Physicochemical Index Analyses of the Egg White in Blue-Shelled Eggs and Commercial Brown-Shelled Eggs during Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Groups
2.2. The Measurement of Eggs’ Main Components
2.3. Haugh Unit Value Measurement
2.4. S-ovalbumin, Lysozyme and Ovomucin Detection
2.5. Statistics and Analyses
3. Results
3.1. The Means and Effect Situation of Eggs’ Indexes
3.2. The Correlations between the Main Components of Egg
3.3. The Changes in Egg White Indexes during Storage
4. Discussion
4.1. The Changes in Eggs’ Indexes during Storage
4.2. The Differences in Egg Indexes between Various Chicken Breeds
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Sparks, N. The hen’s egg—Is its role in human nutrition changing? World Poult. Sci. J. 2006, 62, 308–315. [Google Scholar] [CrossRef]
- Kovacs-Nolan, J.; Phillips, M.; Mine, Y. Advances in the value of eggs and egg components for human health. J. Agric. Food Chem. 2005, 53, 8421–8431. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Zhang, Y.Q. An insight on egg white: From most common functional food to biomaterial application. J. Biomed. Mater. Res. B. Appl. Biomater. 2021, 109, 1045–1058. [Google Scholar] [CrossRef] [PubMed]
- Abeyrathne, E.D.N.S.; Lee, H.Y.; Ahn, D.U. Egg white proteins and their potential use in food processing or as nutraceutical and pharmaceutical agents—A review. Poult. Sci. 2013, 92, 3292–3299. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.J. Interaction of Four Egg White Proteins and Their Effects on the Quality and Allergenicity of Egg White Proteins. Master’s Thesis, Nanchang University, Nanchang, China, 2019. [Google Scholar]
- Huang, Q. Study on Correlation between S-ovalbumin and Egg Freshness and the Purification and Characteristics of S-Ovalbumin. Ph.D. Thesis, Huazhong Agricultural University, Wuhan, China, 2012. [Google Scholar]
- Liu, M.Y.; Ren, F.Z.; Lian, Z.H.; Guo, H.Y. Characteristic change of main proteins in egg-white at different storage conditions. J Food Saf. Qual. 2015, 6, 4468–4474. [Google Scholar]
- Fu, D.D.; Wang, Q.H.; Ma, M.H.; Xu, F. Correlation analysis between egg freshness indexes and S-ovalbumin content during storage. Food Sci. 2018, 39, 1–6. [Google Scholar]
- Yimenu, S.M.; Koo, J.; Kim, J.Y.; Kim, J.H.; Kim, B.S. Kinetic modeling impacts of relative humidity; storage temperature; and air flow velocity on various indices of hen egg freshness. Poult. Sci. 2018, 97, 4384–4391. [Google Scholar] [CrossRef]
- Eisen, E.J.; Bohren, B.B.; Mckean, H.E. The haugh unit as a measure of egg albumen quality. Poult. Sci. 1962, 41, 1461–1468. [Google Scholar] [CrossRef]
- Javůrková, V.G.; Pokorná, M.; Mikšík, I.; Tůmová, E. Concentration of egg white antimicrobial and immunomodulatory proteins is related to eggshell pigmentation across traditional chicken breed. Poult. Sci. 2019, 98, 6931–6941. [Google Scholar] [CrossRef]
- Lewko, L.; Krawczyk, J.; Calik, J. Effect of genotype and some shell quality traits on lysozyme content and activity in the albumen of eggs from hens under the biodiversity conservation program. Poult. Sci. 2021, 100, 100863. [Google Scholar] [CrossRef]
- Rizzi, C.; Chiericato, G.M. Organic farming production. Effect of age on the productive yield and egg quality of hens of two commercial hybrid lines and two local breeds. Ital. J. Anim. Sci. 2005, 1 (Suppl. S3), 160–162. [Google Scholar] [CrossRef]
- Xie, Y.N.; Xie, S.T.; Chen, M.J.; Rao, S.T.; Tan, J.J.; Zhou, Z.B. Comparative analysis of production performance, egg quality and nutrient composition of laying hens of different breeds. J. Guangxi Agri. 2021, 36, 29–32. [Google Scholar]
- Guyonnet, V. Does eggshell color really matter? WATT Poult. Int. 2022, 61, 22–23. [Google Scholar]
- Huang, Q.; Qiu, N.; Ma, M.H.; Jin, Y.G.; Yang, H.; Geng, F.; Sun, S.H. Estimation of egg freshness using S-ovalbumin as an indicator. Poult. Sci. 2012, 91, 739–743. [Google Scholar] [CrossRef] [PubMed]
- Omana, D.A.; Wu, J.P. A new method of separating ovomucin from egg white. J. Agric. Food Chem. 2009, 57, 3596–3603. [Google Scholar] [CrossRef]
- Kristl, M.; Jurak, S.; Brus, M.; Sem, V.; Kristl, J. Evaluation of calcium carbonate in eggshells using thermal analysis. J. Therm. Anal. Calorim. 2019, 138, 2751–2758. [Google Scholar] [CrossRef]
- Umbrako, I.; Petjukevis, A.; Batjuka, A.; Harlamora, N. Evaluation of calcium carbonate content in eggshells of avian; turtle; snail; and ostrich using chemical analysis and scanning electron microscopy. In Environment, Technologies Resources, Proceedings of the International Scientific and Practical Conference, Rezekne, Latvia, 17–18 June 2021; Rezekne Academy of Technologies: Rezekne, Latvia, 2021; Volume 1, pp. 244–249. [Google Scholar]
- Stadelman, W.J.; Cotterill, O.J. Egg Science and Technology, 4th ed.; Haworth Press: New York, NY, USA, 1995; pp. 499–590. [Google Scholar]
- You, Z.Q.; Li, B.Y.; Jia, F.; Liu, Y.; Li, X.M. Study on hen egg quality during storage after transportation. Sci. Technol. Food Ind. 2020, 41, 279–285. [Google Scholar]
- Wang, Y.Y.; Wang, Z.H.; Shan, Y.Y. Assessment of the relationship between ovomucin and albumen quality of shell eggs during storage. Poult. Sci. 2019, 98, 473–479. [Google Scholar] [CrossRef]
- Abeyrathne, E.D.N.S.; Huang, X.; Ahn, D.U. Advances in the Separation of Functional Egg Proteins-Egg White Proteins; The Royal Society of Chemistry: London, UK, 2019; Chapter 17; pp. 329–347. [Google Scholar]
- Huang, Q.; Liu, L.; Wu, Y.Y.; Huang, X.; Wang, G.Z.; Song, H.B.; Geng, F.; Luo, P. Mechanism of differences in characteristics of thick/thin egg whites during storage: Physicochemical, functional and molecular structure characteristics analysis. Food Chem. 2022, 369, 130828. [Google Scholar] [CrossRef]
- Scott, T.A.; Silversides, F.G. The effect of storage and strain of hen on egg quality. Poult. Sci. 2000, 79, 1725–1729. [Google Scholar] [CrossRef]
- Akyurek, H.; Okur, A.A. Effect of storage time; temperature and hen age on egg quality in free-range layer hens. J. Anim. Vet. Adv. 2009, 8, 1953–1958. [Google Scholar]
- Smith, M.B. Studies on ovalbumin I. Denaturation by heat; and the heterogeneity of ovalbumin. Aust. J. Biol. Sci. 1964, 17, 261–270. [Google Scholar] [CrossRef]
- Kato, A.; Ogato, S.; Matsudomi, N.; Kobayashi, K. Comparative study of aggregated and disaggregated ovomucin during egg white thinning. J. Agric. Food Chem. 1981, 29, 821–823. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.M.; Kato, A.; Nakai, S. Sedimentation equilibrium study of the interaction between egg white lysozyme and ovomucin. J. Agric. Food Chem. 1982, 30, 1127–1132. [Google Scholar] [CrossRef]
- Adhikari, S.; Sharma, S.P. Non-genetic factors influencing internal egg quality traits in chicken: A review. Russ. J. Agric. Socio-Econ. Sci. 2022, 10, 121–128. [Google Scholar]
- Kim, C.H.; Song, J.H.; Lee, J.C.; Lee, K.W. Age-related changes in egg quality of Hy-Line brown hens. Int. J. Poult. Sci. 2014, 13, 510–514. [Google Scholar] [CrossRef]
- Nowaczewski, S.; Lewko, L.; Kucharczyk, M.; Stuper-Szablewska, K.; Rudzińska, M.; Cegielska-Radziejewska, R.; Biadala, A.; Szluc, K.; Tomczyk, T.; Kaczmarek, S.; et al. Effect of laying hens age and housing system on physicochemical characteristics of eggs. Ann. Anim. Sci. 2021, 21, 291–309. [Google Scholar] [CrossRef]
- Biesiasa-Drzazga, B.; Banaszewska, D.; Kaim-Mirowski, S. Analysis of selected external and internal characteristics of the eggs of Hy-Line Brown hens in relation to their age. Anim. Sci. Genet. 2022, 18, 45–56. [Google Scholar]
- Moula, N.; Antoine-Moussiaux, N.; Decuypere, E.; Farnir, F.; Mertens, K.; De Baerdemaeker, J.; Leroy, P. Comparative study of egg quality traits in two Belgian local breeds and two commercial lines of chickens. Arch. Geflügelkd. 2010, 74, 164–171. [Google Scholar]
- Sokołowicz, Z.; Dykiel, M.; Krawczyk, J.; Augustyńska-Prejsnar, A. Effect of layer genotype on physical characteristics and nutritive value of organic eggs. CyTA-J. Food. 2019, 17, 11–19. [Google Scholar] [CrossRef]
- Lordelo, M.; Cid, J.; Cordovil, C.M.D.S.; Alves, S.P.; Bessa, R.J.B.; Carolino, I. A comparison between the quality of eggs from indigenous chicken breeds and that from commercial layers. Poult. Sci. 2020, 99, 1768–1776. [Google Scholar] [CrossRef] [PubMed]
- Hejdysz, M.; Nowaczewski, S.; Perz, K.; Szablewski, T.; Stuper-Szablewska, K.; Cegielska-Radziejewska, R.; Tomczyk, L.; Przybylska-Balcerek, A.; Buko, M.; Kaczmarek, S.A.; et al. Influence of the genotype of the hen (Gallus gallus domesticus) on main parameters of egg quality, chemical composition of the eggs under uniform environmental conditions. Poult. Sci. 2023, 103, 103165. [Google Scholar] [CrossRef] [PubMed]
- Monira, K.N.; Salahuddin, M.; Miah, G. Effect of breed and holding period on egg quality characteristics of chicken. Int. J. Poult. Sci. 2003, 2, 261–263. [Google Scholar]
- Pu, J.H.; Ge, Q.L.; Gao, Y.S.; Zhang, B.; Xu, J.Q. Study on the regular pattern of quality changes during the egg storage from different chicken breeds. China Poult. 2010, 32, 59–60. (In Chinese) [Google Scholar]
Index | Group | Effect Factor | Standard Error | |||
---|---|---|---|---|---|---|
Brown | Blue | Group | Storage | Group * Storage | ||
Egg weight, g | 56.51 | 46.89 | *** | ** | NS | 0.356 |
Eggshell weight, g | 6.96 | 6.38 | *** | NS | NS | 0.040 |
Yolk weight, g | 15.44 | 14.36 | *** | *** | NS | 0.095 |
KA weight, g | 14.77 | 13.84 | * | *** | NS | 0.293 |
NA weight, g | 19.34 | 12.32 | *** | *** | ** | 0.299 |
Eggshell proportion, % | 12.34 | 13.60 | *** | NS | NS | 0.076 |
Yolk proportion, % | 27.39 | 30.70 | *** | *** | NS | 0.229 |
KA proportion, % | 25.95 | 29.32 | *** | *** | * | 0.535 |
NA proportion, % | 34.33 | 26.38 | *** | *** | *** | 0.478 |
Haugh Unit | 65.15 | 67.29 | *** | *** | *** | 0.584 |
KA S-ovalbumin, % | 64.13 | 62.04 | ** | *** | NS | 1.506 |
NA S-ovalbumin, % | 65.32 | 61.91 | *** | *** | * | 1.567 |
KA lysozyme, mg/g | 4.60 | 4.61 | NS | *** | NS | 0.064 |
NA lysozyme, mg/g | 4.32 | 4.73 | *** | *** | * | 0.070 |
KA ovomucin, mg/g | 3.01 | 3.74 | *** | *** | NS | 0.084 |
NA ovomucin, mg/g | 1.92 | 1.94 | NS | *** | NS | 0.053 |
Index | EW | ESW | EYW | KAW | NAW | ESP | EYP | KAP | NAP |
---|---|---|---|---|---|---|---|---|---|
EW | 0.194 * | 0.019 | 0.648 *** | −0.100 | −0.405 *** | −0.480 *** | 0.542 *** | −0.418 *** | |
ESW | 0.581 *** | 0.257 ** | −0.131 | 0.086 | 0.817 *** | 0.133 | −0.178 | 0.016 | |
EYW | −0.104 | −0.019 | −0.441 *** | 0.209 * | 0.230 * | 0.866 *** | −0.490 *** | 0.187 * | |
KAW | 0.577 *** | 0.262 ** | −0.536 *** | −0.745 *** | −0.504 *** | −0.713 *** | 0.990 *** | −0.892 *** | |
NAW | −0.155 | −0.116 | 0.253 ** | −0.832 *** | 0.141 | 0.240 ** | −0.802 *** | 0.945 *** | |
ESP | −0.009 | 0.807 *** | 0.051 | −0.094 | −0.030 | 0.408 *** | −0.488 *** | 0.263 ** | |
EYP | −0.525 *** | −0.268 ** | 0.899 *** | −0.704 *** | 0.276 ** | 0.050 | −0.707 *** | 0.379 *** | |
KAP | 0.472 *** | 0.192 * | −0.559 *** | 0.991 *** | −0.874 *** | −0.105 | −0.680 *** | −0.912 *** | |
NAP | −0.337 *** | −0.220 * | 0.254 ** | −0.899 *** | 0.981 *** | −0.027 | 0.358 *** | −0.921 *** |
Index | Haugh Unit | KA Lysozyme | NA Lysozyme | KA S-ovalbumin | NA S-ovalbumin | KA Ovomucin | NA Ovomucin |
---|---|---|---|---|---|---|---|
Haugh Unit | 0.982 *** | 0.968 *** | −0.937 *** | −0.920 ** | 0.946 *** | 0.959 *** | |
KA lysozyme | 0.974 *** | 0.942 *** | −0.932 *** | −0.929 *** | 0.942 *** | 0.926 *** | |
NA lysozyme | 0.983 *** | 0.951 *** | −0.932 *** | −0.913 ** | 0.959 *** | 0.936 *** | |
KA S-ovalbumin | −0.949 *** | −0.966 *** | −0.949 *** | 0.976 *** | −0.991 *** | −0.929 *** | |
NA S-ovalbumin | −0.956 *** | −0.969 *** | −0.955 *** | 0.994 *** | −0.968 *** | −0.947 *** | |
KA ovomucin | 0.936 *** | 0.90 2 ** | 0.927 *** | −0.880 ** | −0.879 ** | 0.920 ** | |
NA ovomucin | 0.952 *** | 0.878 ** | 0.969 *** | −0.886 ** | −0.909 ** | 0.872 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Ge, Y.; Wei, Y.; Li, Q.; Zhang, X.; Fan, J. Physicochemical Index Analyses of the Egg White in Blue-Shelled Eggs and Commercial Brown-Shelled Eggs during Storage. Foods 2023, 12, 4441. https://doi.org/10.3390/foods12244441
Wang H, Ge Y, Wei Y, Li Q, Zhang X, Fan J. Physicochemical Index Analyses of the Egg White in Blue-Shelled Eggs and Commercial Brown-Shelled Eggs during Storage. Foods. 2023; 12(24):4441. https://doi.org/10.3390/foods12244441
Chicago/Turabian StyleWang, Huanhuan, Ying Ge, Yinghui Wei, Qinghai Li, Xuedong Zhang, and Jinghui Fan. 2023. "Physicochemical Index Analyses of the Egg White in Blue-Shelled Eggs and Commercial Brown-Shelled Eggs during Storage" Foods 12, no. 24: 4441. https://doi.org/10.3390/foods12244441
APA StyleWang, H., Ge, Y., Wei, Y., Li, Q., Zhang, X., & Fan, J. (2023). Physicochemical Index Analyses of the Egg White in Blue-Shelled Eggs and Commercial Brown-Shelled Eggs during Storage. Foods, 12(24), 4441. https://doi.org/10.3390/foods12244441