Overview of the Sustainable Valorization of Using Waste and By-Products in Grain Processing
Abstract
:1. Introduction
- Understanding the progress of grain waste and by-products in the valorization of human nutrition, using bibliometrics. The literature in various databases, namely, Google Scholar, Web of Science, and Elsevier Scopus, has been evaluated for its merits and values;
- Exploration of knowledge-based strategies by reviewing the literature concerning the possible use of grain waste and by-products for the food processing industry, reducing the burden on virgin raw materials. The review allowed us to unlock the latest advances in upcycling side streams and waste from the grain processing industry. An overview of the food industry’s sustainable applications in the recovery and reutilization of waste cereal processing and by-products was also considered.
2. Bibliometric Analysis
3. It Is only Waste if We Waste It!
3.1. Conventional Milling, the Major Supplier of Grain Losses Reused in Food Industry
3.2. Brewing Process and Its Wastes
4. Added-Value Compounds for Food Industry
4.1. Carbohydrate Fraction
Grain By-Product/Waste | Carbohydrate Fraction | Food Industry Applications | Source |
---|---|---|---|
Wheat bran Rye bran BSG * | Cellulose | Improving sensory and chemical properties of food products | [26,101,102,103,104,105,106] |
Cereal bran | Arabinoxylans | Packaging materials (films) Thickening and stabilizing agent in the food industry | [102,106,107,108,109] |
Wheat bran Corn bran BSG * | Lignin | Emulsifying stability; dispersing and binding agent | [26,102,103,106,109,110,111] |
Oat bran BSG * | Beta-glucans | Wheat flour substitutes Improve beverage satiety Food hydrocolloids | [26,102,112,113] |
BSG * | Residual undigested starch | Prebiotic ingredients for the meat industry | [26,112,114,115] |
Wheat bran | Lactic and succinic acids | Acidulant, flavoring, preservative agent in the food industry | [116] |
Wheat germ | Linoleic acid, | Food ingredient with potential health benefits | [117,118,119] |
Corn germ | palmitic acid, | Commercial shortening replacement in food industries | |
Rye bran | oleic acid | Food-grade ingredient | |
Wheat germ Rye bran | Linolenic acid | Food-grade ingredient | [117,119] |
Corn germ | Stearic acid | Commercial shortening replacement in food industries | [118] |
4.2. Non-Carbohydrate Fraction
5. Conclusions and Future Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bhatia, L.; Jha, H.; Sarkar, T.; Sarangi, P.K. Food Waste Utilization for Reducing Carbon Footprints towards Sustainable and Cleaner Environment: A Review. Int. J. Environ. Res. Public Health 2023, 20, 2318. [Google Scholar] [CrossRef]
- Liu, F.; Li, M.; Wang, Q.; Yan, J.; Han, S.; Ma, C.; Ma, P.; Liu, X.; McClements, D.J. Future foods: Alternative proteins, food architecture, sustainable packaging, and precision nutrition. Crit. Rev. Food Sci. Nutr. 2022, 63, 6423–6444. [Google Scholar] [CrossRef]
- Nenciu, F.; Voicea, I.; Cocarta, D.M.; Vladut, V.N.; Matache, M.G.; Arsenoaia, V.-N. “Zero-Waste” Food Production System Supporting the Synergic Interaction between Aquaculture and Horticulture. Sustainability 2022, 14, 13396. [Google Scholar] [CrossRef]
- Gautam, M.; Agrawal, M. Greenhouse Gas Emissions from Municipal Solid Waste Management: A Review of Global Scenario. In Carbon Footprint Case Studies; Environmental Footprints and Eco-Design of Products and Processes; Springer: Singapore, 2021; pp. 123–160. [Google Scholar] [CrossRef]
- Andreottola, G.; Ragazzi, M.; Foladori, P.; Villa, R.; Langone, M.; Rada, E.C. The unit intregrated approch for OFMSW treatment. UPB Sci. Bull. Ser. C Electr. Eng. 2012, 74, 19–26. [Google Scholar]
- Cocarta, D.M.; Rada, E.C.; Ragazzi, M.; Badea, A.; Apostol, T. A contribution for a correct vision of health impact from municipal solid waste treatments. Environ. Technol. 2009, 30, 963–968. [Google Scholar] [CrossRef]
- Poole, N.; Donovan, J.; Erenstein, O. Viewpoint: Agri-Nutrition Research: Revisiting the Contribution of Maize and Wheat to Human Nutrition and Health. Food Policy 2021, 100, 101976. [Google Scholar] [CrossRef]
- Global and Regional Food Consumption Patterns and Trends. Available online: https://www.fao.org/3/ac911e/ac911e05.htm (accessed on 6 March 2023).
- Guerrini, A.; Burlini, I.; Huerta Lorenzo, B.; Grandini, A.; Vertuani, S.; Tacchini, M.; Sacchetti, G. Antioxidant and Antimicrobial Extracts Obtained from Agricultural By-Products: Strategies for a Sustainable Recovery and Future Perspectives. Food Bioprod. Process. 2020, 124, 397–407. [Google Scholar] [CrossRef]
- Shiferaw, B.; Smale, M.; Braun, H.J.; Duveiller, E.; Reynolds, M.; Muricho, G. Crops That Feed the World 10. Past Successes and Future Challenges to the Role Played by Wheat in Global Food Security. Food Sec. 2013, 5, 291–317. [Google Scholar]
- Fukagawa, N.K.; Ziska, L.H. Rice: Importance for Global Nutrition. J. Nutr. Sci. Vitaminol. 2019, 65, 2–3. [Google Scholar] [CrossRef]
- Zhang, R.; Ma, S.; Li, L.; Zhang, M.; Tian, S.; Wang, D.; Liu, K.; Liu, H.; Zhu, W.; Wang, X. Comprehensive Utilization of Corn Starch Processing By-Products: A Review. Grain Oil Sci. Technol. 2021, 4, 89–107. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations FAO Cereal Supply and Demand Brief World Food Situation. Available online: https://www.fao.org/worldfoodsituation/csdb/en/ (accessed on 6 March 2023).
- Ouro-Salim, O.; Guarnieri, P. Circular economy of food waste: A literature review. Environ Qual. Manag. 2022, 32, 225–242. [Google Scholar] [CrossRef]
- Teigiserova, D.A.; Bourgine, J.; Thomsen, M. Closing the Loop of Cereal Waste and Residues with Sustainable Technologies: An Overview of Enzyme Production via Fungal Solid-State Fermentation. Sustain. Prod. Consum. 2021, 27, 845–857. [Google Scholar] [CrossRef]
- Palermito, F.; Magaril, E.; Conti, F.; Kiselev, A.; Rada, E.C. Circular economy concepts applied to waste anaerobic digestion plants. WIT Transact. Ecol. Environ. 2021, 254, 57–68. [Google Scholar] [CrossRef]
- Pakseresht, A.; Ahmadi Kaliji, S.; Xhakollari, V. How Blockchain Facilitates the Transition toward Circular Economy in the Food Chain? Sustainability 2022, 14, 11754. [Google Scholar] [CrossRef]
- Shelepina, N.V.; Gorina, L.N. Scientific rationale for reducing the negative impact on the environment of grain processing industries through the rational use of secondary raw materials. IOP Conf. Series: Earth Environ Sci. 2022, 1154, 012035. [Google Scholar] [CrossRef]
- Rehal, J.; Kaur, K.; Kaur, P. Cereal Grains: Composition, Nutritional Attributes, and Potential Applications. In Cereals and Their By-Products, 1st ed.; CRC Press: Boca Raton, FL, USA, 2023; p. 354. [Google Scholar] [CrossRef]
- Kliopova, I.; Staniškis, J.K.; Petraškiene, V. Solid recovered fuel production from biodegradable waste in grain processing industry. Waste Manag. Res. 2013, 31, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Gualandris, J. When does upcycling mitigate climate change? The case of wet spent grains and fruit and vegetable residues in Canada. J. Ind. Ecol. 2023, 27, 522–534. [Google Scholar] [CrossRef]
- Zabaniotou, A.; Kamaterou, P. Food Waste Valorization Advocating Circular Bioeconomy—A Critical Review of Potentialities and Perspectives of Spent Coffee Grounds Biorefinery. J. Clean. Prod. 2019, 211, 1553–1566. [Google Scholar] [CrossRef]
- Thürer, M.; Tomašević, I.; Stevenson, M.; Qu, T.; Huisingh, D. A Systematic Review of the Literature on Integrating Sustain-ability into Engineering Curricula. J. Clean. Prod. 2018, 181, 608–617. [Google Scholar] [CrossRef]
- Gutiérrez-Salcedo, M.; Martínez, M.Á.; Moral-Munoz, J.A.; Herrera-Viedma, E.; Cobo, M.J. Some Bibliometric Procedures for Analyzing and Evaluating Research Fields. Appl. Intell. 2018, 48, 1275–1287. [Google Scholar] [CrossRef]
- Jan van Eck, N.; Waltman, L. VOSviewer Manual. 2023. Available online: https://www.vosviewer.com/ (accessed on 6 March 2023).
- Skendi, A.; Zinoviadou, K.G.; Papageorgiou, M.; Rocha, J.M. Advances on the Valorisation and Functionalization of By-Products and Wastes from Cereal-Based Processing Industry. Foods 2020, 9, 1243. [Google Scholar] [CrossRef] [PubMed]
- Belc, N.; Mustatea, G.; Apostol, L.; Iorga, S.; Vlăduț, V.-N.; Mosoiu, C. Cereal Supply Chain Waste in the Context of Circular Economy. E3S Web Conf. 2019, 112, 03031. [Google Scholar] [CrossRef]
- Encyclopedia, Processing of Cereals and Derived-By-Products. 2022. Available online: https://encyclopedia.pub/entry/2020 (accessed on 4 April 2023).
- Roth, M.; Jekle, M.; Becker, T. Opportunities for Upcycling Cereal Byproducts with Special Focus on Distiller’s Grains. Trends Food Sci. Technol. 2019, 91, 282–293. [Google Scholar] [CrossRef]
- Fărcaș, A.C.; Socaci, S.A.; Nemeș, S.A.; Pop, O.L.; Coldea, T.E.; Fogarasi, M.; Biriș-Dorhoi, E.S. An Update Regarding the Bioactive Compound of Cereal By-Products: Health Benefits and Potential Applications. Nutrients 2022, 14, 3470. [Google Scholar] [CrossRef] [PubMed]
- Tufail, T.; Ain, H.B.U.; Saeed, F.; Nasir, M.; Basharat, S.; Mahwish; Rusu, A.V.; Hussain, M.; Rocha, J.M.; Trif, M.; et al. A Ret-rospective on the Innovative Sustainable Valorization of Cereal Bran in the Context of Circular Bioeconomy Innovations. Sustainability 2022, 14, 14597. [Google Scholar] [CrossRef]
- Papageorgiou, M.; Skendi, A. Introduction to Cereal Processing and By-Products. In Sustainable Recovery and Reutilization of Cereal Processing By-Products; Woodhead Publishing: Sawston, UK, 2018; pp. 1–25. [Google Scholar] [CrossRef]
- Serna-Saldivar, S.O. Wet-Milling Processes and Starch Properties and Characteristics. In Cereal Grains; 2012; pp. 185–204. Available online: https://www.taylorfrancis.com/chapters/mono/10.1201/b11726-11/wet-milling-processes-starch-properties-characteristics-sergio-serna-saldivar (accessed on 6 March 2023).
- Comino, E.; Dominici, L.; Perozzi, D. Do-It-Yourself Approach Applied to the Valorisation of a Wheat Milling Industry’s by-Product for Producing Bio-Based Material. J. Clean. Prod. 2021, 318, 128267. [Google Scholar] [CrossRef]
- Ahmadzadeh, S.; Khaneghah, A.M. Role of Green Polymers in Food Packaging. In Encyclopedia of Renewable and Sustainable Materials; Elsevier: Amsterdam, The Netherlands, 2020; Volume 2, pp. 305–319. [Google Scholar] [CrossRef]
- Jin, T.Z.; Liu, L. Roles of Green Polymer Materials in Active Packaging. In ACS Symposium Series; ACS Publications: Washington, DC, USA, 2020; Volume 1347, pp. 83–107. [Google Scholar] [CrossRef]
- Sánchez-Safont, E.L.; Aldureid, A.; Lagarón, J.M.; Gámez-Pérez, J.; Cabedo, L. Biocomposites of Different Lignocellulosic Wastes for Sustainable Food Packaging Applications. Compos. B Eng. 2018, 145, 215–225. [Google Scholar] [CrossRef]
- Torres, M.D.; Fradinho, P.; Rodríguez, P.; Falqué, E.; Santos, V.; Domínguez, H. Biorefinery Concept for Discarded Potatoes: Recovery of Starch and Bioactive Compounds. J. Food Eng. 2020, 275, 109886. [Google Scholar] [CrossRef]
- Azeredo, H.M.C.; Barud, H.; Farinas, C.S.; Vasconcellos, V.M.; Claro, A.M. Bacterial Cellulose as a Raw Material for Food and Food Packaging Applications. Front Sustain. Food Syst. 2019, 3, 7. [Google Scholar] [CrossRef]
- Duţă, D.E.; Culeţu, A.; Mohan, G. Reutilization of Cereal Processing By-Products in Bread Making. In Sustainable Recovery and Reutilization of Cereal Processing By-Products; Woodhead Publishing: Sawston, UK, 2018; pp. 279–317. [Google Scholar] [CrossRef]
- Salazar-López, N.J.; Ovando-Martínez, M.; Domínguez-Avila, J.A. Cereal/Grain By-products. In Food Wastes By-Products; Wiley: Hoboken, NJ, USA, 2020; pp. 1–34. [Google Scholar] [CrossRef]
- Melini, V.; Melini, F.; Luziatelli, F.; Ruzzi, M. Functional Ingredients from Agri-Food Waste: Effect of Inclusion Thereof on Phenolic Compound Content and Bioaccessibility in Bakery Products. Antioxidants 2020, 9, 1216. [Google Scholar] [CrossRef]
- Hussain, M.; Qamar, A.; Saeed, F.; Rasheed, R.; Niaz, B.; Afzaal, M.; Mushtaq, Z.; Anjum, F. Biochemical properties of maize bran with special reference to different phenolic acids. Int. J. Food. Prop. 2021, 24, 1468–1478. [Google Scholar] [CrossRef]
- Pontonio, E.; Dingeo, C.; Gobbetti, M.; Rizzello, C.G. Maize Milling By-Products: From Food Wastes to Functional Ingredients through Lactic Acid Bacteria Fermentation. Front. Microbiol. 2019, 10, 561. [Google Scholar] [CrossRef] [PubMed]
- Karimi, A.; Gavlighi, H.A.; Sarteshnizi, R.A.; Udenigwe, C.C. Effect of Maize Germ Protein Hydrolysate Addition on Digestion, in Vitro Antioxidant Activity and Quality Characteristics of Bread. J. Cereal Sci. 2021, 97, 103148. [Google Scholar] [CrossRef]
- Grasso, S. Extruded Snacks from Industrial By-Products: A Review. Trends Food Sci. Technol. 2020, 99, 284–294. [Google Scholar] [CrossRef]
- Pathera, A.K.; Riar, C.S.; Yadav, S.; Singh, P.K. Effect of Egg Albumen, Vegetable Oil, Corn Bran, and Cooking Methods on Quality Characteristics of Chicken Nuggets Using Response Surface Methodology. Food Sci. Anim. Resour. 2018, 38, 901–911. [Google Scholar] [CrossRef]
- Yadav, S.; Malik, A.; Pathera, A.; Islam, R.U.; Sharma, D. Development of Dietary Fibre Enriched Chicken Sausages by In-corporating Corn Bran, Dried Apple Pomace and Dried Tomato Pomace. Nutr. Food Sci. 2016, 46, 16–29. [Google Scholar] [CrossRef]
- Yan, J.; Lv, Y.; Ma, S. Wheat Bran Enrichment for Flour Products: Challenges and Solutions. J. Food Process Preserv. 2022, 46, e16977. [Google Scholar] [CrossRef]
- Packkia-Doss, P.P.; Chevallier, S.; Pare, A.; Le-Bail, A. Effect of Supplementation of Wheat Bran on Dough Aeration and Final Bread Volume. J. Food Eng. 2019, 252, 28–35. [Google Scholar] [CrossRef]
- Pasqualone, A.; Delvecchio, L.N.; Gambacorta, G.; Laddomada, B.; Urso, V.; Mazzaglia, A.; Ruisi, P.; Di Miceli, G. Effect of Supplementation with Wheat Bran Aqueous Extracts Obtained by Ultrasound-Assisted Technologies on the Sensory Properties and the Antioxidant Activity of Dry Pasta. Natural Prod. Commun. 2015, 10, 1739–1742. [Google Scholar] [CrossRef]
- Yadav, S.; Pathera, A.K.; Islam, R.U.; Malik, A.K.; Sharma, D.P. Effect of Wheat Bran and Dried Carrot Pomace Addition on Quality Characteristics of Chicken Sausage. Asian-Australas J. Anim. Sci. 2018, 31, 729–737. [Google Scholar] [CrossRef]
- Abu-Ghannam, N.; Balboa, E. Biotechnological, Food, and Health Care Applications. 2018. Available online: https://arrow.tudublin.ie/schfsehbk/21/253–278 (accessed on 6 March 2023).
- Pontonio, E.; Lorusso, A.; Gobbetti, M.; Rizzello, C.G. Use of Fermented Milling By-Products as Functional Ingredient to Develop a Low-Glycaemic Index Bread. J. Cereal Sci. 2017, 77, 235–242. [Google Scholar] [CrossRef]
- Schiavon, M.; Ragazzi, M.; Rada, E.C. A proposal for a diet-based local PCDD/F deposition limit. Chemosphere 2013, 93, 1639–1645. [Google Scholar] [CrossRef] [PubMed]
- Gomez, M.; Gonzales, J.; Oliete, B. Effect of extruded wheat germ on dough rheology and bread quality. Food Bioprocess Technol. 2012, 5, 2409–2418. [Google Scholar] [CrossRef]
- Marti, A.; Torri, L.; Casiraghi, M.C.; Franzetti, L.; Limbo, S.; Morandin, F.; Quaglia, L.; Pagani, M.A. Wheat germ stabilization by heat-treatment or sourdough fermentation: Effects on dough rheology and bread properties. Lebensm. Wiss. Und Technol. Food Sci. Technol. 2014, 59, 1100–1106. [Google Scholar] [CrossRef]
- Sun, R.; Zhang, Z.; Hu, X.; Xing, Q.; Zhuo, W. Effect of wheat germ flour addition on wheat flour, dough and Chinese steamed bread properties. J. Cereal Sci. 2015, 64, 153–158. [Google Scholar] [CrossRef]
- Ma, S.; Wang, X.X.; Zheng, X.L.; Tian, S.Q.; Liu, C.; Li, L.; Ding, Y.F. Improvement of the quality of steamed bread by supplementation of wheat germ from milling process. J. Cereal Sci. 2014, 60, 589–594. [Google Scholar] [CrossRef]
- Petrović, J.; Rakić, D.; Fišteš, A.; Pajin, B.; Lončarević, I.; Tomović, V.; Zarić, D. Defatted wheat germ application: Influence on cookies’ properties with regard to its particle size and dough moisture content. Food Sci. Technol. Int. 2017, 23, 597–607. [Google Scholar] [CrossRef]
- Al-Marazeeq, K.M.; Angor, M.M. Chemical characteristic and sensory evaluation of biscuit enriched with wheat germ and the effect of storage time on the sensory properties for this product. Food Nutr. Sci. 2017, 8, 189–195. [Google Scholar] [CrossRef]
- Pınarlı, İ.; İbanoğlu, Ş.; Öner, M.D. Effect of storage on the selected properties of macaroni enriched with wheat germ. J. Food Eng. 2004, 64, 249–256. [Google Scholar] [CrossRef]
- Tarzi, B.G.; Shakeri, V.; Ghavami, M. Quality evaluation of pasta enriched with heated and unheated wheat germ during storage. Adv. Environ. Biol. 2012, 6, 1700–1707. [Google Scholar]
- Aktaş, K.; Bilgiçli, N.; Levent, H. Influence of wheat germ and β-glucan on some chemical and sensory properties of Turkish noodle. J. Food Sci. Technol. 2015, 52, 6055–6060. [Google Scholar] [CrossRef] [PubMed]
- Spaggiari, M.; Dall’asta, C.; Galaverna, G.; Bilbao, M.D.D.C. Rice Bran By-Product: From Valorization Strategies to Nutritional Perspectives. Foods 2021, 10, 85. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Naik, S.N. Gamma-Oryzanol from Rice Bran Oil—A Review. 2004. Available online: https://www.researchgate.net/publication/239785419_Gamma-Oryzanol_from_rice_bran_oil-A_review (accessed on 9 April 2023).
- Espinales, C.; Cuesta, A.; Tapia, J.; Palacios-Ponce, S.; Peñas, E.; Martínez-Villaluenga, C.; Espinoza, A.; Cáceres, P.J. The Effect of Stabilized Rice Bran Addition on Physicochemical, Sensory, and Techno-Functional Properties of Bread. Foods 2022, 11, 3328. [Google Scholar] [CrossRef]
- de Souza, C.B.; Lima, G.P.P.; Borges, C.V.; Dias, L.C.G.D.; Spoto, M.H.F.; Castro, G.R.; Corrêa, C.R.; Minatel, I.O. Development of a Functional Rice Bran Cookie Rich in γ-Oryzanol. J. Food Meas. Charact. 2019, 13, 1070–1077. [Google Scholar] [CrossRef]
- Bultum, L.E.; Emire, S.A.; Wolde, Y.T. Influence of Full Fat Rice Bran from Ethiopian Rice Milling Industries on Nutritional Qualities, Physicochemical and Sensory Properties of Bread and Biscuits. J. Food Meas. Charact. 2020, 14, 2253–2261. [Google Scholar] [CrossRef]
- Kaur, A.; Virdi, A.S.; Singh, N.; Singh, A.; Kaler, R.S.S. Effect of Degree of Milling and Defatting on Proximate Composition, Functional and Texture Characteristics of Gluten-Free Muffin of Bran of Long-Grain Indica Rice Cultivars. Food Chem. 2021, 345, 128861. [Google Scholar] [CrossRef] [PubMed]
- Demirci, T.; Aktaş, K.; Sözeri, D.; Öztürk, H.İ.; Akın, N. Rice Bran Improve Probiotic Viability in Yoghurt and Provide Added Antioxidative Benefits. J. Funct. Foods 2017, 36, 396–403. [Google Scholar] [CrossRef]
- Saka, M.; Özkaya, B.; Saka, İ. The Effect of Bread-Making Methods on Functional and Quality Characteristics of Oat Bran Blended Bread. Int. J. Gastron. Food Sci. 2021, 26, 100439. [Google Scholar] [CrossRef]
- Liu, W.; Brennan, M.; Tu, D.; Brennan, C. Influence of α-Amylase, Xylanase and Cellulase on the Rheological Properties of Bread Dough Enriched with Oat Bran. Sci. Rep. 2023, 13, 1–9. [Google Scholar] [CrossRef]
- Liu, W.; Brennan, M.; Brennan, C.; You, L.; Tu, D. Effect of Enyzmes on the Quality and Predicting Glycaemic Response of Chinese Steamed Bread. Foods 2023, 12, 273. [Google Scholar] [CrossRef]
- Espinosa-Solis, V.; Zamudio-Flores, P.B.; Tirado-Gallegos, J.M.; Ramírez-Mancinas, S.; Olivas-Orozco, G.I.; Espino-Díaz, M.; Hernández-González, M.; García-Cano, V.G.; Sánchez-Ortíz, O.; Buenrostro-Figueroa, J.J.; et al. Evaluation of Cooking Quality, Nutritional and Texture Characteristics of Pasta Added with Oat Bran and Apple Flour. Foods 2019, 8, 299. [Google Scholar] [CrossRef] [PubMed]
- Verni, M.; Rizzello, C.G.; Coda, R. Fermentation Biotechnology Applied to Cereal Industry By-Products: Nutritional and Functional Insights. Front. Nutr. 2019, 6, 42. [Google Scholar] [CrossRef] [PubMed]
- Dziki, D. Rye Flour and Rye Bran: New Perspectives for Use. Process 2022, 10, 293. [Google Scholar] [CrossRef]
- Ortiz, I.; Torreiro, Y.; Molina, G.; Maroño, M.; Sánchez, J.M. A Feasible Application of Circular Economy: Spent Grain Energy Recovery in the Beer Industry. Waste Biomass Valoriz 2019, 10, 3809–3819. [Google Scholar] [CrossRef]
- dos Santos Mathias, T.R.; Alexandre, V.M.F.; Cammarota, M.C.; de Mello, P.P.M.; Sérvulo, E.F.C. Characterization and de-termination of brewer’s solid wastes composition. J. Inst. Brew. 2015, 121, 400–404. [Google Scholar] [CrossRef]
- Bharat Helkar, P.; Sahoo, A.; Patil, N. Review: Food Industry By-Products Used as a Functional Food Ingredients. Int. J. Waste Resour. 2016, 6, 3. [Google Scholar] [CrossRef]
- Chetrariu, A.; Dabija, A. Brewer’s Spent Grains: Possibilities of Valorization, a Review. Appl. Sci. 2020, 10, 5619. [Google Scholar] [CrossRef]
- Rachwał, K.; Waśko, A.; Gustaw, K.; Polak-Berecka, M. Utilization of Brewery Wastes in Food Industry. PeerJ 2020, 8, e9427. [Google Scholar] [CrossRef]
- Cappa, C.; Cappa, C. Brewer’s Spent Grain Valorization in Fiber-Enriched Fresh Egg Pasta Production: Modelling and Optimization Study. Food Sci. Technol. 2017, 82, 464–470. [Google Scholar] [CrossRef]
- Fărcaş, A.C.; Socaci, S.A.; Mudura, E.; Dulf, F.V.; Vodnar, D.C.; Tofană, M.; Salanță, L.C.; Fărcaş, A.C.; Socaci, S.A.; Mudura, E.; et al. Exploitation of Brewing Industry Wastes to Produce Functional Ingredients. In Brewing Technology; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef]
- Combest, S.; Warren, C. Perceptions of College Students in Consuming Whole Grain Foods Made with Brewers’ Spent Grain. Food Sci. Nutr. 2019, 7, 225–237. [Google Scholar] [CrossRef]
- Ktenioudaki, A.; Chaurin, V.; Reis, S.F.; Gallagher, E. Brewer’s Spent Grain as a Functional Ingredient for Breadsticks. Int. J. Food Sci. Technol. 2012, 47, 1765–1771. [Google Scholar] [CrossRef]
- Ktenioudaki, A.; O’Shea, N.; Gallagher, E. Rheological Properties of Wheat Dough Supplemented with Functional By-Products of Food Processing: Brewer’s Spent Grain and Apple Pomace. J. Food Eng. 2013, 116, 362–368. [Google Scholar] [CrossRef]
- Nagy, M.; Semeniuc, C.A.; Socaci, S.A.; Pop, C.R.; Rotar, A.M.; Sălăgean, C.D.; Tofană, M. Utilization of Brewer’s Spent Grain and Mushrooms in Fortification of Smoked Sausages. Food Sci. Technol. 2017, 37, 315–320. [Google Scholar] [CrossRef]
- Choi, M.S.; Choi, Y.S.; Kim, H.W.; Hwang, K.E.; Song, D.H.; Lee, S.Y.; Kim, C.J. Effects of Replacing Pork Back Fat with Brewer’s Spent Grain Dietary Fiber on Quality Characteristics of Reduced-Fat Chicken Sausages. Food Sci. Anim. Resour. 2014, 34, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Saraiva, B.R.; Anjo, F.A.; Vital, A.C.P.; da Silva, L.H.M.; Ogawa, C.Y.L.; Sato, F.; Coimbra, L.B.; Matumoto-Pintro, P.T. Waste from Brewing (Trub) as a Source of Protein for the Food Industry. Int. J. Food Sci. Technol. 2019, 54, 1247–1255. [Google Scholar] [CrossRef]
- Naibaho, J.; Korzeniowska, M. Brewers’ spent grain in food systems: Processing and final products quality as a function of fiber modification treatment. J. Food Sci. 2021, 86, 1532–1551. [Google Scholar] [CrossRef]
- Coldea, T.E.; Mudura, E.; Rotar, A.M.; Cuibus, L.; Pop, C.R.; Darab, C. Brewer’s Spent Yeast Exploitation in Food Industry. Hop Med. Plants 2017, 25, 94–99. [Google Scholar]
- Martins, Z.E.; Erben, M.; Gallardo, A.E.; Silva, R.; Barbosa, I.; Pinho, O.; Ferreira, I.M.P.L.V.O. Effect of Spent Yeast Fortification on Physical Parameters, Volatiles and Sensorial Characteristics of Home-Made Bread. Int. J. Food. Sci. Technol. 2015, 50, 1855–1863. [Google Scholar] [CrossRef]
- Hassan, G.; Shabbir, M.A.; Ahmad, F.; Pasha, I.; Aslam, N.; Ahmad, T.; Rehman, A.; Manzoor, M.F.; Inam-Ur-Raheem, M.; Aadil, R.M. Cereal Processing Waste, an Environmental Impact and Value Addition Perspectives: A Comprehensive Treatise. Food Chem. 2021, 363, 130352. [Google Scholar] [CrossRef]
- Rada, E.C.; Ragazzi, M.; Fiori, L.; Antolini, D. Bio-drying of grape marc and other biomass: A comparison. Water Sci. Technol. 2009, 60, 1065–1070. [Google Scholar] [CrossRef]
- Fărcaș, A.C.; Socaci, S.A.; Nemeș, S.A.; Salanță, L.C.; Chiș, M.S.; Pop, C.R.; Borșa, A.; Diaconeasa, Z.; Vodnar, D.C. Cereal Waste Valorization through Conventional and Current Extraction Techniques—An Up-to-Date Overview. Foods 2022, 11, 2454. [Google Scholar] [CrossRef] [PubMed]
- Arzami, A.N.; Ho, T.M.; Mikkonen, K.S. Valorization of Cereal By-Product Hemicelluloses: Fractionation and Purity Con-siderations. Food Res. Int. 2022, 151, 110818. [Google Scholar] [CrossRef] [PubMed]
- Qaseem, M.F.; Shaheen, H.; Wu, A.M. Cell Wall Hemicellulose for Sustainable Industrial Utilization. Renew Sustain. Energ. Rev. 2021, 144, 110996. [Google Scholar] [CrossRef]
- Luo, Y.; Li, Z.; Li, X.; Liu, X.; Fan, J.; Clark, J.H.; Hu, C. The Production of Furfural Directly from Hemicellulose in Lignocel-lulosic Biomass: A Review. Catal. Today 2019, 319, 14–24. [Google Scholar] [CrossRef]
- Valoppi, F.; Wang, Y.J.; Alt, G.; Peltonen, L.J.; Mikkonen, K.S. Valorization of Native Soluble and Insoluble Oat Side Streams for Stable Suspensions and Emulsions. Food Bioproc. Technol. 2021, 14, 751–764. [Google Scholar] [CrossRef]
- Herrera-Balandrano, D.D.; Báez-González, J.G.; Carvajal-Millán, E.; Méndez-Zamora, G.; Urías-Orona, V.; Amaya-Guerra, C.A.; Niño-Medina, G. Feruloylated Arabinoxylans from Nixtamalized Maize Bran Byproduct: A Functional Ingredient in Frankfurter Sausages. Molecules 2019, 24, 2056. [Google Scholar] [CrossRef]
- Dapčević-Hadnađev, T.; Hadnađev, M.; Pojić, M. 2-The healthy components of cereal by-products and their functional properties. In Sustainable Recovery and Reutilization of Cereal Processing by-Products; Galanakis, C.M., Ed.; Woodhead Publishing: Sawston, UK, 2018; pp. 27–61. [Google Scholar]
- Ciudad-Mulero, M.; Fernández-Ruiz, V.; Matallana-González, M.C.; Morales, P. Chapter Two—Dietary Fiber Sources and Human Benefits: The Case Study of Cereal and Pseudocereals. In Advances in Food and Nutrition Research; Ferreira, I.C.F.R., Barros, L., Eds.; Academic Press: Cambridge, MA, USA, 2019; Volume 90, pp. 83–134. [Google Scholar]
- Juhnevica-Radenkova, K.; Kviesis, J.; Moreno, D.A.; Seglina, D.; Vallejo, F.; Valdovska, A.; Radenkovs, V. Highly-Efficient Release of Ferulic Acid from Agro-Industrial By-Products via Enzymatic Hydrolysis with Cellulose-Degrading Enzymes: Part I–The Superiority of Hydrolytic Enzymes Versus Conventional Hydrolysis. Foods 2021, 10, 782. [Google Scholar] [CrossRef]
- Sandak, A.; Sandak, J.; Modzelewska, I. Manufacturing fit-for-purpose paper packaging containers with controlled biodegradation rate by optimizing addition of natural fillers. Cellulose 2019, 26, 2673–2688. [Google Scholar] [CrossRef]
- Ravindran, R.; Jaiswal, A.K. Exploitation of food industry waste for high-value products. Trends Biotechnol. 2016, 34, 58–69. [Google Scholar] [CrossRef]
- Bastos, R.; Coelho, E.; Coimbra, M.A. 8-Arabinoxylans from cereal by-products: Insights into structural features, recovery, and applications. In Sustainable Recovery and Reutilization of Cereal Processing By-Products; Galanakis, C.M., Ed.; Woodhead Publishing: Sawston, UK, 2018; pp. 227–251. [Google Scholar]
- Pérez-Flores, J.G.; Contreras-López, E.; Castañeda-Ovando, A.; Pérez-Moreno, F.; Aguilar-Arteaga, K.; Álvarez-Romero, G.A.; Téllez-Jurado, A. Physicochemical characterization of an arabinoxylan-rich fraction from brewers’ spent grain and its application as a release matrix for caffeine. Food Res. Int. 2019, 116, 1020–1030. [Google Scholar] [CrossRef]
- Onipe, O.O.; Jideani, A.I.O.; Beswa, D. Composition and functionality of wheat bran and its application in some cereal food products. Int. J. Food Sci. Technol. 2015, 50, 2509–2518. [Google Scholar] [CrossRef]
- Gil-Chávez, J.; Gurikov, P.; Hu, X.; Meyer, R.; Reynolds, W.; Smirnova, I. Application of novel and technical lignins in food and pharmaceutical industries: Structure-function relationship and current challenges. Biomass Convers. Biorefinery 2021, 11, 2387–2403. [Google Scholar] [CrossRef]
- Yadav, M.P.; Parris, N.; Johnston, D.B.; Onwulata, C.I.; Hicks, K.B. Corn fiber gum and milk protein conjugates with improved emulsion stability. Carbohydr. Polym. 2010, 81, 476–483. [Google Scholar] [CrossRef]
- Zhu, F.; Du, B.; Xu, B. A critical review on production and industrial applications of beta-glucans. Food Hydrocoll. 2016, 52, 275–288. [Google Scholar] [CrossRef]
- Izydorczyk, M.S.; Dexter, J.E. Barley β-glucans and arabinoxylans: Molecular structure, physicochemical properties, and uses in food products—A Review. Food Res. Int. 2008, 41, 850–868. [Google Scholar] [CrossRef]
- Parchami, M.; Ferreira, J.A.; Taherzadeh, M.J. Starch and protein recovery from brewer’s spent grain using hydrothermal pretreatment and their conversion to edible filamentous fungi—A brewery biorefinery concept. Bioresour. Technol. 2021, 337, 125409. [Google Scholar] [CrossRef] [PubMed]
- Johansson, E.V.; Nilsson, A.C.; Östman, E.M.; Björck, I.M.E. Effects of indigestible carbohydrates in barley on glucose metabolism, appetite and voluntary food intake over 16 h in healthy adults. Nutr. J. 2013, 12, 46. [Google Scholar] [CrossRef] [PubMed]
- Apprich, S.; Tirpanalan, Ö.; Hell, J.; Reisinger, M.; Böhmdorfer, S.; Siebenhandl-Ehn, S.; Novalin, S.; Kneifel, W. Wheat Bran-Based Biorefinery 2: Valorization of Products. LWT 2014, 56, 222–231. [Google Scholar] [CrossRef]
- Meriles, S.P.; Penci, M.C.; Curet, S.; Boillereaux, L.; Ribotta, P.D. Effect of microwave and hot air treatment on enzyme activity, oil fraction quality and antioxidant activity of wheat germ. Food Chem. 2022, 386, 132760. [Google Scholar] [CrossRef]
- Zhao, M.; Lan, Y.; Cui, L.; Monono, E.; Rao, J.; Chen, B. Formation, characterization, and potential food application of rice bran wax oleogels: Expeller-pressed corn germ oil versus refined corn oil. Food Chem. 2020, 309, 125704. [Google Scholar] [CrossRef]
- Povilaitis, D.; Venskutonis, P.R. Optimization of supercritical carbon dioxide extraction of rye bran using response surface methodology and evaluation of extract properties. J. Supercrit. Fluids 2015, 100, 194–200. [Google Scholar] [CrossRef]
- Gholami, A.; Mohkam, M.; Rasoul-Amini, S.; Ghasemi, Y. Industrial production of polyhydroxyalkanoates by bacteria: Opportunities and challenges. Minerva Biotecnol. 2016, 28, 59–74. [Google Scholar]
- Sindhu, R.; Silviya, N.; Binod, P.; Pandey, A. Pentose-rich hydrolysate from acid pretreated rice straw as a carbon source for the production of poly-3-hydroxybutyrate. Biochem. Eng. J. 2013, 78, 67–72. [Google Scholar] [CrossRef]
- Obruca, S.; Benesova, P.; Marsalek, L.; Marova, I. Use of lignocellulosic materials for PHA production. Chem. Biochem. Eng. Q. 2015, 29, 135–144. [Google Scholar] [CrossRef]
- Bilo, F.; Pandini, S.; Sartore, L.; Depero, L.E.; Gargiulo, G.; Bonassi, A.; Federici, S.; Bontempi, E. A sustainable bioplastic obtained from rice straw. J. Clean. Prod. 2018, 200, 357–368. [Google Scholar] [CrossRef]
- Souza Filho, P.F.; Zamani, A.; Ferreira, J.A. Valorization of wheat byproducts for the co-production of packaging material and enzymes. Energies 2020, 13, 1300. [Google Scholar] [CrossRef]
- Nikkilä, M. Cereal Waste Valorization through Development of Functional Key Fibres to Innovate in Fibre Packaging Materials. 2020. Available online: http://cordis.europa.eu/project/rcn/110025_en.html (accessed on 24 September 2023).
- Lorite, G.S.; Rocha, J.M.; Miilumäki, N.; Saavalainen, P.; Selkälä, T.; Morales-Cid, G.; Gonçalves, M.P.; Pongrácz, E.; Rocha, C.M.R.; Toth, G. Evaluation of physicochemical/microbial properties and life cycle assessment (LCA) of PLA-based nanocomposite active packaging. LWT Food Sci. Technol. 2016, 75, 305–315. [Google Scholar] [CrossRef]
- Peelman, N.; Ragaert, P.; De Meulenaer, B.; Adons, D.; Peeters, R.; Cardon, L.; Van Impe, F.; Devlieghere, F. Application of bioplastics for food packaging. Trends Food Sci. Technol. 2013, 32, 128–141. [Google Scholar] [CrossRef]
- Djukić-Vuković, A.; Mladenović, D.; Radosavljević, M.; Kocić-Tanackov, S.; Pejin, J.; Mojović, L. Wastes from bioethanol and beer productions as substrates for l(+) lactic acid production—A comparative study. Waste Manag. 2016, 48, 478–482. [Google Scholar] [CrossRef]
- Lech, M.; Labus, K. The Methods of Brewers’ Spent Grain Treatment towards the Recovery of Valuable Ingredients Contained Therein and Comprehensive Management of Its Residues. Chem. Eng. Res. Design 2022, 183, 494–511. [Google Scholar] [CrossRef]
- Alzuwaid, N.T.; Sissons, M.; Laddomada, B.; Fellows, C.M. Nutritional and functional properties of durum wheat bran protein concentrate. Cereal Chem. 2020, 97, 304–315. [Google Scholar] [CrossRef]
- Prandi, B.; Faccini, A.; Lambertini, F.; Bencivenni, M.; Jorba, M.; Van Droogenbroek, B.; Bruggeman, G.; Schöber, J.; Petrusan, J.; Elst, K.; et al. Food wastes from agrifood industry as possible sources of proteins: A detailed molecular view on the composition of the nitrogen fraction, amino acid profile and racemisation degree of 39 food waste streams. Food Chem. 2019, 286, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.-X.; Zhou, H.-M.; Qian, H.-F. Proteins Extracted from Defatted Wheat Germ: Nutritional and Structural Properties. Cereal Chem. 2006, 83, 69–75. [Google Scholar] [CrossRef]
- Espinosa-Pardo, F.A.; Savoire, R.; Subra-Paternault, P.; Harscoat-Schiavo, C. Oil and protein recovery from corn germ: Extraction yield, composition and protein functionality. Food Bioprod. Process. 2020, 120, 131–142. [Google Scholar] [CrossRef]
- Guan, X.; Yao, H. Optimization of Viscozyme L-assisted extraction of oat bran protein using response surface methodology. Food Chem. 2008, 106, 345–351. [Google Scholar] [CrossRef]
- Phongthai, S.; Lim, S.-T.; Rawdkuen, S. Optimization of microwave-assisted extraction of rice bran protein and its hydrolysates properties. J. Cereal Sci. 2016, 70, 146–154. [Google Scholar] [CrossRef]
- Connolly, A.; Piggott, C.O.; FitzGerald, R.J. Characterisation of protein-rich isolates and antioxidative phenolic extracts from pale and black brewers’ spent grain. Int. J. Food Sci. Technol. 2013, 48, 1670–1681. [Google Scholar] [CrossRef]
- Li, W.; Yang, H.; Coldea, T.E.; Zhao, H. Modification of structural and functional characteristics of brewer’s spent grain protein by ultrasound assisted extraction. LWT 2021, 139, 110582. [Google Scholar] [CrossRef]
- Majzoobi, M.; Ghiasi, F.; Farahnaky, A. Physicochemical assessment of fresh chilled dairy dessert supplemented with wheat germ. Int. J. Food Sci. Technol. 2016, 51, 78–86. [Google Scholar] [CrossRef]
- Petrović, J.; Fišteš, A.; Rakić, D.; Pajin, B.; Lončarević, I.; Šubarić, D. Effect of defatted wheat germ content and its particle size on the rheological and textural properties of the cookie dough. J. Texture Stud. 2015, 46, 374–384. [Google Scholar] [CrossRef]
- Youssef, H.M.K.E. Assessment of gross chemical composition, mineral composition, vitamin composition and amino acids composition of wheat biscuits and wheat germ fortified biscuits. Food Nutr. Sci. 2015, 6, 845–853. [Google Scholar] [CrossRef]
- Călinoiu, L.F.; Vodnar, D.C. Thermal processing for the release of phenolic compounds from wheat and oat bran. Biomolecules 2019, 10, 21. [Google Scholar] [CrossRef] [PubMed]
- Jackowski, M.; Niedźwiecki, Ł.; Jagiełło, K.; Uchańska, O.; Trusek, A. Brewer’s Spent Grains—Valuable Beer Industry By-Product. Biomolecules 2020, 10, 1669. [Google Scholar] [CrossRef] [PubMed]
- Görgüç, A.; Özer, P.; Yılmaz, F.M. Microwave-assisted enzymatic extraction of plant protein with antioxidant compounds from the food waste sesame bran: Comparative optimization study and identification of metabolomics using LC/Q-TOF/MS. J. Food Process. Preserv. 2020, 44, e14304. [Google Scholar] [CrossRef]
- Bacha, E.G. Response Surface Methodology Modeling, Experimental Validation, and Optimization of Acid Hydrolysis Process Parameters for Nanocellulose Extraction. S Afr. J. Chem. Eng. 2022, 40, 176–185. [Google Scholar] [CrossRef]
- Ideia, P.; Sousa-Ferreira, I.; Castilho, P.C. A Novel and Simpler Alkaline Hydrolysis Methodology for Extraction of Ferulic Acid from Brewer’s Spent Grain and Its (Partial) Purification through Adsorption in a Synthetic Resin. Foods 2020, 9, 600. [Google Scholar] [CrossRef]
- Macias-Garbett, R.; Serna-Hernández, S.O.; Sosa-Hernández, J.E.; Parra-Saldívar, R. Phenolic Compounds From Brewer’s Spent Grains: Toward Green Recovery Methods and Applications in the Cosmetic Industry. Front. Sustain. Food Syst. 2021, 5, 196. [Google Scholar] [CrossRef]
- Guido, L.F.; Moreira, M.M. Techniques for Extraction of Brewer’s Spent Grain Polyphenols: A Review. Food Bioprocess Technol. 2017, 10, 1192–1209. [Google Scholar] [CrossRef]
- Rebolleda, S.; José, M.L.G.S.; Sanz, M.T.; Beltrán, S.; Solaesa, Á.G. Bioactive Compounds of a Wheat Bran Oily Extract Obtained with Supercritical Carbon Dioxide. Foods 2020, 9, 625. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, R.; Liu, C. Extraction and Antioxidant Activity of Phenolic Compounds from Wheat Bran Treated by Steam Explosion. Trop. J. Pharm. Res. 2015, 14, 1857–1863. [Google Scholar] [CrossRef]
- Radenkovs, V.; Juhnevica-Radenkova, K.; Górnaś, P.; Seglina, D. Non-Waste Technology through the Enzymatic Hydrolysis of Agro-Industrial by-Products. Trends Food Sci. Technol. 2018, 77, 64–76. [Google Scholar] [CrossRef]
- Călinoiu, L.F.; Cătoi, A.F.; Vodnar, D.C. Solid-State Yeast Fermented Wheat and Oat Bran as A Route for Delivery of Anti-oxidants. Antioxidants 2019, 8, 372. [Google Scholar] [CrossRef] [PubMed]
- Dynkowska, W.M. Rye (Secale Cereale L.) Phenolic compounds as health-related factors. Plant Breed Seed Sci. 2019, 79, 9–24. [Google Scholar] [CrossRef]
- Schmidt, C.G.; Cerqueira, M.A.; Vicente, A.A.; Teixeira, J.A.; Furlong, E.B. Rice bran protein-based films enriched by phenolic extract of fermented rice bran and montmorillonite clay. CyTA J. Food 2015, 13, 204–212. [Google Scholar] [CrossRef]
- Wang, N.; Saleh, A.S.M.; Gao, Y.; Wang, P.; Duan, Y.; Xiao, Z. Effect of protein aggregates on properties and structure of rice bran protein-based film at different pH. J. Food Sci. Technol. 2019, 56, 5116–5127. [Google Scholar] [CrossRef]
- Fritsch, C.; Staebler, A.; Happel, A.; Márquez, M.A.C.; Aguiló-Aguayo, I.; Abadias, M.; Gallur, M.; Cigognini, I.M.; Montanari, A.; López, M.J.; et al. Processing, valorization and application of bio-waste derived compounds from potato, tomato, olive and cereals: A review. Sustainability 2017, 9, 1492. [Google Scholar] [CrossRef]
Journal 1 | Documents/Year | Citation |
---|---|---|
Waste and Biomass Valorization | 18 | 200 |
Journal of Cleaner Production | 15 | 410 |
Bioresource Technology | 9 | 1800 |
Waste Management | 8 | 172 |
Sustainability | 8 | 59 |
Animals | 8 | 133 |
Foods | 7 | 57 |
Applied Sciences—Basel | 7 | 48 |
Food Chemistry | 6 | 273 |
Trends in Food Science and Technology | 6 | 312 |
Molecules | 6 | 49 |
Journal of the Institute of Brewing | 5 | 338 |
Process Biochemistry | 5 | 203 |
Animal Feed Science and Technology | 5 | 220 |
Materials | 5 | 30 |
Resources Conservation and Recycling | 5 | 166 |
Grain By-Product/Waste | Carbohydrate Fraction | Food Packaging Applications | Source |
---|---|---|---|
Wheat bran Wheat straw Rice straw Oat husk | Cellulose | PHA *, PHB ** Paper sheet Reinforcing agent for biocomposites in packaging Edible film | [26,121,122,123,124] |
Wheat bran | Lactic acid | Packaging, films, and edible coatings with PLA *** | [26,125,126,127,128] |
Grain By-Product/Waste | Non-Carbohydrate Fraction | Food Industry Applications | Source |
---|---|---|---|
BSG * Wheat bran concentrate Wheat germ (raw, defatted, thermally treated) Defatted corn germ Defatted oat bran Defatted Rice bran Malted barley germs | Protein | Texture improvers and food additives Enriching food products showed excellent functional properties in terms of high solubility, good water, and fat absorption capacity Good vegetable protein supplement for cereal-based diets Strong antioxidant activity in food | [29,60,61,62,63,64,129,130,131,132,133,134,135,136,137,138,139,140] |
Cereal (wheat, rice, oat) bran | Phenolic compounds | Functional food ingredient Additives to extend the shelf life of food Flavoring | [96,116,141] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danciu, C.-A.; Tulbure, A.; Stanciu, M.-A.; Antonie, I.; Capatana, C.; Zerbeș, M.V.; Giurea, R.; Rada, E.C. Overview of the Sustainable Valorization of Using Waste and By-Products in Grain Processing. Foods 2023, 12, 3770. https://doi.org/10.3390/foods12203770
Danciu C-A, Tulbure A, Stanciu M-A, Antonie I, Capatana C, Zerbeș MV, Giurea R, Rada EC. Overview of the Sustainable Valorization of Using Waste and By-Products in Grain Processing. Foods. 2023; 12(20):3770. https://doi.org/10.3390/foods12203770
Chicago/Turabian StyleDanciu, Cristina-Anca, Anca Tulbure, Mirela-Aurora Stanciu, Iuliana Antonie, Ciprian Capatana, Mihai Victor Zerbeș, Ramona Giurea, and Elena Cristina Rada. 2023. "Overview of the Sustainable Valorization of Using Waste and By-Products in Grain Processing" Foods 12, no. 20: 3770. https://doi.org/10.3390/foods12203770
APA StyleDanciu, C.-A., Tulbure, A., Stanciu, M.-A., Antonie, I., Capatana, C., Zerbeș, M. V., Giurea, R., & Rada, E. C. (2023). Overview of the Sustainable Valorization of Using Waste and By-Products in Grain Processing. Foods, 12(20), 3770. https://doi.org/10.3390/foods12203770