, M.S.; Ahmed, M.K. Presence of heavy metals in fruits and vegetables: Health risk implications in Bangladesh. Chemosphere 2016, 152, 431–438. [Google Scholar] [CrossRef]
- Cho, I.-S.; Kim, S.-J.; Park, A.-S.; Kim, J.-A.; Jang, J.-I.; Lee, S.-D.; Yu, I.-S.; Shin, Y.-S. The Content and Risk Assessment of Heavy Metals in Herbal Medicines used for Food and Drug. J. Food Hyg. Saf. 2020, 35, 354–364. [Google Scholar] [CrossRef]
- Hughes, M.F. Arsenic toxicity and potential mechanisms of action. Toxicol. Lett. 2002, 133, 1–16. [Google Scholar] [CrossRef] [PubMed]
No. | Category | Name | Number | |
---|---|---|---|---|
Common | Scientific | |||
1 | Sea algae (n = 105) | Laver | Porphyra purpurea | 15 |
Kelp | Saccharina japonica | 15 | ||
Seaweed fulvescens | Capsosiphon fulvescens | 15 | ||
Gulfweed | Sargassum fulvellum | 15 | ||
Sea mustard | Undaria pinnatifida | 15 | ||
Hijiki | Hizikia fusiforme | 15 | ||
Green laver | Enteromorpha | 15 | ||
2 | Freshwater fish (n = 87) | Catfish | Silurus asotus | 14 |
Carp | Cyprinus carpio | 14 | ||
Mudfish | Misgurnus mizolepis | 15 | ||
Mandarin fish | Siniperca scherzeri | 14 | ||
Cherry salmon | Oncorhynchus masou | 15 | ||
Salmon | Oncorhynchus keta | 15 | ||
3 | Marine fish (n = 559) | Ray | Batoidea | 30 |
Cutlassfish | Trichiurus lepturus | 32 | ||
Mackerel | Scomber japonicus | 30 | ||
Striped marlin | Tetrapturus audax | 15 | ||
Swordfish | Xiphias gladius | 15 | ||
Pacific saury | Cololabis saira | 32 | ||
Flatfish | Paralichthys olivaceus | 25 | ||
Patagonian toothfish | Dissostichus eleginoides | 20 | ||
Bigeye tuna | Thunnus obesus | 25 | ||
Sailfin sandfish | Arctoscopus japonicus | 30 | ||
Black rock fish | Sebastes inermis | 20 | ||
Anchovy | Engraulis japonicus | 35 | ||
Pollack | Theragra chalcogramma | 30 | ||
Japanese icefish | Salangichthys microdon | 30 | ||
Blowfish | Tetraodontiformes | 35 | ||
Croaker | Larimichthys polyactis | 35 | ||
Bluefin tuna | Thunnus thynnus | 30 | ||
Pacific herring | Clupea pallasii | 30 | ||
Sciaenoid fish | Miichthys miiuy | 30 | ||
Shark | Carcharodon carcharias | 30 | ||
4 | Crustaceans (n = 65) | Shrimp | Caridea | 20 |
Crab | Brachyura | 15 | ||
Lobster | Nephropidae | 15 | ||
King crab | Paralithodes | 15 | ||
5 | Mollusks (n = 320) | Squid | Todarodes pacificus | 25 |
Beka squid | Loliolus beka | 25 | ||
Octopus | Enteroctopus dofleini | 25 | ||
Webfoot octopus | Amphioctopus fangsiao | 25 | ||
Small octopus | Octopus minor | 25 | ||
Mussel | Mytilus unguiculatus | 25 | ||
Oyster | Crassostrea gigas | 25 | ||
Cockle | Tegillarca granosa | 25 | ||
Abalone | Haliotis discus | 25 | ||
Razor clam | Solen strictus | 25 | ||
Short-neck clam | Ruditapes philippinarum | 25 | ||
Ark shell | Scapharca broughtonii | 25 | ||
Fat innkeeper worm | Urechis unicinctus | 20 | ||
6 | Tunicates (n = 30) | Sea squirt | Halocynthia roretzi | 15 |
Warty sea squirt | Styela clava | 15 | ||
7 | Echinoderms (n = 20) | Sea urchin | Echinoidea | 10 |
Sea cucumber | Holothuroidea | 10 |
Heavy Metals | Food Matrix | |||
---|---|---|---|---|
Mackerel | ||||
LOD a (mg/kg) | LOQ b (mg/kg) | Linearity Equation | R2 | |
Pb | 0.001 | 0.004 | y = 129850x + 4690.1 | 1.0000 |
Cd | 0.001 | 0.004 | y = 2585x + 263.64 | 1.0000 |
As | 0.002 | 0.005 | y = 2585x + 263.64 | 0.9995 |
Hg | 0.001 | 0.003 | y = −0.0007x2 + 0.051x − 0.0019 | 0.9998 |
Me-Hg | 0.003 | 0.010 | y = −0.0007x2 + 0.0556x − 0.0025 | 0.9999 |
Heavy Metals | Accuracy (%) | Precision (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Intra-Day (n = 3) | Inter-Day (n = 3) | Intra-Day (n = 3) | Inter-Day (n = 3) | |||||||||
Low | Middle | High | Low | Middle | High | Low | Middle | High | Low | Middle | High | |
Pb | 106.40 | 88.24 | 95.90 | 108.70 | 111.30 | 99.90 | 2.30 | 2.06 | 0.29 | 5.17 | 6.42 | 1.83 |
Cd | 95.60 | 93.50 | 100.10 | 97.40 | 100.10 | 99.90 | 0.52 | 1.48 | 0.07 | 6.84 | 5.13 | 0.11 |
As | 113.00 | 102.04 | 91.720 | 104.53 | 108.31 | 102.29 | 2.51 | 0.85 | 0.53 | 5.95 | 6.02 | 5.17 |
Hg | 108.71 | 104.01 | 110.29 | 113.80 | 104.86 | 110.52 | 2.51 | 1.55 | 0.61 | 3.06 | 2.42 | 0.91 |
Me-Hg | 102.90 | 103.81 | 97.37 | 103.30 | 103.86 | 97.6 | 0.72 | 0.44 | 0.11 | 0.94 | 0.43 | 0.28 |
Category | Heavy Metals (mg/kg) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pb | Cd | As | Hg | Me-Hg | |||||||||||
Mean | Max | Min | Mean | Max | Min | Mean | Max | Min | Mean | Max | Min | Mean | Max | Min | |
Sea algae | 0.048 (0.052) | 0.109 | 0.0178 | 0.079 (0.085) | 0.156 | 0.012 | 3.626 (3.921) | 10.063 | 0.397 | 0.002 (0.01) | 0.012 | ND | ND | ND | ND |
Freshwater fish | 0.012 (0.018) | 0.03 | 0.003 | 0.003 (0.01) | 0.018 | ND | 0.151 (0.26) | 0.398 | 0.037 | 0.066 (0.108) | 0.236 | 0.004 | 0.023 (0.066) | 0.084 | ND |
Marine fish | 0.014 (0.03) | 0.047 | 0.002 | 0.013 (0.027) | 0.098 | ND | 1.776 (2.828) | 10.258 | 0.232 | 0.205 (0.639) | 2.245 | 0.003 | 0.035 (0.111) | 0.322 | ND |
Crustaceans | 0.041 (0.143) | 0.161 | 0.008 | 0.18 (0.505) | 0.408 | 0.0003 | 2.969 (3.143) | 4.754 | 0.252 | 0.021 (0.035) | 0.049 | 0.005 | 0.004 (0.008) | 0.007 | ND |
Mollusks | 0.067 (0.114) | 0.2653 | 0.004 | 0.202 (0.334) | 0.563 | ND | 3.272 (7.827) | 21.919 | 0.024 | 0.021 (0.056) | 0.227 | 0.001 | 0.007 (0.035) | 0.074 | ND |
Tunicates | 0.047 (0.052) | 0.09 | 0.03 | 0.015 (0.01) | 0.02 | 0.019 | 0.311 (0.278) | 0.513 | 0.347 | 0.0003 (0.001) | 0.001 | 0.001 | ND | ND | ND |
Echinoderms | 0.009 (0.009) | 0.01 | 0.008 | 0.022 (0.05) | 0.037 | 0.006 | 0.782 (0.84) | 1.118 | 0.445 | 0.0002 (0.001) | 0.0004 | ND | ND | ND | ND |
Category | Heavy Metal | |||||||
---|---|---|---|---|---|---|---|---|
Pb | Cd | As | Hg | Me-Hg | ||||
EDI (µg/kg/day) | EDI (µg/kg/day) | EMI (µg/kg/month) | EDI (µg/kg/day) | EDI (µg/kg/day) | EWI (µg/kg/week) | EDI (µg/kg/day) | EWI (µg/kg/week) | |
Sea algae | 3.27 × 10−4 | 5.39 × 10−4 | 1.62 × 10−2 | 2.47 × 10−2 | 1.36 × 10−5 | 9.55 × 10−5 | - | - |
Freshwater fish | 2.24 × 10−5 | 5.59 × 10−6 | 1.68 × 10−4 | 2.81 × 10−4 | 1.23 × 10−4 | 8.61 × 10−4 | 4.29 × 10−5 | 3.00 × 10−4 |
Marine fish | 1.07 × 10−4 | 9.96 × 10−5 | 2.99 × 10−3 | 1.36 × 10−2 | 1.57 × 10−3 | 1.10 × 10−2 | 2.68 × 10−4 | 1.88 × 10−3 |
Crustaceans | 5.84 × 10−4 | 2.56 × 10−3 | 7.69 × 10−2 | 4.23 × 10−2 | 2.99 × 10−4 | 2.09 × 10−3 | 5.70 × 10−5 | 3.99 × 10−4 |
Mollusks | 4.71 × 10−4 | 1.42 × 10−3 | 4.26 × 10−2 | 2.30 × 10−2 | 1.48 × 10−4 | 1.03 × 10−3 | 4.92 × 10−5 | 3.45 × 10−4 |
Tunicates | 1.31 × 10−4 | 4.17 × 10−5 | 1.25 × 10−3 | 8.65 × 10−4 | 8.34 × 10−7 | 5.84 × 10−6 | - | - |
Echinoderms | 2.03 × 10−5 | 4.96 × 10−5 | 1.49 × 10−3 | 1.76 × 10−3 | 4.51 × 10−7 | 3.16 × 10−6 | - | - |
Category | HQ | HI | ||||
---|---|---|---|---|---|---|
Pb | Cd | As | Hg | Me-Hg | Total | |
Sea algae | 9.36 × 10−5 | 1.80 × 10−4 | 8.25 × 10−2 | 4.55 × 10−5 | 0.00 × 100 | 8.28 × 10−2 |
Freshwater fish | 6.39 × 10−6 | 1.86 × 10−6 | 9.38 × 10−4 | 4.10 × 10−4 | 1.07 × 10−4 | 1.36 × 10−3 |
Marine fish | 3.07 × 10−5 | 3.32 × 10−5 | 4.54 × 10−2 | 5.24 × 10−3 | 6.71 × 10−4 | 5.07 × 10−2 |
Crustaceans | 1.67 × 10−4 | 8.55 × 10−4 | 1.41 × 10−1 | 9.97 × 10−4 | 1.42 × 10−4 | 1.43 × 10−1 |
Mollusks | 1.35 × 10−4 | 4.74 × 10−4 | 7.67 × 10−2 | 4.92 × 10−4 | 1.23 × 10−4 | 7.78 × 10−2 |
Tunicates | 3.73 × 10−5 | 1.39 × 10−5 | 2.88 × 10−3 | 2.78 × 10−6 | 0.00 × 100 | 2.94 × 10−3 |
Echinoderms | 5.80 × 10−6 | 1.65 × 10−5 | 5.88 × 10−3 | 1.50 × 10−6 | 0.00 × 100 | 5.90 × 10−3 |
Category | CR | |
---|---|---|
Pb | As | |
Sea algae | 2.78 × 10−9 | 3.71 × 10−5 |
Freshwater fish | 1.90 × 10−10 | 4.22 × 10−7 |
Marine fish | 9.12 × 10−10 | 2.04 × 10−5 |
Crustaceans | 4.96 × 10−9 | 6.34 × 10−5 |
Mollusks | 4.00 × 10−9 | 3.45 × 10−5 |
Tunicates | 1.11 × 10−9 | 1.30 × 10−6 |
Echinoderms | 1.72 × 10−10 | 2.64 × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.-Y.; Jeon, H.; Shin, H.-S. Risk Assessment and Determination of Arsenic and Heavy Metals in Fishery Products in Korea. Foods 2023, 12, 3750. https://doi.org/10.3390/foods12203750
Kim D-Y, Jeon H, Shin H-S. Risk Assessment and Determination of Arsenic and Heavy Metals in Fishery Products in Korea. Foods. 2023; 12(20):3750. https://doi.org/10.3390/foods12203750
Chicago/Turabian StyleKim, Do-Yeong, Hyewon Jeon, and Han-Seung Shin. 2023. "Risk Assessment and Determination of Arsenic and Heavy Metals in Fishery Products in Korea" Foods 12, no. 20: 3750. https://doi.org/10.3390/foods12203750
APA StyleKim, D. -Y., Jeon, H., & Shin, H. -S. (2023). Risk Assessment and Determination of Arsenic and Heavy Metals in Fishery Products in Korea. Foods, 12(20), 3750. https://doi.org/10.3390/foods12203750