Wild Garlic (Allium ursinum) Preparations in the Design of Novel Functional Pasta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wild Garlic (WG) Preparations
2.1.1. WG Powder
2.1.2. WG Extract
2.1.3. WG Extract Encapsulation
2.2. Pasta Preparation
2.3. Determination of Cooking Properties
2.4. Analysis of Phenolic Compounds
2.4.1. Extraction of Phenolic Compounds
2.4.2. Determination of Total Phenolic Content
2.4.3. Determination of Total Flavonoid Content
2.5. Determination of Antioxidant Activity
2.5.1. DPPH Radical Scavenging Assay
2.5.2. Reducing Power
2.5.3. ABTS Radical Scavenging Assay
2.6. Determination of Minerals
2.7. Texture Measurements
2.8. Colour Determination
2.9. Sensory Evaluation
2.10. Statistical Analysis
Calculation of True Retention Index
3. Results and Discussion
3.1. Bioactive Compounds and Antioxidative Activity of Pasta Enriched with WG
3.1.1. Phenolic and Flavonoid Compounds
3.1.2. Retention of Bioactive Compounds and DPPH upon Pasta Cooking
3.2. Mineral Profile of Pasta Enriched with Wild Garlic
3.2.1. Mineral Profile
3.2.2. Retention of Minerals upon Pasta Cooking
3.3. Cooking Properties of WG-Enriched Pasta
3.4. Colour of Pasta Enriched with WG
3.5. Sensory Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dziki, D. Current trends in enrichment of wheat pasta: Quality, nutritional value and antioxidant properties. Processes 2021, 9, 1280. [Google Scholar] [CrossRef]
- Mercier, S.; Moresoli, C.; Mondor, M.; Villeneuve, S.; Marcos, B. A meta-analysis of enriched pasta: What are the effects of enrichment and process specifications on the quality attributes of pasta. Compr. Rev. Food Sci. Food Saf. 2016, 15, 685–704. [Google Scholar] [CrossRef] [PubMed]
- Akin, C.; Schnell, P.G. Process for the production of high-protein pasta utilizing dried yeast and the resulting product. Patent No. United States Patent 3968258, 6 July 1976. [Google Scholar]
- Niturkar, P.; Doke, V.; Jogelkar, N.; Rotte, S. Studies on the formulation and quality attributes of milk protein based vermicelli (Seviah) for Kheer-like product. J. Food Sci. Technol. 1992, 29, 33–35. [Google Scholar]
- Alireza Sadeghi, M.; Bhagya, S. Quality characterization of pasta enriched with mustard protein isolate. J. Food Sci. 2008, 74, S229–S237. [Google Scholar] [CrossRef] [PubMed]
- Surasani, V.; Singh, A.; Gupta, A.; Sharma, S. Functionality and cooking characteristics of pasta supplemented with protein isolate from pangas processing waste. LWT 2019, 111, 443–448. [Google Scholar] [CrossRef]
- Boudalia, S.; Gueroui, Y.; Boumaza, B.; Bousbia, A.; Benada, M.; Leksir, C.; Chemmam, S. Evaluation of physicochemical properties and sensory qualities of pasta enriched with freeze-dried sweet whey. Sci. Agric. Bohem. 2020, 51, 75–85. [Google Scholar] [CrossRef]
- Sabanis, D.; Makri, E.; Doxastakis, G. Effect of durum flour enrichment with chickpea flour on the characteristics of dough and lasagne. J. Sci. Food Agric. 2006, 86, 1938–1944. [Google Scholar] [CrossRef]
- Wood, J. Texture, processing and organoleptic properties of chickpea fortified spaghetti with insights to the underlying mechanisms of traditional durum pasta quality. J. Cereal Sci. 2009, 49, 128–133. [Google Scholar] [CrossRef]
- Gallegos-Infante, J.; Rocha-Guzman, N.; Gonzales-Laredo, R.; Ochoa-Martínez, L.; Corzo, N.; Bello-Perez, L.; Medina-Torres, L.; Peralta-Alvarez, L. Quality of spaghetti pasta containing Mexican common bean flour (Phaseolus vulgaris L.). Food Chem. 2010, 119, 1544–1549. [Google Scholar] [CrossRef]
- Villeneuve, S.; Des Marchais, L.-P.; Gauvreau, V.; Mercier, S.; Do, C.; Arcand, Y. Effect of flaxseed processing on engineering properties and fatty acid profiles of pasta. Food Bioprod. Process. 2013, 91, 83–91. [Google Scholar] [CrossRef]
- Filip, S.; Vidrih, R. Amino acid composition of protein-enriched dried pasta: Is it suitable for a low-carbohydrate diet? Food Technol. Biotechnol. 2015, 53, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Brennan, C.; Kuri, V.; Tudorica, C. Inulin-enriched pasta: Effects on textural properties and starch degradation. Food Chem. 2004, 86, 189–193. [Google Scholar] [CrossRef]
- Aravind, N.; Sissons, M.; Egan, N.; Fellows, C.; Blazek, J.; Gilbert, E. Effect of beta-glucan on technological, sensory, and structural properties of durum wheat pasta. Cereal Chem. 2012, 89, 84–93. [Google Scholar] [CrossRef]
- Zouari, N.; Abid, M.; Fakhfakh, N.; Ayadi, M.; Zorgui, L.; Ayadi, M.; Attia, H. Blue-green algae (Arthrospira platensis) as an ingredient in pasta: Free radical scavenging activity, sensory and cooking characteristics evaluation. Int. J. Food Sci. Nutr. 2011, 62, 811–813. [Google Scholar] [CrossRef] [PubMed]
- Fradique, M.; Batista, A.; Nunes, M.; Gouveia, L.; Bandarra, N.; Raymundo, A. Isochrysis galbana and Diacronema vlkianum biomass incorporation in pasta products as PUFA’a source. LWT 2013, 50, 312–319. [Google Scholar] [CrossRef]
- Fradinho, P.; Raymundo, A.; Sousa, I.; Domínguez, H.; Torres, M.D. Edible brown seaweed in gluten-free pasta: Technological and nutritional evaluation. Foods 2019, 8, 622. [Google Scholar] [CrossRef]
- Wang, J.; Brennan, M.; Brennan, C.; Serventi, L. Effect of vegetable juice, puree, and pomace on chemical and technological quality of fresh pasta. Foods 2021, 10, 1931. [Google Scholar] [CrossRef]
- Dag, D.; Kilercioglu, M.; Oztop, M. Physical and chemical characteristics of encapsulated goldenberry (Physalis peruviana L.) juice powder. LWT 2017, 83, 86–94. [Google Scholar] [CrossRef]
- Sun-Waterhouse, D.; Jin, D.; Waterhouse, G. Effect of adding elderberry juice concentrate on the quality attributes, polyphenol contents and antioxidant activity of three fibre-enriched pastas. Food Res. Int. 2013, 54, 781–789. [Google Scholar] [CrossRef]
- Pillai, D.; Prabhasankar, P.; Jena, B.; Anandharamakrishnan, C. Microencapsulation of Garcinia cowa fruit extract and effect of its use on pasta process and quality. Int. J. Food Prop. 2012, 15, 590–604. [Google Scholar] [CrossRef]
- Desai, A.; Brennan, M.; Brennan, C. Effect of fortification with fish (Pseudophycis bachus) powder on nutritional quality of durum wheat pasta. Foods 2018, 7, 62. [Google Scholar] [CrossRef]
- Spinelli, S.; Padalino, L.; Costa, C.; Del Nobile, C.; Conte, A. Food by-products to fortified pasta: A new approach for optimization. J. Clean. Prod. 2019, 215, 985–991. [Google Scholar] [CrossRef]
- Wu, V.; Hareland, G.; Warner, K. Protein-enriched spaghetti fortified with corn gluten meal. J. Agric. Food Chem. 2001, 49, 3906–3910. [Google Scholar] [CrossRef] [PubMed]
- Padalino, L.; Costa, C.; Del Nobile, M.; Conte, A. Extract of Salicornia europaea in fresh pasta to enhance phenolic compounds and antioxidant activity. Int. J. Food Sci. Technol. 2019, 54, 3051–3057. [Google Scholar] [CrossRef]
- Lucisano, M.; Casiraghi, E.; Barbieri, R. Use of defatted corn germ flour in pasta products. J. Food Sci. 1984, 49, 482–485. [Google Scholar] [CrossRef]
- Bouacida, S.; Amira, A.; Koubaier, H.; Blecker, C.; Bouzouita, N. Chemical composition, cooking quality, texture and consumer acceptance of pasta with Eruca vesicaria leaves. Int. J. Food Sci. Technol. 2017, 52, 2248–2255. [Google Scholar] [CrossRef]
- Sęczyk, Ł.; Świeca, M.; Gawlik-Dziki, U.; Luty, M.; Czyż, J. Effect of fortification with parsley (Petroselinum crispum Mill.) leaves on the nutraceutical and nutritional quality of wheat pasta. Food Chem. 2016, 190, 419–428. [Google Scholar] [CrossRef]
- Alemayehu, D.; Desse, G.; Abegaz, K.; Desalegn, B.; Getahun, D. Proximate, mineral composition and sensory acceptability of home-made noodles from stinging nettle (Urtica simensis) leaves and wheat flour blends. Int. J. Food Sci. Nutr. Eng. 2016, 6, 55–61. [Google Scholar]
- Boroski, M.; de Aguiar, A.; Schuelter Boeing, J.; Rotta, E.; Wibby, C.; Bonafé, E.; de Souza, N.E.; Visentainer, J. Enhancement of pasta antioxidant activity with oregano and carrot leaf. Food Chem. 2011, 125, 696–700. [Google Scholar] [CrossRef]
- Borneo, R.; Aguirre, A. Chemical composition, cooking quality, and consumer acceptance of pasta made with dried amaranth leaves flour. LWT 2008, 125, 1748–1751. [Google Scholar] [CrossRef]
- Vidović, S.; Tomšik, A.; Vladić, J.; Jokić, S.; Aladić, K.; Pastor, K.; Jerković, I. Supercritical carbon dioxide extraction of Allium ursinum: Impact of temperature and pressure on the extracts chemical profile. Chem. Biodiver. 2021, 18, e2100058. [Google Scholar] [CrossRef] [PubMed]
- Đurđević, L.; Dinić, A.; Pavlović, P.; Mitrović, M.; Karadžić, B.; Tešević, V. Allelopathic potential of Allium ursinum L. Biochem. Syst. Ecol. 2004, 32, 533–544. [Google Scholar] [CrossRef]
- Shahrarabijan, M. Spear thistle (Cirsium vulgare L.) and ramsons (Allium ursinum L.). Pharmacogn. Commun. 2021, 11, 168–171. [Google Scholar] [CrossRef]
- Tomšik, A.; Pavlić, B.; Vladić, J.; Cindrić, M.; Jovanov, P.; Sakač, M.; Vidović, S. Subcritical water extraction of wild garlic (Allium ursinum L.) and process optimization by response surface metodology. J. Supercrit. Fluids 2017, 128, 79–88. [Google Scholar] [CrossRef]
- Tomšik, A. Drying and Extraction of the Wild Garlic Leaves (Allium ursinum L.) in Order to Obtain Functional Products with Bioactive Potential. Ph.D. Thesis, University of Novi Sad, Novi Sad, Serbia, 2018. [In Serbian]. Available online: https://nardus.mpn.gov.rs/handle/123456789/10384 (accessed on 15 July 2022).
- Jambrec, D.; Sakač, M.; Mišan, A.; Mandić, A.; Pestorić, M. Effect of autoclaving and cooking on phenolic compounds in buckwheat-enriched whole wheat tagliatelle. J. Cereal Sci. 2015, 66, 1–9. [Google Scholar] [CrossRef]
- Tumbas Šaponjac, V.; Ćetković, G.; Čanadanović-Brunet, J.; Pajin, B.; Đilas, S.; Petrović, J.; Lončarević, I.; Stajčić, S.; Vulić, J. Sour cherry pomace extract encapsulated in whey and soy proteins: Incorporation in cookies. Food Chem. 2016, 207, 27–33. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on products of browning reaction (Antioxidative activities of products of browning reaction prepared from glucosamine). Jap. J. Nutr. Diet. 1986, 44, 307–315. [Google Scholar] [CrossRef]
- Tumbas Šaponjac, V.; Gironés-Vilaplana, A.; Djilas, S.; Mena, P.; Ćetković, G.; Moreno, D.; Čanadanović-Brunet, J.; Stajčić, S.; Krunić, M. Anthocyanin profiles and biological properties of cranberry (Rubus spp.) press residues. J. Sci. Food Agric. 2014, 94, 2393–2400. [Google Scholar] [CrossRef]
- SRPS EN ISO 6869/2008; Animal Feeding Stuffs-Determination of the Contents of Calcium, Copper, Iron, Magnesium, Manganese, Sodium and Zinc-Method Using Atomic Absorption Spectrometry. Institute for Standardization of Serbia: Belgrade, Serbia, 2008.
- ISO 8589; International Standard. Sensory Analysis-General Guidance for the Design of Test Rooms (Vol. 125). ISO: Geneva, Switzerland, 2010.
- Murphy, E.; Criner, P.; Gray, B. Methods for calculating retentions of nutrients in cooked foods. J. Agric. Food Chem. 1975, 23, 1153–1157. [Google Scholar] [CrossRef]
- Vlase, L.; Parvu, M.; Parvu, E.; Toiu, A. Phytochemical analysis of Allium fistulosum L. and A. ursinum L. Dig. J. Nanomat. Biostruct. (DJNB) 2013, 8, 457–467. [Google Scholar]
- Nicoletti, I.; Martini, D.; De Rossi, A.; Taddei, F.; D’Egidio, M.; Corradini, D. Identification and quantification of soluble free, soluble conjugated, and insoluble bound phenolic acids in durum wheat (Triticum turgidum L. var. durum) and derived products by RP-HPLC on a semimicro separation scale. J. Agric. Food Chem. 2013, 61, 11800–11807. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, S.; Ge, S.; Lin, S. Review of distribution, extraction methods, and health benefits of bound phenolics in food plants. J. Agric. Food Chem. 2020, 68, 3330–3343. [Google Scholar] [CrossRef] [PubMed]
- Oszmiański, J.; Kolniak-Ostek, J.; Wojdyło, A. Characterization and content of flavonol derivatives of Allium ursinum L. plant. J. Agric. Food Chem. 2013, 61, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Avaltroni, F.; Bouqueerand, P.; Normand, V. Maltodextrin molecular weight distribution influence on the glass transition temperature and viscosity in aqueous solutions. Carbohydr. Polym. 2004, 58, 323–334. [Google Scholar] [CrossRef]
- Carneiro, H.; Tonon, R.; Grosso, C.; Hubinger, M. Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. J. Food Eng. 2013, 115, 443–451. [Google Scholar] [CrossRef]
- Rocchetti, G.; Lucini, L.; Chiodelli, G.; Giuberti, G.; Montesano, D.; Masoero, F.; Trevisan, M. Impact of boiling on free and bound phenolic profile and antioxidant activity of commercial gluten-free pasta. Food Res. Int. 2017, 100, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Yousif, A.; Johnson, S.; Gamlath, S. Effect of sorghum flour addition on resistant starch content, phenolic profile and antioxidant capacity of durum wheat pasta. Food Res. Int. 2013, 54, 578–586. [Google Scholar] [CrossRef]
- Prabhasankar, P.; Ganesan, P.; Bhaskar, N.; Hirose, A.; Stephen, N.; Gowda, L.; Hosokawa, M.; Miyashita, K. Edible Japanese seaweed, wakame (Undaria pinnatifida) as an ingredient in pasta: Chemical, functional and structural evaluation. Food Chem. 2009, 115, 501–508. [Google Scholar] [CrossRef]
- Verardo, V.; Arráez-Román, D.; Segura-Carretero, A.; Marconi, E.; Fernandez-Gutiérrez, A.; Caboni, M. Determination of free and bound phenolic compounds in buckwheat spaghetti by RP-HPLC-ESI-TOF-MS: Effect of thermal processing from farm to fork. J. Agric. Food Chem. 2011, 59, 7700–7707. [Google Scholar] [CrossRef]
- Hirawan, R.; Ser, W.; Arntfield, S.; Beta, T. Antioxidant properties of commercial, regular-and whole-wheat spaghetti. Food Chem. 2010, 119, 258–264. [Google Scholar] [CrossRef]
- Bustos, M.; Perez, G.; Leon, A. Structure and quality of pasta enriched with functional ingredients. RSC Adv. 2015, 5, 30780–30792. [Google Scholar] [CrossRef]
- Ranhotra, G.; Gelroth, J.; Novak, F.; Bock, M. Retention of selected minerals in pasta products. Nutr. Rep. Int. 1982, 26, 821. [Google Scholar]
- Ranhotra, G.; Gelroth, J.; Novak, F.; Bock, M.; Matthews, R. Retention of selected minerals in enriched pasta products during cooking. Cereal Chem. 1985, 62, 117–119. [Google Scholar]
- Yaseen, A. Effect of processing conditions and cooking on retention of minerals in macaroni. Nahrung 1993, 5, 449–455. [Google Scholar] [CrossRef]
- Jachimowicz, K.; Winiarska-Mieczan, A.; Baranowska-Wójcik, E.; Bakowski, M. Pasta as a source of minerals in the diets of Poles; Effect of culinary processing of pasta on the content of minerals. Foods 2021, 10, 2131. [Google Scholar] [CrossRef]
- Bianchi, F.; Tolve, R.; Rainero, G.; Bordiga, M.; Brennan, C.; Simonato, B. Technological, nutritional and sensory properties of pasta fortified with agro-industrial by-products: A review. Int. J. Food Sci. Technol. 2021, 56, 4356–4366. [Google Scholar] [CrossRef]
- Dick, J.; Youngs, V. Evaluation of durum wheat semolina and pasta in the United States. In Durum Wheat, Chemistry and Technology; Lintas, F., Ed.; AACC Press: St. Paul, MN, USA, 1988; pp. 238–248. [Google Scholar]
- Nilusha, R.; Jayasinghe, J.; Perera, O.; Perera, P. Development of pasta products with nonconventional ingredients and their effect on selected quality characteristics. A brief overview. Int. J. Food Sci. 2019, 2019, 6750726. [Google Scholar] [CrossRef]
- Girard, A.; Awika, J. Effects of edible plant polyphenols on gluten protein functionality and potential applications. Comp. Rev. Food Sci. Food Safe. 2020, 194, 2164–2199. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, J.; Zheng, B.; Lu, Q.; Chen, L. Effects of matcha and its active components on the structure and rheological properties of gluten. LWT 2020, 124, 109197. [Google Scholar] [CrossRef]
- Snelders, J.; Dornez, E.; Delcour, J.; Courtin, C. Impact of wheat bran derived arabinoxylanoligosaccharides and associated ferulic acid on dough and bread properties. J. Agric. Food Chem. 2014, 62, 7190–7199. [Google Scholar] [CrossRef] [PubMed]
- Han, C.-W.; Meng, M.; Zhang, H.-Z.; Li, M.; Sun, Q.-J. Progressive study of the effect of superfine green tea, solube tea, and tea polyphenols on the physico-chemical and structural properties of wheat gluten in noodle system. Food Chem. 2020, 308, 125676. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Wu, Y.; Hou, G.; Du, X. Evaluation of different tea extracts on dough, textural, and functional properties of dry Chinese white salted noodle. LWT 2019, 101, 456–462. [Google Scholar] [CrossRef]
- Kolarič, L.; Minarovičová, L.; Lauková, M.; Karovičová, J.; Kohajdová, Z. Pasta noodles enriched with sweet potato starch: Impact on quality parameters and resistant starch content. J. Text. Stud. 2020, 51, 464–474. [Google Scholar] [CrossRef]
- Charles, A.; Huang, T.; Lai, P.; Chen, C.; Lee, P.; Chang, Y. Study of wheat flour-cassava starch composite mix and the function of cassava mucilage in Chinese noodles. Food Hydrocol. 2007, 21, 368–378. [Google Scholar] [CrossRef]
- Iuga, M.; Mironeasa, S. Potential of grape byproducts as functional ingredients in baked goods and pasta. Compr. Rev. Food Sci. Food Safe. 2020, 19, 2473–2505. [Google Scholar] [CrossRef]
- Lee, C.; Kim, Y.; Ko, S. Stability and sensory property of microencapsulated garlic powder. Food Eng. Prog. 2015, 19, 291–297. [Google Scholar] [CrossRef]
Sensory Attributes | Descriptors with Abbreviation | Definition with End Anchors |
---|---|---|
Appearance | Colour nuance (uncooked pasta) (Colour_UC) | The nuance of colour from yellow to green. |
Colour nuance (cooked pasta) (Colour_C) | ||
Odour | Overall odour intensity of uncooked pasta (Odour_UC) | The overall intensity of odour associated with cereals and added raw material. (none–intensive) |
Overall odour intensity of cooked pasta (Odour_C) | The overall intensity of odour associated with cereals and added raw material topped with boiling water. (none–intensive) | |
Garlic odour intensity (O_garlic_C) | The intensity of odour associated with fresh wild garlic. (none–intensive) | |
Green odour intensity (O_green_C) | The intensity of odour associated with green sprouts or something unripe. (none–intensive) | |
Taste | Bitterness | The intensity of bitter taste associated with caffeine solution. (none–intensive) |
Saltiness | The intensity of savoury taste associated with sodium chloride solution. (none–intensive) | |
Sweetness | The intensity of sweet taste associated with sucrose solution. (none–intensive) | |
Sourness | The intensity of sour taste associated with citric acid solution. (none–intensive) | |
Flavour | Overall flavour intensity (F_overall_C) | Overall intensity of flavour associated with cereals and added raw material topped with boiling water. (none–intensive) |
Garlic flavour intensity (F_garlic_C) | The intensity of flavour associated with wild garlic assessed during mastication. (none–intensive) | |
Green flavour intensity (F_green_C) | The intensity of flavour associated with green sprouts or unripe fruit assessed during mastication. (none–intensive) | |
Flavour persistence (F_persistence_C) | The persistence of flavour perceived after pasta swallowing measured in seconds. (short–long) | |
Texture | Fracturability (uncooked pasta) | Capability of being bent and returning to original structure of the pasta strands. (not at all–very) |
Hardness | Force required biting down on pasta strands between the molars. (not at all firm–very firm) | |
Adhesiveness | Degree to which pasta strands adhering to the molars during mastication. (not at all adhesive–very adhesive) | |
Quality | Overall quality | The overall assessment that takes into consideration all the components perceived. (low–high) |
Pasta Types | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Control | Powdered WG | Encapsulated WG Extract | WG Extract | |||||||
Low | Mid | High | Low | Mid | High | Low | Mid | High | ||
Phenolic compounds (mg GAE/g d.m.) | ||||||||||
Total | 1.06 ± 0.001 a | 1.34 ± 0.006 b | 2.04 ± 0.009 e | 2.15 ± 0.007 f | 1.70 ± 0.006 c | 2.21 ± 0.002 g | 2.46 ± 0.010 h | 1.86 ± 0.012 d | 2.22 ± 0.002 g | 2.61 ± 0.012 i |
Free | 0.44 ± 0.005 a | 0.74 ± 0.005 b | 1.28 ± 0.007 g | 1.33 ± 0.003 h | 1.03 ± 0.004 f | 1.33 ± 0.000 h | 1.40 ± 0.005 i | 0.76 ± 0.007 c | 0.85 ± 0.002 d | 0.92 ± 0.003 e |
Bound | 0.62 ± 0.005 a | 0.60 ± 0.001 a | 0.76 ± 0.001 b | 0.82 ± 0.004 b, c | 0.67 ± 0.002 a | 0.88 ± 0.002 c | 1.06 ± 0.005 d | 1.10 ± 0.028 d | 1.38 ± 0.099 e | 1.71 ± 0.010 f |
Flavonoids (mg RU/g d.m.) | ||||||||||
Total | 0.05 ± 0.000 b | 0.12 ± 0.001 f | 0.18 ± 0.001 g | 0.22 ± 0.004 f | 0.08 ± 0.000 d | 0.20 ± 0.002 h | 0.23 ± 0.003 i | 0.04 ± 0.002 a | 0.07 ± 0.000 c | 0.10 ± 0.000 e |
Free | 0.05 ± 0.000 b | 0.11 ± 0.000 f | 0.17 ± 0.000 g | 0.20 ± 0.001 i | 0.08 ± 0.000 d | 0.19 ± 0.002 h | 0.22 ± 0.003 j | 0.04 ± 0.002 a | 0.06 ± 0.000 c | 0.09 ± 0.000 e |
Bound | 0.004 ± 0.000 a | 0.012 ± 0.000 d,e | 0.016 ± 0.001 e | 0.021 ± 0.000 f | 0.007 ± 0.000 a–c | 0.012 ± 0.000 c–e | 0.012 ± 0.000 d,e | 0.005 ± 0.000 a,b | 0.006 ± 0.021 a,b | 0.010 ± 0.000 b–d |
Pasta Formulation | Enrichment Level | K | Ca | Mg | Fe | Zn | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
(mg/kg d.m.) | TRI (%) | (mg/kg d.m.) | TRI (%) | (mg/kg d.m.) | TRI (%) | (mg/kg d.m.) | TRI (%) | (mg/kg d.m.) | TRI (%) | ||
Control | 0 | 403.51 ± 0.05 a | 46.8 ± 0.3 f | 306.02 ± 15.82 a–c | 97.4 ± 0.8 b | 409.82 ± 4.17 b | 98.0 ± 0.6 d | 15.09 ± 0.08 a | 87.8 ± 1.2 a | 10.24 ± 0.42 a | 102.8 ± 1.6 c |
Powdered WG | Low | 964.85 ± 7.98 e | 48.7 ± 1.0 f | 345.02 ± 7.96 d,e | 104.2 ± 2.2 e | 475.02 ± 4.40 f | 94.0 ± 2.6 c | 27.13 ± 0.79 d | 91.3 ± 6.3 a–c | 13.08 ± 0.11 b,c | 83.7 ± 1.9 a |
Mid | 1081.81 ± 6.09 f | 32.7 ± 0.2 c,d | 369.22 ± 4.90 e | 101.7 ± 0.7 c–e | 508.26 ± 1.18 h | 89.9 ± 0.8 b | 29.54 ± 0.49 e | 94.9 ± 2.7 a–c | 12.67 ± 0.27 b | 92.7 ± 2.8 b | |
High | 1210.59 ± 19.48 g | 32.6 ± 0.4 c,d | 367.77 ± 0.14 e | 98.58 ± 0.4 b,c | 503.12 ± 3.42 g | 87.2 ± 0.3 b | 32.29 ± 0.36 f | 98.3 ± 1.0 c | 13.14 ± 0.41 b,c | 95.4 ± 4.4 b | |
Encapsulated WG | Low | 552.68 ± 4.56 b,c | 33.7 ± 0.7 d | 303.98 ± 21.14 a | 91.0 ± 0.6 a | 393.90 ± 3.78 a | 87.8 ± 1.1 b | 21.13 ± 0.27 b | 88.9 ± 1.4 a,b | 14.04 ± 0.22 c,d | 103.9 ± 0.8 c |
Mid | 576.56 ± 15.98 c | 24.5 ± 0.3 a | 328.13 ± 2.95 a,b | 96.2 ± 0.8 b | 401.94 ± 4.05 a,b | 83.4 ± 0.4 a | 23.97 ± 0.14 c | 87.8 ± 0.6 a | 14.28 ± 0.01 c,d | 92.6 ± 0.8 b | |
High | 796.21 ± 7.88 d | 29.4 ± 0.3 b | 339.98 ± 6.20 a–d | 90.2 ± 0.9 a | 420.94 ± 9.63 c,d | 81.5 ± 1.1 a | 26.12 ± 0.11 d | 94.5 ± 3.7 a–c | 15.23 ± 0.12 d | 90.1 ± 0.9 a,b | |
WG extract | Low | 526.48 ± 20.75 b | 30.2 ± 0.0 b,c | 308.10 ± 3.58 a | 101.6 ± 0.4 c–e | 432.04 ± 2.48 d,e | 99.6 ± 1.6 d | 16.00 ± 0.52 a | 95.6 ± 1.2 b,c | 10.33 ± 0.07 a | 103.0 ± 1.1 c |
Mid | 572.47 ± 12.11 c | 39.9 ± 2.3 e | 320.78 ± 12.33 c,d | 103.4 ± 2.7 d,e | 440.29 ± 0.43 e | 100.7 ± 0.4 d | 16.21 ± 0.35 a | 93.4 ± 3.2 a–c | 10.74 ± 0.07 a | 106.4 ± 0.8 c | |
High | 807.94 ± 1.20 d | 42.5 ± 0.5 e | 337.78 ± 2.22 c–e | 99.9 ± 0.2 b–d | 470.12 ± 0.29 f | 98.1 ± 0.5 d | 25.28 ± 0.81 d | 96.3 ± 0.1 b,c | 10.91 ± 0.49 a | 107.2 ± 0.0 c |
Pasta Formulation | Enrichment Level | Water Absorption (%) | Cooking Loss (%) | Swelling Index | OCT (min) | Hardness (N) | Adhesiveness (Ns) |
---|---|---|---|---|---|---|---|
Control | 0 | 170.0 ± 25 b,c | 6.10 ± 0.14 a | 3.48 ± 0.30 b–d | 13 | 95.45 ± 4.05 b,c,d | 1.41 ± 0.21 a |
Powdered WG | Low | 110.7 ± 18 a | 7.42 ± 0.12 b | 2.43 ± 0.24 a | 5 | 103.20 ± 6.21 c,d | 2.82 ± 0.64 b,c |
Mid | 111.0 ± 15 a | 6.17 ± 0.18 a | 2.29 ± 0.34 a | 7 | 125.50 ± 9.36 f | 3.35 ± 0.74 d | |
High | 127.2 ± 16 a,b | 7.99 ± 0.16 c | 2.86 ± 0.20 a–c | 10 | 119.08 ± 9.25 f | 3.78 ± 0.80 d | |
Encapsulated WG | Low | 149.5 ± 19 a–c | 7.39 ± 0.22 b | 3.00 ± 0.22 a–d | 11 | 78.43 ± 4.28 a | 1.72 ± 0.36 a,b |
Mid | 134.2 ± 20 a,b | 9.68 ± 0.18 d | 2.86 ± 0.27 a–c | 12 | 81.66 ± 2.95 a,b | 1.61 ± 0.37 a | |
High | 112.3 ± 14 a | 9.65 ± 0.11 d | 2.71 ± 0.31 a,b | 10 | 112.71 ± 5.63 d,e,f | 2.86 ± 0.41 b–d | |
WG extract | Low | 188.4 ± 15 c | 7.92 ± 0.15 c | 3.71 ± 0.35 d | 10 | 93.22 ± 6.74 b,c | 1.46 ± 0.23 a |
Mid | 178.3 ± 22 b,c | 6.22 ± 0.13 a | 3.57 ± 0.23 c,d | 10 | 100.60 ± 3.28 c,d | 1.96 ± 0.27 a–c | |
High | 170.7 ± 17 b,c | 5.98 ± 0.19 a | 3.57 ± 0.27 c,d | 10 | 117.08 ± 49.59 e,f | 3.47 ± 3.78 d |
Samples | Pasta Formulation | Suppl. Level | L* | a* | b* | Colour Example |
---|---|---|---|---|---|---|
Non-cooked pasta | Control | 0 | 72.46 ± 1.46 h | 0.86 ± 0.50 e | 31.56 ± 1.19 g | |
Powdered WG | Low | 45.64 ± 0.44 d | −0.78 ± 0.09 c | 20.21 ± 0.77 b–d | ||
Mid | 41.07 ± 0.96 b,c | −2.10 ± 0.10 a,b | 14.97 ± 0.36 a | |||
High | 41.40 ± 0.77 b,c | −2.07 ± 0.16 a,b | 13.40 ± 0.74 a | |||
Encapsulated WG | Low | 51.21 ± 0.54 e | 9.13 ± 0.27 k | 25.64 ± 0.85 f | ||
Mid | 52.62 ± 2.19 e | 8.17 ± 0.78 j,k | 23.26 ± 2.78 d–f | |||
High | 54.73 ± 2.07 e | 8.58 ± 0.68 k | 27.25 ± 2.51 f | |||
WG extract | Low | 66.78 ± 0.88 f,g | 3.90 ± 0.67 f | 34.79 ± 3.26 g,h | ||
Mid | 63.84 ± 2.59 f | 5.05 ± 0.43 g | 33.95 ± 1.88 g,h | |||
High | 66.30 ± 0.34 f,g | 4.38 ± 0.41 f,g | 35.41 ± 0.91 h | |||
Cooked pasta | Control | 0 | 72.59 ± 0.10 h | −1.38 ± 0.28 b,c | 19.26 ± 0.15 b,c | |
Powdered WG | Low | 40.39 ± 1.38 a–c | −0.83 ± 0.11 c | 14.37 ± 1.37 a | ||
Mid | 37.64 ± 0.77 a | −2.00 ± 0.16 a,b | 16.37 ± 0.54 a,b | |||
High | 38.34 ± 0.26 a,b | −2.69 ± 0.16 a | 12.73 ± 0.39 a | |||
Encapsulated WG | Low | 52.21 ± 0.68 e | 7.07 ± 0.16 i,j | 21.29 ± 0.36 c–e | ||
Mid | 43.16 ± 1.75 c,d | 6.63 ± 0.41 i | 16.91 ± 0.47 a,b | |||
High | 38.26 ± 1.04 a,b | 6.86 ± 0.13 i | 14.70 ± 0.90 a | |||
WG extract | Low | 71.96 ± 0.97 h | −0.53 ± 0.22 c,d | 24.49 ± 0.32 e,f | ||
Mid | 67.52 ± 1.16 f,g | 1.02 ± 0.37 e | 25.70 ± 2.27 f | |||
High | 67.84 ± 1.82 g | 0.37 ± 0.16 d,e | 25.65 ± 2.55 f |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filipčev, B.; Kojić, J.; Miljanić, J.; Šimurina, O.; Stupar, A.; Škrobot, D.; Travičić, V.; Pojić, M. Wild Garlic (Allium ursinum) Preparations in the Design of Novel Functional Pasta. Foods 2023, 12, 4376. https://doi.org/10.3390/foods12244376
Filipčev B, Kojić J, Miljanić J, Šimurina O, Stupar A, Škrobot D, Travičić V, Pojić M. Wild Garlic (Allium ursinum) Preparations in the Design of Novel Functional Pasta. Foods. 2023; 12(24):4376. https://doi.org/10.3390/foods12244376
Chicago/Turabian StyleFilipčev, Bojana, Jovana Kojić, Jelena Miljanić, Olivera Šimurina, Alena Stupar, Dubravka Škrobot, Vanja Travičić, and Milica Pojić. 2023. "Wild Garlic (Allium ursinum) Preparations in the Design of Novel Functional Pasta" Foods 12, no. 24: 4376. https://doi.org/10.3390/foods12244376
APA StyleFilipčev, B., Kojić, J., Miljanić, J., Šimurina, O., Stupar, A., Škrobot, D., Travičić, V., & Pojić, M. (2023). Wild Garlic (Allium ursinum) Preparations in the Design of Novel Functional Pasta. Foods, 12(24), 4376. https://doi.org/10.3390/foods12244376