Unlocking Flavor Potential Using Microbial β-Glucosidases in Food Processing
Abstract
:1. Introduction
2. Occurrence of Aroma Glycosides in Common Food
2.1. Yeast β-Glucosidases
2.2. Bacterial β-Glucosidases
Food | Microorganism | Effect | Reference |
---|---|---|---|
Soymilk fermented with kombucha and fructo-oligosaccharides | Lactobacillus rhamnosus | The increased β-glucosidase activity promoted favorable flavor substances, such as citric acid and linalool. | [129] |
Cashew apple juice (CAJ) | Lactobacillus plantarum, Lactobacillus casei, Lactobacillus acidophilus | During CAJ fermentation by lactic Bacteria, the fruity odor decreased, while whiskey and acid odors were elevated. This activity is referring to β-glucosidase action derived from lactic acid species. | [130] |
Peanut milk | Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus salivarius ssp. thermophilus | A significant decrease in green/beany flavor and a significant increase in creamy flavor occurred due to the action of β-glucosidase derived from lactic acid bacteria. | [131] |
Chickpea milk | Lactobacillus plantarum | The hydrolysis of glucosides of soy-based products using β-glucosidase increased their bioavailability, resulting in changed aroma profiles that impart fruity and creamy characteristics | [132] |
Soymilk | Lactobacillus plantarum 70810 | In comparison with original soymilk base, the concentrations of the characteristic flavor compounds for fermented soymilk using L. plantarum 70810 increased, whereas hexanal, 2-pentylfuran, and 2-pentanone in relation to the beany flavor of soymilk decreased. | [133] |
Sicilian table olives | Lactobacillus paracasei, Lactobacillus plantarum | These reduced the debittering time during the fermentation of Sicilian table olives and caused an increase in hydoxytyrosol, tyrosol, and verbascoside compounds. | [134] |
Tannat wine | Oenococcus oeni | Under the action of β-glucosidase, a significant increase in 2-phenylethanol and the sum of terpenols (linalool, R-terpineol, nerol, and geraniol) brought a flavor richness to wine. | [135] |
Peeled frozen tomatoes | Lactobacillus plantarum | Several terpenes important for aroma profiles released included (Z)-geraniol, 6,7-dihydrogeraniol, melonol, linalool, and D-limonene after β-glucosidase treatment. | [136] |
2.3. Other Fungal β-Glucosidases
Food | Microorganism | Effect | Reference |
---|---|---|---|
Passion fruit juice | Aspergillus niger | Linalool, benzyl alcohol, and benzaldehyde levels increased in a passion fruit juice. | [158] |
Fruit juices and wines | Candida molischiana | Increased the levels of linalool, benzyl alcohol, and 2-phenylethanol in wine and some fruit juices under β-glucosidase action. | [152] |
Red grape Cabernet Gernischt (Vitis vinifera L. cv.) | Trichosporon asahii | Volatile flavor compounds in the β-glucosidase-treated samples were significantly increased. | [159] |
Strawberry glycosidic extract | Aspergillus aculeatus, Aspergillus foetidus, Aspergillus japonicus, Aspergillus niger, Aspergillus tubingensis | Liberated volatiles (2,5-dimethyl-4-hydroxy-3(2H)-furanone (furaneol)) or cinnamic acid contributed to the flavor of fresh strawberries. | [160] |
Fermented glutinous rice | Aspergillus cristatum, Aspergillus niger, Aspergillus oryzae | Modified the flavor metabolism in rice by releasing linalool oxides, β-ionone, and geraniol compounds. | [161] |
Fu brick tea | Aspergillus, Candida, Debaryomyces, Penicillium, Unclassified_k_Fungi, Unclassified_o_ Saccharomycetales | Linalool, acetophenone, and methyl salicylate were identified as key volatiles contributors to the “fungal flower”, “flower”, and “mint” attributes; cedrol contributed to the “woody” attribute, and twelve alcohols and aldehydes were related to the “green” attribute during the manufacturing process. | [162] |
Green tea | Aspergillus niger | Increased concentrations of cis-3-hexenol, hexanol, geraniol, and benzyl alcohol. | [163] |
Craft beer | Candida glabrata | Glucoside-binding terpenes provided the final beer product with unique floral and fruity characteristics. | [164] |
Soy sauce | Aspergillus oryzae | Formation of flavors such as alcohols, acids, esters, aldehydes, furans, and pyrazines during soy sauce fermentation. | [165] |
2.4. Plant β-Glucosidases
2.5. Oral β-Glucosidases in Glycoside Metabolization
3. Trends and Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Minic, Z. Physiological Roles of Plant Glycoside Hydrolases. Planta 2008, 227, 723–740. [Google Scholar] [CrossRef]
- Ketudat Cairns, J.R.; Esen, A. β-Glucosidases. Cell. Mol. Life Sci. 2010, 67, 3389–3405. [Google Scholar] [CrossRef] [PubMed]
- Esen, A. (Ed.) SS-Glucosidases: Biochemistry and Molecular Biology; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1993; Volume 533, ISBN 978-0-8412-2697-5. [Google Scholar]
- Rajan, S.S.; Yang, X.; Collart, F.; Yip, V.L.Y.; Withers, S.G.; Varrot, A.; Thompson, J.; Davies, G.J.; Anderson, W.F. Novel Catalytic Mechanism of Glycoside Hydrolysis Based on the Structure of an NAD+/Mn2+-Dependent Phospho-α-Glucosidase from Bacillus Subtilis. Structure 2004, 12, 1619–1629. [Google Scholar] [CrossRef] [PubMed]
- Singhal, G.; Meshram, A.; Bhagyawant, S.S.; Srivastava, N. Technology Prospecting on Microbial Enzymes: Engineering and Application in Food Industry. In Enzymes in Food Technology; Kuddus, M., Ed.; Springer: Singapore, 2018; pp. 213–241. ISBN 9789811319327. [Google Scholar]
- Hirst, M.B.; Richter, C.L. Review of Aroma Formation through Metabolic Pathways of Saccharomyces cerevisiae in Beverage Fermentations. Am. J. Enol. Vitic. 2016, 67, 361–370. [Google Scholar] [CrossRef]
- Arevalo Villena, M.; Ubeda Iranzo, J.F.; Cordero Otero, R.R.; Briones Perez, A.I. Optimization of a Rapid Method for Studying the Cellular Location of Beta-Glucosidase Activity in Wine Yeasts. J. Appl. Microbiol. 2005, 99, 558–564. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhang, R.; Sirisena, S.; Gan, R.; Fang, Z. Beta-Glucosidase Activity of Wine Yeasts and Its Impacts on Wine Volatiles and Phenolics: A Mini-Review. Food Microbiol. 2021, 100, 103859. [Google Scholar] [CrossRef]
- Dziadas, M.; Jeleń, H.H. Comparison of Enzymatic and Acid Hydrolysis of Bound Flavor Compounds in Model System and Grapes. Food Chem. 2016, 190, 412–418. [Google Scholar] [CrossRef]
- Shin, K.-C.; Nam, H.-K.; Oh, D.-K. Hydrolysis of Flavanone Glycosides by β-Glucosidase from Pyrococcus furiosus and Its Application to the Production of Flavanone Aglycones from Citrus Extracts. J. Agric. Food Chem. 2013, 61, 11532–11540. [Google Scholar] [CrossRef] [PubMed]
- Riou, C.; Salmon, J.M.; Vallier, M.J.; Günata, Z.; Barre, P. Purification, Characterization, and Substrate Specificity of a Novel Highly Glucose-Tolerant Beta-Glucosidase from Aspergillus oryzae. Appl. Environ. Microbiol. 1998, 64, 3607–3614. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.N.A.; Son, J.-S.; Awais, M.; Ko, J.-H.; Yang, D.C.; Jung, S.-K. β-Glucosidase and Its Application in Bioconversion of Ginsenosides in Panax Ginseng. Bioengineering 2023, 10, 484. [Google Scholar] [CrossRef]
- Srivastava, N.; Rathour, R.; Jha, S.; Pandey, K.; Srivastava, M.; Thakur, V.K.; Sengar, R.S.; Gupta, V.K.; Mazumder, P.B.; Khan, A.F.; et al. Microbial Beta Glucosidase Enzymes: Recent Advances in Biomass Conversation for Biofuels Application. Biomolecules 2019, 9, 220. [Google Scholar] [CrossRef] [PubMed]
- Wilkowska, A.; Pogorzelski, E. Aroma Enhancement of Cherry Juice and Wine Using Exogenous Glycosidases from Mould, Yeast and Lactic Acid Bacteria. Food Chem. 2017, 237, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Zoecklein, B.W.; Marcy, J.; Jasinski, Y. Effect of Fermentation, Storage Sur Lie or Post-Fermentation Thermal Processing on White Riesling (Vitis vinifera L.) Glycoconjugates. Am. J. Enol. Vitic. 1997, 48, 397–402. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, M.; Zhou, J.; Chen, Y.; Xu, L.; Wu, M.; Xia, G.; Tam, J.P.; Yu, J.; Teng, X.; et al. Eco-Efficient Biphasic Enzymatic Hydrolysis for the Green Production of Rare Baohuoside I. Enzym. Microb. Technol. 2019, 131, 109431. [Google Scholar] [CrossRef] [PubMed]
- Thapa, S.; Li, H.; OHair, J.; Bhatti, S.; Chen, F.-C.; Nasr, K.A.; Johnson, T.; Zhou, S. Biochemical Characteristics of Microbial Enzymes and Their Significance from Industrial Perspectives. Mol. Biotechnol. 2019, 61, 579–601. [Google Scholar] [CrossRef] [PubMed]
- Canon, F.; Belloir, C.; Bourillot, E.; Brignot, H.; Briand, L.; Feron, G.; Lesniewska, E.; Nivet, C.; Septier, C.; Schwartz, M.; et al. Perspectives on Astringency Sensation: An Alternative Hypothesis on the Molecular Origin of Astringency. J. Agric. Food Chem. 2021, 69, 3822–3826. [Google Scholar] [CrossRef]
- Neiers, F.; Gourrat, K.; Canon, F.; Schwartz, M. Metabolism of Cysteine Conjugates and Production of Flavor Sulfur Compounds by a Carbon–Sulfur Lyase from the Oral Anaerobe Fusobacterium nucleatum. J. Agric. Food Chem. 2022, 70, 9969–9979. [Google Scholar] [CrossRef]
- Frank, D.; Piyasiri, U.; Archer, N.; Jenifer, J.; Appelqvist, I. Influence of Saliva on Individual In-Mouth Aroma Release from Raw Cabbage (Brassica oleracea Var. Capitata f. Rubra L.) and Links to Perception. Heliyon 2018, 4, e01045. [Google Scholar] [CrossRef] [PubMed]
- Cuadrado-Silva, C.T.; Muñoz-González, C.; Giraldo, R.; Del Pozo-Bayón, M.Á.; Osorio, C. Bioconversion of Glycosidic Precursors from Sour Guava (Psidium friedrichsthalianum Nied.) Fruit by the Oral Microbiota into Odor-Active Volatile Compounds. Molecules 2022, 27, 1269. [Google Scholar] [CrossRef]
- Verma, D.; Garg, P.K.; Dubey, A.K. Insights into the Human Oral Microbiome. Arch. Microbiol. 2018, 200, 525–540. [Google Scholar] [CrossRef]
- Muñoz-González, C.; Cueva, C.; Ángeles Pozo-Bayón, M.; Victoria Moreno-Arribas, M. Ability of Human Oral Microbiota to Produce Wine Odorant Aglycones from Odourless Grape Glycosidic Aroma Precursors. Food Chem. 2015, 187, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, M.; Suzuki, M.; Huang, Y.; Umeda, M.; Ishikawa, I.; Benno, Y. Prevotella shahii sp. nov. and Prevotella salivae sp. nov., Isolated from the Human Oral Cavity. Int. J. Syst. Evol. Microbiol. 2004, 54, 877–883. [Google Scholar] [CrossRef]
- Parker, M.; Onetto, C.; Hixson, J.; Bilogrevic, E.; Schueth, L.; Pisaniello, L.; Borneman, A.; Herderich, M.; de Barros Lopes, M.; Francis, L. Factors Contributing to Interindividual Variation in Retronasal Odor Perception from Aroma Glycosides: The Role of Odorant Sensory Detection Threshold, Oral Microbiota, and Hydrolysis in Saliva. J. Agric. Food Chem. 2020, 68, 10299–10309. [Google Scholar] [CrossRef]
- Wang, D.; Kurasawa, E.; Yamaguchi, Y.; Kubota, K.; Kobayashi, A. Analysis of Glycosidically Bound Aroma Precursors in Tea Leaves. 2. Changes in Glycoside Contents and Glycosidase Activities in Tea Leaves during the Black Tea Manufacturing Process. J. Agric. Food Chem. 2001, 49, 1900–1903. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Yoshimura, T.; Kubota, K.; Kobayashi, A. Analysis of Glycosidically Bound Aroma Precursors in Tea Leaves. 1. Qualitative and Quantitative Analyses of Glycosides with Aglycons as Aroma Compounds. J. Agric. Food Chem. 2000, 48, 5411–5418. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Li, M.; Li, Y.; Yin, J.; Wan, X.; Yang, X. Characterization of the Key Aroma Compounds in Infusions of Four White Teas by the Sensomics Approach. Eur. Food Res. Technol. 2022, 248, 1299–1309. [Google Scholar] [CrossRef]
- Gunata, Y.Z.; Bayonove, C.L.; Baumes, R.L.; Cordonnier, R.E. The Aroma of Grapes I. Extraction and Determination of Free and Glycosidically Bound Fractions of Some Grape Aroma Components. J. Chromatogr. A 1985, 331, 83–90. [Google Scholar] [CrossRef]
- Krammer, G.; Winterhalter, P.; Schwab, M.; Schreier, P. Glycosidically Bound Aroma Compounds in the Fruits of Prunus Species: Apricot (P. armeniaca, L.), Peach (P. persica, L.), Yellow Plum (P. domestica, L. ssp. Syriaca). J. Agric. Food Chem. 1991, 39, 778–781. [Google Scholar] [CrossRef]
- Maicas, S.; Mateo, J.J. Hydrolysis of Terpenyl Glycosides in Grape Juice and Other Fruit Juices: A Review. Appl. Microbiol. Biotechnol. 2005, 67, 322–335. [Google Scholar] [CrossRef] [PubMed]
- Sarry, J.-E.; Gunata, Z. Plant and Microbial Glycoside Hydrolases: Volatile Release from Glycosidic Aroma Precursors. Food Chem. 2004, 87, 509–521. [Google Scholar] [CrossRef]
- Rodríguez Valerón, N.; Mak, T.; Jahn, L.J.; Arboleya, J.C.; Sörensen, P.M. Derivation of Kokumi γ-Glutamyl Peptides and Volatile Aroma Compounds from Fermented Cereal Processing By-Products for Reducing Bitterness of Plant-Based Ingredients. Foods 2023, 12, 4297. [Google Scholar] [CrossRef]
- Van der Hulst, L.; Munguia, P.; Culbert, J.A.; Ford, C.M.; Burton, R.A.; Wilkinson, K.L. Accumulation of Volatile Phenol Glycoconjugates in Grapes Following Grapevine Exposure to Smoke and Potential Mitigation of Smoke Taint by Foliar Application of Kaolin. Planta 2019, 249, 941–952. [Google Scholar] [CrossRef]
- Liaudanskas, M.; Viškelis, P.; Kviklys, D.; Raudonis, R.; Janulis, V. A Comparative Study of Phenolic Content in Apple Fruits. Int. J. Food Prop. 2015, 18, 945–953. [Google Scholar] [CrossRef]
- Jang, G.H.; Kim, H.W.; Lee, M.K.; Jeong, S.Y.; Bak, A.R.; Lee, D.J.; Kim, J.B. Characterization and Quantification of Flavonoid Glycosides in the Prunus Genus by UPLC-DAD-QTOF/MS. Saudi J. Biol. Sci. 2018, 25, 1622–1631. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Xie, H.; Hao, J.; Jiang, Y.; Wei, X. Flavonoid Glycosides from the Seeds of Litchi chinensis. J. Agric. Food Chem. 2011, 59, 1205–1209. [Google Scholar] [CrossRef] [PubMed]
- Simirgiotis, M.J.; Caligari, P.D.S.; Schmeda-Hirschmann, G. Identification of Phenolic Compounds from the Fruits of the Mountain Papaya Vasconcellea pubescens A. DC. Grown in Chile by Liquid Chromatography–UV Detection–Mass Spectrometry. Food Chem. 2009, 115, 775–784. [Google Scholar] [CrossRef]
- Frydman, A.; Liberman, R.; Huhman, D.V.; Carmeli-Weissberg, M.; Sapir-Mir, M.; Ophir, R.; Sumner, L.W.; Eyal, Y. The Molecular and Enzymatic Basis of Bitter/Non-Bitter Flavor of Citrus Fruit: Evolution of Branch-Forming Rhamnosyltransferases under Domestication. Plant J. 2013, 73, 166–178. [Google Scholar] [CrossRef]
- Steingass, C.B.; Glock, M.P.; Lieb, V.M.; Carle, R. Light-Induced Alterations of Pineapple (Ananas comosus [L.] Merr.) Juice Volatiles during Accelerated Ageing and Mass Spectrometric Studies into Their Precursors. SI Phytochem. Profiles 2017, 100, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Sun, J.; Chen, Z.; Jiang, J.; Jackson, A. Characterization of Carotenoids and Phenolics during Fruit Ripening of Chinese Raspberry (Rubus chingii Hu). RSC Adv. 2021, 11, 10804–10813. [Google Scholar] [CrossRef]
- Chen, X.; Peng, M.; Wu, D.; Cai, G.; Yang, H.; Lu, J. Physicochemical Indicators and Sensory Quality Analysis of Kiwi Wines Fermented with Different Saccharomyces cerevisiae. J. Food Process. Preserv. 2022, 46, e17132. [Google Scholar] [CrossRef]
- Zhang, X.; Su, M.; Du, J.; Zhou, H.; Li, X.; Zhang, M.; Hu, Y.; Ye, Z. Profiling of Naturally Occurring Proanthocyanidins and Other Phenolic Compounds in a Diverse Peach Germplasm by LC-MS/MS. Food Chem. 2023, 403, 134471. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Fang, Z.; Pai, A.; Luo, J.; Gan, R.; Gao, Y.; Lu, J.; Zhang, P. Glycosidically Bound Aroma Precursors in Fruits: A Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2022, 62, 215–243. [Google Scholar] [CrossRef] [PubMed]
- El Hadi, M.; Zhang, F.-J.; Wu, F.-F.; Zhou, C.-H.; Tao, J. Advances in Fruit Aroma Volatile Research. Molecules 2013, 18, 8200–8229. [Google Scholar] [CrossRef] [PubMed]
- Odoux, É. Glucosylated Aroma Precursors and Glucosidase(s) in Vanilla Bean (Vanilla planifolia G. Jackson). Fruits 2006, 61, 171–184. [Google Scholar] [CrossRef]
- Arana, F.E. Action of A Β-Glucosidase IX the Curing of Vanilla. J. Food Sci. 1943, 8, 343–351. [Google Scholar] [CrossRef]
- Odoux, E. Changes in Vanillin and Glucovanillin Concentrations during the Various Stages of the Process Traditionally Used for Curing Vanilla fragrans Beans in Reunion. Fruits 2000, 55, 119–125. [Google Scholar]
- Wang, K.; Ruan, J. Analysis of Chemical Components in Green Tea in Relation with Perceived Quality, a Case Study with Longjing Teas. Int. J. Food Sci. Technol. 2009, 44, 2476–2484. [Google Scholar] [CrossRef]
- Wang, K.; Liu, F.; Liu, Z.; Huang, J.; Xu, Z.; Li, Y.; Chen, J.; Gong, Y.; Yang, X. Comparison of Catechins and Volatile Compounds among Different Types of Tea Using High Performance Liquid Chromatograph and Gas Chromatograph Mass Spectrometer: Catechins and Volatile Compounds of Tea. Int. J. Food Sci. Technol. 2011, 46, 1406–1412. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, C.; Tian, C.; Xu, K.; Lai, Z.; Lin, Y.; Guo, Y. Volatilomics Analysis of Jasmine Tea during Multiple Rounds of Scenting Processes. Foods 2023, 12, 812. [Google Scholar] [CrossRef]
- Yamanishi, T.; Kobayashi, A. Progress of Tea Aroma Chemistry: 30 Years of Progress. In Flavor Chemistry; Teranishi, R., Wick, E.L., Hornstein, I., Eds.; Springer: Boston, MA, USA, 1999; pp. 135–145. ISBN 978-1-4613-7125-0. [Google Scholar]
- Kobayashi, A.; Kubota, K.; Joki, Y.; Wada, E.; Wakabayashi, M. (Z)-3-Hexenyl-β-d-Glucopyranoside in Fresh Tea Leaves as a Precursor of Green Odor. Biosci. Biotechnol. Biochem. 1994, 58, 592–593. [Google Scholar] [CrossRef]
- Ribeaucourt, D.; Bissaro, B.; Lambert, F.; Lafond, M.; Berrin, J.-G. Biocatalytic Oxidation of Fatty Alcohols into Aldehydes for the Flavors and Fragrances Industry. Biotechnol. Adv. 2022, 56, 107787. [Google Scholar] [CrossRef] [PubMed]
- Yoshizaki, Y.; Yamato, H.; Takamine, K.; Tamaki, H.; Ito, K.; Sameshima, Y. Analysis of Volatile Compounds in Shochu Koji, Sake Koji, and Steamed Rice by Gas Chromatography-Mass Spectrometry. J. Inst. Brew. 2010, 116, 49–55. [Google Scholar] [CrossRef]
- Isogai, A.; Utsunomiya, H.; Kanda, R.; Iwata, H. Changes in the Aroma Compounds of Sake during Aging. J. Agric. Food Chem. 2005, 53, 4118–4123. [Google Scholar] [CrossRef] [PubMed]
- Poitou, X.; Thibon, C.; Darriet, P. 1,8-Cineole in French Red Wines: Evidence for a Contribution Related to Its Various Origins. J. Agric. Food Chem. 2017, 65, 383–393. [Google Scholar] [CrossRef]
- Jiang, Q.; Li, L.; Chen, F.; Rong, B.; Ni, H.; Zheng, F. β-Glucosidase Improve the Aroma of the Tea Infusion Made from a Spray-Dried Oolong Tea Instant. LWT 2022, 159, 113175. [Google Scholar] [CrossRef]
- Caffrey, A.J.; Lerno, L.A.; Zweigenbaum, J.; Ebeler, S.E. Direct Analysis of Glycosidic Aroma Precursors Containing Multiple Aglycone Classes in Vitis vinifera Berries. J. Agric. Food Chem. 2020, 68, 3817–3833. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhu, X.-L.; Ullah, N.; Tao, Y.-S. Aroma Glycosides in Grapes and Wine: Aroma Glycosides in Grapes and Wine. J. Food Sci. 2017, 82, 248–259. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, K.; Liu, C.; Ma, L.; Li, J. Effects of Glycosidase on Glycoside-Bound Aroma Compounds in Grape and Cherry Juice. J. Food Sci. Technol. 2023, 60, 761–771. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Bretón, P.; Salinas, M.R.; Nevares, I.; Pérez-Álvarez, E.P.; del Álamo-Sanza, M.; Marín-San Román, S.; Alonso, G.L.; Garde-Cerdán, T. Recent Advances in the Study of Grape and Wine Volatile Composition: Varietal, Fermentative, and Aging Aroma Compounds. Food Aroma Evol. 2019, 22, 439–463. [Google Scholar]
- Swiegers, J.H.; Bartowsky, E.J.; Henschke, P.A.; Pretorius, I.S. Yeast and Bacterial Modulation of Wine Aroma and Flavour. Aust. J. Grape Wine Res. 2005, 11, 139–173. [Google Scholar] [CrossRef]
- Zhu, F.; Du, B.; Li, J. Aroma Compounds in Wine. In Grape and Wine Biotechnology; Morata, A., Loira, I., Eds.; InTech: London, UK, 2016; ISBN 978-953-51-2692-8. [Google Scholar]
- Pogorzelski, E.; Wilkowska, A. Flavour Enhancement through the Enzymatic Hydrolysis of Glycosidic Aroma Precursors in Juices and Wine Beverages: A Review. Flavour Fragr. J. 2007, 22, 251–254. [Google Scholar] [CrossRef]
- Mateo, J.; Maicas, S. Application of Non-Saccharomyces Yeasts to Wine-Making Process. Fermentation 2016, 2, 14. [Google Scholar] [CrossRef]
- Tetik, M.A.; Sevindik, O.; Kelebek, H.; Selli, S. Screening of Key Odorants and Anthocyanin Compounds of Cv. Okuzgozu (Vitis vinifera L.) Red Wines with a Free Run and Pressed Pomace Using GC-MS-Olfactometry and LC-MS-MS. J. Mass Spectrom. 2018, 53, 444–454. [Google Scholar] [CrossRef] [PubMed]
- Patzak, J.; Krofta, K.; Henychová, A.; Nesvadba, V. Number and Size of Lupulin Glands, Glandular Trichomes of Hop (Humulus lupulus L.), Play a Key Role in Contents of Bitter Acids and Polyphenols in Hop Cone. Int. J. Food Sci. Technol. 2015, 50, 1864–1872. [Google Scholar] [CrossRef]
- Almaguer, C.; Schönberger, C.; Gastl, M.; Arendt, E.K.; Becker, T. Humulus lupulus—A Story That Begs to Be Told. A Review: Humulus lupulus—Story That Begs to Be Told. J. Inst. Brew. 2014, 120, 289–314. [Google Scholar] [CrossRef]
- Cibaka, M.-L.K.; Ferreira, C.S.; Decourrière, L.; Lorenzo-Alonso, C.-J.; Bodart, E.; Collin, S. Dry Hopping with the Dual-Purpose Varieties Amarillo, Citra, Hallertau Blanc, Mosaic, and Sorachi Ace: Minor Contribution of Hop Terpenol Glucosides to Beer Flavors. J. Am. Soc. Brew. Chem. 2017, 75, 122–129. [Google Scholar] [CrossRef]
- Svedlund, N.; Evering, S.; Gibson, B.; Krogerus, K. Fruits of Their Labour: Biotransformation Reactions of Yeasts during Brewery Fermentation. Appl. Microbiol. Biotechnol. 2022, 106, 4929–4944. [Google Scholar] [CrossRef]
- Caffrey, A.; Ebeler, S.E. The Occurrence of Glycosylated Aroma Precursors in Vitis vinifera Fruit and Humulus lupulus Hop Cones and Their Roles in Wine and Beer Volatile Aroma Production. Foods 2021, 10, 935. [Google Scholar] [CrossRef]
- Sharp, D.C.; Vollmer, D.M.; Qian, Y.; Shellhammer, T.H. Examination of Glycoside Hydrolysis Methods for the Determination of Terpenyl Glycoside Contents of Different Hop Cultivars. J. Am. Soc. Brew. Chem. 2017, 75, 101–108. [Google Scholar] [CrossRef]
- Intelmann, D.; Hofmann, T. On the Autoxidation of Bitter-Tasting Iso-α-Acids in Beer. J. Agric. Food Chem. 2010, 58, 5059–5067. [Google Scholar] [CrossRef]
- Brendel, S.; Hofmann, T.; Granvogl, M. Characterization of Key Aroma Compounds in Pellets of Different Hop Varieties (Humulus lupulus L.) by Means of the Sensomics Approach. J. Agric. Food Chem. 2019, 67, 12044–12053. [Google Scholar] [CrossRef]
- Lafontaine, S.R.; Shellhammer, T.H. Investigating the Factors Impacting Aroma, Flavor, and Stability in Dry-Hopped Beers. MBAA Tech. Q. 2019, 56, 13–23. [Google Scholar] [CrossRef]
- Kollmannsberger, H.; Biendl, M.; Nitz, S. Occurrence of Glycosidically Bound Flavour Compounds in Hops, Hop Products and Beer. Monatsschr. Brauwiss 2006, 5, 83–89. [Google Scholar]
- Rai, A.K.; Pandey, A.; Sahoo, D. Biotechnological Potential of Yeasts in Functional Food Industry. Trends Food Sci. Technol. 2019, 83, 129–137. [Google Scholar] [CrossRef]
- Maicas, S. The Role of Yeasts in Fermentation Processes. Microorganisms 2020, 8, 1142. [Google Scholar] [CrossRef] [PubMed]
- Crafack, M.; Keul, H.; Eskildsen, C.E.; Petersen, M.A.; Saerens, S.; Blennow, A.; Skovmand-Larsen, M.; Swiegers, J.H.; Petersen, G.B.; Heimdal, H.; et al. Impact of Starter Cultures and Fermentation Techniques on the Volatile Aroma and Sensory Profile of Chocolate. Food Res. Int. 2014, 63, 306–316. [Google Scholar] [CrossRef]
- Zhang, K.; Wu, W.; Yan, Q. Research Advances on Sake Rice, Koji, and Sake Yeast: A Review. Food Sci. Nutr. 2020, 8, 2995–3003. [Google Scholar] [CrossRef]
- Gschaedler, A. Contribution of Non-Conventional Yeasts in Alcoholic Beverages. Curr. Opin. Food Sci. 2017, 13, 73–77. [Google Scholar] [CrossRef]
- Denat, M.; Pérez, D.; Heras, J.M.; Querol, A.; Ferreira, V. The Effects of Saccharomyces cerevisiae Strains Carrying Alcoholic Fermentation on the Fermentative and Varietal Aroma Profiles of Young and Aged Tempranillo Wines. Food Chem. X 2021, 9, 100116. [Google Scholar] [CrossRef]
- Thongekkaew, J.; Fujii, T.; Masaki, K.; Koyama, K. Evaluation of Candida easanensis JK8 β-Glucosidase with Potentially Hydrolyse Non-Volatile Glycosides of Wine Aroma Precursors. Nat. Prod. Res. 2019, 33, 3563–3567. [Google Scholar] [CrossRef]
- Guneser, O.; Yuceer, Y.K.; Hosoglu, M.I.; Togay, S.O.; Elibol, M. Production of Flavor Compounds from Rice Bran by Yeasts Metabolisms of Kluyveromyces marxianus and Debaryomyces hansenii. Braz. J. Microbiol. 2022, 53, 1533–1547. [Google Scholar] [CrossRef] [PubMed]
- Medina, K.; Boido, E.; Fariña, L.; Gioia, O.; Gomez, M.E.; Barquet, M.; Gaggero, C.; Dellacassa, E.; Carrau, F. Increased Flavour Diversity of Chardonnay Wines by Spontaneous Fermentation and Co-Fermentation with Hanseniaspora vineae. Food Chem. 2013, 141, 2513–2521. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Sánchez, F.J.; Páez-Lerma, J.B.; Rojas-Contreras, J.A.; López-Miranda, J.; Soto-Cruz, N.Ó.; Reinhart-Kirchmayr, M. Study of the Enzymatic Capacity of Kluyveromyces marxianus for the Synthesis of Esters. Microb. Physiol. 2019, 29, 1–9. [Google Scholar] [CrossRef]
- Lin, X.; Hu, X.; Wang, Q.; Li, C. Improved Flavor Profiles of Red Pitaya (Hylocereus lemairei) Wine by Controlling the Inoculations of Saccharomyces bayanus and Metschnikowia agaves and the Fermentation Temperature. J. Food Sci. Technol. 2020, 57, 4469–4480. [Google Scholar] [CrossRef] [PubMed]
- Batra, J.; Beri, D.; Mishra, S. Response Surface Methodology Based Optimization of β-Glucosidase Production from Pichia pastoris. Appl. Biochem. Biotechnol. 2014, 172, 380–393. [Google Scholar] [CrossRef]
- Fia, G.; Giovani, G.; Rosi, I. Study of Beta-Glucosidase Production by Wine-Related Yeasts during Alcoholic Fermentation. A New Rapid Fluorimetric Method to Determine Enzymatic Activity. J. Appl. Microbiol. 2005, 99, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Qin, Y.; Tao, Y.-S.; Zhu, X.-L.; Peng, C.-T.; Ullah, N. Potential of Glycosidase from Non- Saccharomyces Isolates for Enhancement of Wine Aroma: Wine Aroma Improvement by Glycosidase. J. Food Sci. 2016, 81, M935–M943. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Zhang, F.; Yan, X.; Qin, Y.; Jiang, J.; Liu, Y.; Song, Y. Characterization of the β-Glucosidase Activity in Indigenous Yeast Isolated from Wine Regions in China. J. Food Sci. 2021, 86, 2327–2345. [Google Scholar] [CrossRef]
- Swangkeaw, J.; Vichitphan, S.; Butzke, C.E.; Vichitphan, K. The Characterisation of a novel Pichia anomala β-Glucosidase with Potentially Aroma-Enhancing Capabilities in Wine. Ann. Microbiol. 2009, 59, 335. [Google Scholar] [CrossRef]
- Baffi, M.A.; Martin, N.; Tobal, T.M.; Ferrarezi, A.L.; Lago, J.H.G.; Boscolo, M.; Gomes, E.; Da-Silva, R. Purification and Characterization of an Ethanol-Tolerant β-Glucosidase from Sporidiobolus pararoseus and Its Potential for Hydrolysis of Wine Aroma Precursors. Appl. Biochem. Biotechnol. 2013, 171, 1681–1691. [Google Scholar] [CrossRef]
- Vervoort, Y.; Herrera-Malaver, B.; Mertens, S.; Guadalupe Medina, V.; Duitama, J.; Michiels, L.; Derdelinckx, G.; Voordeckers, K.; Verstrepen, K.J. Characterization of the Recombinant Brettanomyces anomalus β-Glucosidase and Its Potential for Bioflavouring. J. Appl. Microbiol. 2016, 121, 721–733. [Google Scholar] [CrossRef] [PubMed]
- Maicas, S.; Mateo, J. Microbial Glycosidases for Wine Production. Beverages 2016, 2, 20. [Google Scholar] [CrossRef]
- Van Wyk, N.; Grossmann, M.; Wendland, J.; Von Wallbrunn, C.; Pretorius, I.S. The Whiff of Wine Yeast Innovation: Strategies for Enhancing Aroma Production by Yeast during Wine Fermentation. J. Agric. Food Chem. 2019, 67, 13496–13505. [Google Scholar] [CrossRef] [PubMed]
- Tufariello, M.; Fragasso, M.; Pico, J.; Panighel, A.; Castellarin, S.D.; Flamini, R.; Grieco, F. Influence of Non-Saccharomyces on Wine Chemistry: A Focus on Aroma-Related Compounds. Molecules 2021, 26, 644. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Zhang, Y.; Wang, Y.; Ju, H.; Niu, C.; Song, Z.; Yuan, Y.; Yue, T. Assessment of Chemical Composition and Sensorial Properties of Ciders Fermented with Different Non-Saccharomyces Yeasts in Pure and Mixed Fermentations. Int. J. Food Microbiol. 2020, 318, 108471. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, I.; Ferreira, V. Modulating Fermentative, Varietal and Aging Aromas of Wine Using Non-Saccharomyces Yeasts in a Sequential Inoculation Approach. Microorganisms 2019, 7, 164. [Google Scholar] [CrossRef]
- Shi, W.-K.; Wang, J.; Chen, F.-S.; Zhang, X.-Y. Effect of Issatchenkia terricola and Pichia kudriavzevii on Wine Flavor and Quality through Simultaneous and Sequential Co-Fermentation with Saccharomyces cerevisiae. LWT 2019, 116, 108477. [Google Scholar] [CrossRef]
- Xu, A.; Xiao, Y.; He, Z.; Liu, J.; Wang, Y.; Gao, B.; Chang, J.; Zhu, D. Use of Non-Saccharomyces Yeast Co-Fermentation with Saccharomyces cerevisiae to Improve the Polyphenol and Volatile Aroma Compound Contents in Nanfeng Tangerine Wines. J. Fungi 2022, 8, 128. [Google Scholar] [CrossRef] [PubMed]
- Cordero Otero, R.R.; Ubeda Iranzo, J.F.; Briones-Perez, A.I.; Potgieter, N.; Villena, M.A.; Pretorius, I.S.; Rensburg, P. van Characterization of the β-Glucosidase Activity Produced by Enological Strains of Non-Saccharomyces Yeasts. J. Food Sci. 2003, 68, 2564–2569. [Google Scholar] [CrossRef]
- Sadoudi, M.; Tourdot-Maréchal, R.; Rousseaux, S.; Steyer, D.; Gallardo-Chacón, J.-J.; Ballester, J.; Vichi, S.; Guérin-Schneider, R.; Caixach, J.; Alexandre, H. Yeast–Yeast Interactions Revealed by Aromatic Profile Analysis of Sauvignon Blanc Wine Fermented by Single or Co-Culture of Non-Saccharomyces and Saccharomyces Yeasts. Food Microbiol. 2012, 32, 243–253. [Google Scholar] [CrossRef]
- Curiel, J.A.; Morales, P.; Gonzalez, R.; Tronchoni, J. Different Non-Saccharomyces Yeast Species Stimulate Nutrient Consumption in S. cerevisiae Mixed Cultures. Front. Microbiol. 2017, 8, 2121. [Google Scholar] [CrossRef]
- Villalba, M.L.; Susana Sáez, J.; del Monaco, S.; Lopes, C.A.; Sangorrín, M.P. TdKT, a New Killer Toxin Produced by Torulaspora Delbrueckii Effective against Wine Spoilage Yeasts. Int. J. Food Microbiol. 2016, 217, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.Y.; Gong, H.S.; Jiang, X.M.; Zhao, Y.P. Selected Non-Saccharomyces Wine Yeasts in Controlled Multistarter Fermentations with Saccharomyces cerevisiae on Alcoholic Fermentation Behaviour and Wine Aroma of Cherry Wines. Food Microbiol. 2014, 44, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Manzanares, P.; Vallés, S.; Viana, F. Non-Saccharomyces Yeasts in the Winemaking Process. In Molecular Wine Microbiology; Elsevier: Amsterdam, The Netherlands, 2011; pp. 85–110. ISBN 978-0-12-375021-1. [Google Scholar]
- Gamero, A.; Hernández-Orte, P.; Querol, A.; Ferreira, V. Effect of Aromatic Precursor Addition to Wine Fermentations Carried out with Different Saccharomyces Species and Their Hybrids. Int. J. Food Microbiol. 2011, 147, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.; Rainieri, S.; Witte, S.; Matern, U.; Martens, S. Identification of a Saccharomyces cerevisiae Glucosidase That Hydrolyzes Flavonoid Glucosides. Appl. Environ. Microbiol. 2011, 77, 1751–1757. [Google Scholar] [CrossRef]
- du Toit, M.; Engelbrecht, L.; Lerm, E.; Krieger-Weber, S. Lactobacillus: The Next Generation of Malolactic Fermentation Starter Cultures—An Overview. Food Bioprocess. Technol. 2011, 4, 876–906. [Google Scholar] [CrossRef]
- Di Cagno, R.; Coda, R.; De Angelis, M.; Gobbetti, M. Exploitation of Vegetables and Fruits through Lactic Acid Fermentation. Food Microbiol. 2013, 33, 1–10. [Google Scholar] [CrossRef]
- Ji, G.; Liu, G.; Li, B.; Tan, H.; Zheng, R.; Sun, X.; He, F. Influence on the Aroma Substances and Functional Ingredients of Apple Juice by Lactic Acid Bacteria Fermentation. Food Biosci. 2023, 51, 102337. [Google Scholar] [CrossRef]
- Ricci, A.; Cirlini, M.; Levante, A.; Dall’Asta, C.; Galaverna, G.; Lazzi, C. Volatile Profile of Elderberry Juice: Effect of Lactic Acid Fermentation Using L. plantarum, L. rhamnosus and L. casei Strains. Food Res. Int. 2018, 105, 412–422. [Google Scholar] [CrossRef]
- Yuasa, M.; Shimada, A.; Matsuzaki, A.; Eguchi, A.; Tominaga, M. Chemical Composition and Sensory Properties of Fermented Citrus Juice Using Probiotic Lactic Acid Bacteria. Food Biosci. 2021, 39, 100810. [Google Scholar] [CrossRef]
- Smid, E.J.; Kleerebezem, M. Production of Aroma Compounds in Lactic Fermentations. Annu. Rev. Food Sci. Technol. 2014, 5, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Allgeyer, L.C.; Miller, M.J.; Lee, S.-Y. Sensory and Microbiological Quality of Yogurt Drinks with Prebiotics and Probiotics. J. Dairy Sci. 2010, 93, 4471–4479. [Google Scholar] [CrossRef]
- Tang, S.; Cheng, Y.; Wu, T.; Hu, F.; Pan, S.; Xu, X. Effect of Lactobacillus plantarum-Fermented Mulberry Pomace on Antioxidant Properties and Fecal Microbial Community. LWT 2021, 147, 111651. [Google Scholar] [CrossRef]
- Yang, W.; Hao, X.; Zhang, X.; Zhang, G.; Li, X.; Liu, L.; Sun, Y.; Pan, Y. Identification of Antioxidant Peptides from Cheddar Cheese Made with Lactobacillus helveticus. LWT 2021, 141, 110866. [Google Scholar] [CrossRef]
- Shori, A.B.; Aljohani, G.S.; Al-zahrani, A.J.; Al-sulbi, O.S.; Baba, A.S. Viability of Probiotics and Antioxidant Activity of Cashew Milk-Based Yogurt Fermented with Selected Strains of Probiotic Lactobacillus spp. LWT 2022, 153, 112482. [Google Scholar] [CrossRef]
- Zhou, M.; Zheng, X.; Zhu, H.; Li, L.; Zhang, L.; Liu, M.; Liu, Z.; Peng, M.; Wang, C.; Li, Q.; et al. Effect of Lactobacillus plantarum Enriched with Organic/Inorganic Selenium on the Quality and Microbial Communities of Fermented Pickles. Food Chem. 2021, 365, 130495. [Google Scholar] [CrossRef] [PubMed]
- Abriouel, H.; Pérez Montoro, B.; Casimiro-Soriguer, C.S.; Pérez Pulido, A.J.; Knapp, C.W.; Caballero Gómez, N.; Castillo-Gutiérrez, S.; Estudillo-Martínez, M.D.; Gálvez, A.; Benomar, N. Insight into Potential Probiotic Markers Predicted in Lactobacillus pentosus MP-10 Genome Sequence. Front. Microbiol. 2017, 8, 891. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Omedi, J.O.; Huang, W.; Zheng, J.; Zeng, Y.; Huang, J.; Zhang, B.; Zhou, L.; Li, N.; Gao, T.; et al. Antioxidant, Flavor Profile and Quality of Wheat Dough Bread Incorporated with Kiwifruit Fermented by β-Glucosidase Producing Lactic Acid Bacteria Strains. Food Biosci. 2022, 46, 101450. [Google Scholar] [CrossRef]
- Bartowsky, E.J.; Henschke, P.A. The ‘Buttery’ Attribute of Wine—Diacetyl—Desirability, Spoilage and Beyond. Int. J. Food Microbiol. 2004, 96, 235–252. [Google Scholar] [CrossRef]
- Li, X.; Xia, X.; Wang, Z.; Wang, Y.; Dai, Y.; Yin, L.; Xu, Z.; Zhou, J. Cloning and Expression of Lactobacillus brevis β-glucosidase and Its Effect on the Aroma of Strawberry Wine. J. Food Process. Preserv. 2022, 46, e16368. [Google Scholar] [CrossRef]
- Baffi, M.A.; Tobal, T.; Lago, J.H.G.; Boscolo, M.; Gomes, E.; Da-Silva, R. Wine Aroma Improvement Using a β-Glucosidase Preparation from Aureobasidium pullulans. Appl. Biochem. Biotechnol. 2013, 169, 493–501. [Google Scholar] [CrossRef]
- Fia, G.; Millarini, V.; Granchi, L.; Bucalossi, G.; Guerrini, S.; Zanoni, B.; Rosi, I. Beta-Glucosidase and Esterase Activity from Oenococcus oeni: Screening and Evaluation during Malolactic Fermentation in Harsh Conditions. LWT 2018, 89, 262–268. [Google Scholar] [CrossRef]
- Maturano, C.; Saguir, F.M. Influence of Glycosides on Behavior of Oenococcus oeni in Wine Conditions: Growth, Substrates and Aroma Compounds. World J. Microbiol. Biotechnol. 2017, 33, 151. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Yang, S.; Liu, Y.; Ren, K.; Tian, T.; Tong, X.; Dai, S.; Lyu, B.; Yu, A.; Wang, H.; et al. Application of Kombucha Combined with Fructo-Oligosaccharides in Soy Milk: Colony Composition, Antioxidant Capacity, and Flavor Relationship. Food Biosci. 2023, 53, 102527. [Google Scholar] [CrossRef]
- Kaprasob, R.; Kerdchoechuen, O.; Laohakunjit, N.; Sarkar, D.; Shetty, K. Fermentation-Based Biotransformation of Bioactive Phenolics and Volatile Compounds from Cashew Apple Juice by Select Lactic Acid Bacteria. Process Biochem. 2017, 59, 141–149. [Google Scholar] [CrossRef]
- Lee, C.; Beuchat, L.R. Changes in Chemical Composition and Sensory Qualities of Peanut Milk Fermented with Lactic Acid Bacteria. Int. J. Food Microbiol. 1991, 13, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Tang, F.; Cai, W.; Zhao, X.; Shan, C. Evaluating the Effect of Lactic Acid Bacteria Fermentation on Quality, Aroma, and Metabolites of Chickpea Milk. Front. Nutr. 2022, 9, 1069714. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, W.; Chen, X.; Feng, M.; Rui, X.; Jiang, M.; Dong, M. Microbiological, Physicochemical and Rheological Properties of Fermented Soymilk Produced with Exopolysaccharide (EPS) Producing Lactic Acid Bacteria Strains. LWT Food Sci. Technol. 2014, 57, 477–485. [Google Scholar] [CrossRef]
- Pino, A.; Vaccalluzzo, A.; Solieri, L.; Romeo, F.V.; Todaro, A.; Caggia, C.; Arroyo-López, F.N.; Bautista-Gallego, J.; Randazzo, C.L. Effect of Sequential Inoculum of Beta-Glucosidase Positive and Probiotic Strains on Brine Fermentation to Obtain Low Salt Sicilian Table Olives. Front. Microbiol. 2019, 10, 174. [Google Scholar] [CrossRef]
- Boido, E.; Lloret, A.; Medina, K.; Carrau, F.; Dellacassa, E. Effect of β-Glycosidase Activity of Oenococcus oeni on the Glycosylated Flavor Precursors of Tannat Wine during Malolactic Fermentation. J. Agric. Food Chem. 2002, 50, 2344–2349. [Google Scholar] [CrossRef]
- Lorn, D.; Nguyen, T.-K.-C.; Ho, P.-H.; Tan, R.; Licandro, H.; Waché, Y. Screening of Lactic Acid Bacteria for Their Potential Use as Aromatic Starters in Fermented Vegetables. Int. J. Food Microbiol. 2021, 350, 109242. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.G.; Cho, J.-Y.; Kim, Y.-M.; Moon, J.-H. Change in Flavonoid Composition and Antioxidative Activity during Fermentation of Onion (Allium cepa L.) by Leuconostoc mesenteroides with Different Salt Concentrations: Onion Fermentation with NaCl. J. Food Sci. 2016, 81, C1385–C1393. [Google Scholar] [CrossRef] [PubMed]
- Acin-Albiac, M.; Filannino, P.; Arora, K.; Da Ros, A.; Gobbetti, M.; Di Cagno, R. Role of Lactic Acid Bacteria Phospho-β-Glucosidases during the Fermentation of Cereal by-Products. Foods 2021, 10, 97. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zheng, M.; Zheng, J.; Gänzle, M.G. Bacillus Species in Food Fermentations: An under-Appreciated Group of Organisms for Safe Use in Food Fermentations. Curr. Opin. Food Sci. 2023, 50, 101007. [Google Scholar] [CrossRef]
- Haure, M.; Chi Nguyen, T.K.; Cendrès, A.; Perino, S.; Waché, Y.; Licandro, H. Identification of Bacillus Strains Producing Glycosidases Active on Rutin and Grape Glycosidic Aroma Precursors. LWT 2022, 154, 112637. [Google Scholar] [CrossRef]
- Chen, X.; Lu, Y.; Zhao, A.; Wu, Y.; Zhang, Y.; Yang, X. Quantitative Analyses for Several Nutrients and Volatile Components during Fermentation of Soybean by Bacillus Subtilis Natto. Food Chem. 2022, 374, 131725. [Google Scholar] [CrossRef]
- Fen, L.; Xuwei, Z.; Nanyi, L.; Puyu, Z.; Shuang, Z.; Xue, Z.; Pengju, L.; Qichao, Z.; Haiping, L. Screening of Lignocellulose-Degrading Superior Mushroom Strains and Determination of Their CMCase and Laccase Activity. Sci. World J. 2014, 2014, 763108. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, M.; Didierjean, C.; Hecker, A.; Girardet, J.-M.; Morel-Rouhier, M.; Gelhaye, E.; Favier, F. Crystal Structure of Saccharomyces cerevisiae ECM4, a Xi-Class Glutathione Transferase That Reacts with Glutathionyl-(Hydro)Quinones. PLoS ONE 2016, 11, e0164678. [Google Scholar] [CrossRef] [PubMed]
- Perrot, T.; Schwartz, M.; Saiag, F.; Salzet, G.; Dumarçay, S.; Favier, F.; Gérardin, P.; Girardet, J.-M.; Sormani, R.; Morel-Rouhier, M.; et al. Fungal Glutathione Transferases as Tools to Explore the Chemical Diversity of Amazonian Wood Extractives. ACS Sustain. Chem. Eng. 2018, 6, 13078–13085. [Google Scholar] [CrossRef]
- Perrot, T.; Schwartz, M.; Deroy, A.; Girardet, J.-M.; Kohler, A.; Morel-Rouhier, M.; Favier, F.; Gelhaye, E.; Didierjean, C. Diversity of Omega Glutathione Transferases in Mushroom-Forming Fungi Revealed by Phylogenetic, Transcriptomic, Biochemical and Structural Approaches. Fungal Genet. Biol. 2021, 148, 103506. [Google Scholar] [CrossRef]
- Isorna, P.; Polaina, J.; Latorre-García, L.; Cañada, F.J.; González, B.; Sanz-Aparicio, J. Crystal Structures of Paenibacillus Polymyxa β-Glucosidase B Complexes Reveal the Molecular Basis of Substrate Specificity and Give New Insights into the Catalytic Machinery of Family I Glycosidases. J. Mol. Biol. 2007, 371, 1204–1218. [Google Scholar] [CrossRef] [PubMed]
- da Silva, R.R. Enzyme Technology in Food Preservation: A Promising and Sustainable Strategy for Biocontrol of Post-Harvest Fungal Pathogens. Food Chem. 2019, 277, 531–532. [Google Scholar] [CrossRef] [PubMed]
- Günata, Z.; Dugelay, I.; Vallier, M.J.; Sapis, J.C.; Bayonove, C. Multiple Forms of Glycosidases in an Enzyme Preparation from Aspergillus niger: Partial Characterization of a β-Apiosidase. Enzym. Microb. Technol. 1997, 21, 39–44. [Google Scholar] [CrossRef]
- Williams, P.J.; Allen, M.S. The Analysis of Flavouring Compounds in Grapes. In Fruit Analysis; Linskens, H.F., Jackson, J.F., Eds.; Modern Methods of Plant Analysis; Springer: Berlin/Heidelberg, Germany, 1996; Volume 18, pp. 37–57. ISBN 978-3-642-79662-3. [Google Scholar]
- Souza, F.H.M.; Nascimento, C.V.; Rosa, J.C.; Masui, D.C.; Leone, F.A.; Jorge, J.A.; Furriel, R.P.M. Purification and Biochemical Characterization of a Mycelial Glucose- and Xylose-Stimulated β-Glucosidase from the Thermophilic Fungus Humicola insolens. Process Biochem. 2010, 45, 272–278. [Google Scholar] [CrossRef]
- Mase, T.; Mori, S.; Yokoe, M. Purification, Characterization, and a Potential Application of β-Glucosidase from Aspergillus pulverulentus YM-80. J. Appl. Glycosci. 2004, 51, 211–216. [Google Scholar] [CrossRef]
- Gueguen, Y.; Chemardin, P.; Janbon, G.; Arnaud, A.; Galzy, P. A Very Efficient β-Glucosidase Catalyst for the Hydrolysis of Flavor Precursors of Wines and Fruit Juices. J. Agric. Food Chem. 1996, 44, 2336–2340. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Y.; Li, J. A Novel Extracellular β-Glucosidase from Trichosporon Asahii: Yield Prediction, Evaluation and Application for Aroma Enhancement of Cabernet Sauvignon. J. Food Sci. 2012, 77, M505–M515. [Google Scholar] [CrossRef]
- Navya, P.N.; Bhoite, R.; Murthy, P. Improved β-Glucosidase Production from Rhizopus stolonifer Utilizing Coffee Husk. Int. J. Curr. Res. 2012, 4, 123–129. [Google Scholar]
- Tang, V.C.Y.; Sun, J.; Cornuz, M.; Yu, B.; Lassabliere, B. Effect of Solid-State Fungal Fermentation on the Non-Volatiles Content and Volatiles Composition of Coffea canephora (Robusta) Coffee Beans. Food Chem. 2021, 337, 128023. [Google Scholar] [CrossRef]
- Tiwari, P.; Misra, B.N.; Sangwan, N.S. β-Glucosidases from the Fungus Trichoderma: An Efficient Cellulase Machinery in Biotechnological Applications. BioMed Res. Int. 2013, 2013, 203735. [Google Scholar] [CrossRef]
- Park, A.-R.; Hong, J.H.; Kim, J.-J.; Yoon, J.-J. Biochemical Characterization of an Extracellular β-Glucosidase from the Fungus, Penicillium italicum, Isolated from Rotten Citrus Peel. Mycobiology 2012, 40, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Shoseyov, O.; Bravdo, B.A.; Siegel, D.; Goldman, A.; Cohen, S.; Shoseyov, L.; Ikan, R. Immobilized Endo-β-Glucosidase Enriches Flavor of Wine and Passion Fruit Juice. J. Agric. Food Chem. 1990, 38, 1387–1390. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, C.; Li, J.; Xu, Y. Different Influences of β-Glucosidases on Volatile Compounds and Anthocyanins of Cabernet Gernischt and Possible Reason. Food Chem. 2013, 140, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Decker, C.H.; Visser, J.; Schreier, P. β-Glucosidases from Five Black Aspergillus Species: Study of Their Physico-Chemical and Biocatalytic Properties. J. Agric. Food Chem. 2000, 48, 4929–4936. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhou, S.; Julian McClements, D.; Huang, L.; Meng, L.; Xia, X.; Dong, M. Multistarter Fermentation of Glutinous Rice with Fu Brick Tea: Effects on Microbial, Chemical, and Volatile Compositions. Food Chem. 2020, 309, 125790. [Google Scholar] [CrossRef]
- Li, Q.; Li, Y.; Luo, Y.; Xiao, L.; Wang, K.; Huang, J.; Liu, Z. Characterization of the Key Aroma Compounds and Microorganisms during the Manufacturing Process of Fu Brick Tea. LWT 2020, 127, 109355. [Google Scholar] [CrossRef]
- Ni, H.; Hao, S.; Zheng, F.; Zhang, L.; Lee, B.; Wang, Y.; Chen, F. Effects of Two Enzyme Extracts of Aspergillus niger on Green Tea Aromas. Food Sci. Biotechnol. 2017, 26, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Qin, Q.; Li, C.; Zhao, X.; Song, F.; An, M.; Chen, Y.; Wang, X.; Huang, W.; Zhan, J.; et al. Application of Non-Saccharomyces Yeasts with High β-Glucosidase Activity to Enhance Terpene-Related Floral Flavor in Craft Beer. Food Chem. 2023, 404, 134726. [Google Scholar] [CrossRef]
- Zhao, G.; Ding, L.-L.; Yao, Y.; Cao, Y.; Pan, Z.-H.; Kong, D.-H. Extracellular Proteome Analysis and Flavor Formation during Soy Sauce Fermentation. Front. Microbiol. 2018, 9, 1872. [Google Scholar] [CrossRef]
- Lee, L.W.; Cheong, M.W.; Curran, P.; Yu, B.; Liu, S.Q. Modulation of Coffee Aroma via the Fermentation of Green Coffee Beans with Rhizopus oligosporus: I. Green Coffee. Food Chem. 2016, 211, 916–924. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Liu, Z.; Lu, X.; Cheng, J.; Lu, G.; Sun, J.; Yang, H.; Guan, Y.; Pang, L. Analysis of the Nutritional Properties and Flavor Profile of Sweetpotato Residue Fermented with Rhizopus oligosporus. LWT 2023, 174, 114401. [Google Scholar] [CrossRef]
- Li, J.; Sun, C.; Shen, Z.; Tian, Y.; Mo, F.; Wang, B.; Liu, B.; Wang, C. Untargeted Metabolomic Profiling of Aspergillus sojae 3.495 and Aspergillus oryzae 3.042 Fermented Soy Sauce Koji and Effect on Moromi Fermentation Flavor. LWT 2023, 184, 115027. [Google Scholar] [CrossRef]
- Zhang, W.; Zhuo, X.; Hu, L.; Zhang, X. Effects of Crude β-Glucosidases from Issatchenkia terricola, Pichia kudriavzevii, Metschnikowia pulcherrima on the Flavor Complexity and Characteristics of Wines. Microorganisms 2020, 8, 953. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-L.; Tong, S.-G.; Yang, Z.-Y.; Xiao, Y.-Q.; Lv, X.-C.; Weng, Q.; Yu, K.; Liu, G.-R.; Luo, X.-Q.; Wei, T.; et al. The Dynamics of Microbial Community and Flavor Metabolites during the Acetic Acid Fermentation of Hongqu Aromatic Vinegar. Curr. Res. Food Sci. 2022, 5, 1720–1731. [Google Scholar] [CrossRef] [PubMed]
- Bhanja Dey, T.; Chakraborty, S.; Jain, K.K.; Sharma, A.; Kuhad, R.C. Antioxidant Phenolics and Their Microbial Production by Submerged and Solid State Fermentation Process: A Review. Trends Food Sci. Technol. 2016, 53, 60–74. [Google Scholar] [CrossRef]
- Zhou, Y.; Zeng, L.; Gui, J.; Liao, Y.; Li, J.; Tang, J.; Meng, Q.; Dong, F.; Yang, Z. Functional Characterizations of β-Glucosidases Involved in Aroma Compound Formation in Tea (Camellia sinensis). Food Res. Int. 2017, 96, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Escamilla-Treviño, L.; Zeng, L.; Lalgondar, M.; Bevan, D.; Winkel, B.; Mohamed, A.; Cheng, C.-L.; Shih, M.-C.; Poulton, J.; et al. Functional Genomic Analysis of Arabidopsis thaliana Glycoside Hydrolase Family 1. Plant Mol. Biol. 2004, 55, 343–367. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Goyal, D.; Kumar, A.; Dantu, P.K. Biotechnological Applications of β-Glucosidases in Biomass Degradation. In Recent Advancement in White Biotechnology Through Fungi; Yadav, A.N., Singh, S., Mishra, S., Gupta, A., Eds.; Fungal Biology; Springer International Publishing: Cham, Switzerland, 2019; pp. 257–281. ISBN 978-3-030-25505-3. [Google Scholar]
- Lecas, M.; Gunata, Z.Y.; Sapis, J.-C.; Bayonove, C.L. Purification and Partial Characterization of β-Glucosidase from Grape. Phytochemistry 1991, 30, 451–454. [Google Scholar] [CrossRef]
- Terefe, N.S.; Sheean, P.; Fernando, S.; Versteeg, C. The Stability of Almond β-Glucosidase during Combined High Pressure–Thermal Processing: A Kinetic Study. Appl. Microbiol. Biotechnol. 2013, 97, 2917–2928. [Google Scholar] [CrossRef] [PubMed]
- Esen, A. Purification and Partial Characterization of Maize (Zea mays L.) β-Glucosidase. Plant Physiol. 1992, 98, 174–182. [Google Scholar] [CrossRef]
- Chokki, M.; Cudălbeanu, M.; Zongo, C.; Dah-Nouvlessounon, D.; Ghinea, I.O.; Furdui, B.; Raclea, R.; Savadogo, A.; Baba-Moussa, L.; Avamescu, S.M.; et al. Exploring Antioxidant and Enzymes (A-Amylase and B-Glucosidase) Inhibitory Activity of Morinda Lucida and Momordica Charantia Leaves from Benin. Foods 2020, 9, 434. [Google Scholar] [CrossRef] [PubMed]
- Barbagallo, R.N.; Palmeri, R.; Fabiano, S.; Rapisarda, P.; Spagna, G. Characteristic of β-Glucosidase from Sicilian Blood Oranges in Relation to Anthocyanin Degradation. Enzym. Microb. Technol. 2007, 41, 570–575. [Google Scholar] [CrossRef]
- Hartmann-Schreier, J.; Schreier, P. Purification and Partial Characterization of β-Glucosidase from Papaya Fruit. Phytochemistry 1986, 25, 2271–2274. [Google Scholar] [CrossRef]
- Gerardi, C.; Blando, F.; Santino, A.; Zacheo, G. Purification and Characterisation of a β-Glucosidase Abundantly Expressed in Ripe Sweet Cherry (Prunus avium L.) Fruit. Plant Sci. 2001, 160, 795–805. [Google Scholar] [CrossRef] [PubMed]
- Sue, M.; Ishihara, A.; Iwamura, H. Purification and Characterization of a Hydroxamic Acid Glucoside β-Glucosidase from Wheat (Triticum aestivum L.) Seedlings. Planta 2000, 210, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Baiya, S.; Hua, Y.; Ekkhara, W.; Ketudat Cairns, J.R. Expression and Enzymatic Properties of Rice (Oryza sativa L.) Monolignol β-Glucosidases. Plant Sci. 2014, 227, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Márquez, O.; Waliszewski, K.N. The Effect of Thermal Treatment on β-Glucosidase Inactivation in Vanilla Bean (Vanilla planifolia Andrews). Int. J. Food Sci. Technol. 2008, 43, 1993–1999. [Google Scholar] [CrossRef]
- Sreedhar, R.V.; Roohie, K.; Venkatachalam, L.; Narayan, M.S.; Bhagyalakshmi, N. Specific Pretreatments Reduce Curing Period of Vanilla (Vanilla planifolia) Beans. J. Agric. Food Chem. 2007, 55, 2947–2955. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-Y.; Jiang, C.-J.; Wan, X.-C.; Zhang, Z.-Z.; Li, D.-X. Purification and Partial Characterization of β-Glucosidase from Fresh Leaves of Tea Plants (Camellia sinensis (L.) O. Kuntze). Acta Biochim. Biophys. Sin. 2005, 37, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Gunata, Z.; Bitteur, S.; Brillouet, J.-M.; Bayonove, C.; Cordonnier, R. Sequential Enzymic Hydrolysis of Potentially Aromatic Glycosides from Grape. Carbohydr. Res. 1988, 184, 139–149. [Google Scholar] [CrossRef]
- Yeoman, C.J.; Han, Y.; Dodd, D.; Schroeder, C.M.; Mackie, R.I.; Cann, I.K.O. Thermostable Enzymes as Biocatalysts in the Biofuel Industry. In Advances in Applied Microbiology; Elsevier: Amsterdam, The Netherlands, 2010; Volume 70, pp. 1–55. ISBN 978-0-12-380991-9. [Google Scholar]
- Kim, I.J.; Bornscheuer, U.T.; Nam, K.H. Biochemical and Structural Analysis of a Glucose-Tolerant β-Glucosidase from the Hemicellulose-Degrading Thermoanaerobacterium saccharolyticum. Molecules 2022, 27, 290. [Google Scholar] [CrossRef]
- Bi, Y.; Zhu, C.; Wang, Z.; Luo, H.; Fu, R.; Zhao, X.; Zhao, X.; Jiang, L. Purification and Characterization of a Glucose-Tolerant β-Glucosidase from Black Plum Seed and Its Structural Changes in Ionic Liquids. Food Chem. 2019, 274, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Wang, Z.; Ren, G.; Kong, W.; Li, L.; Xie, W.; Liu, Y. Engineering a Novel Glucose-Tolerant β-Glucosidase as Supplementation to Enhance the Hydrolysis of Sugarcane Bagasse at High Glucose Concentration. Biotechnol. Biofuels 2015, 8, 202. [Google Scholar] [CrossRef]
- Lu, W.-Y.; Lin, G.-Q.; Yu, H.-L.; Tong, A.-M.; Xu, J.-H. Facile Synthesis of Alkyl β-d-Glucopyranosides from d-Glucose and the Corresponding Alcohols Using Fruit Seed Meals. J. Mol. Catal. B Enzym. 2007, 44, 72–77. [Google Scholar] [CrossRef]
- Yang, R.; Wang, Z.; Bi, Y.; Jia, J.; Zhao, X.; Liu, X.; Du, W. Convenient Synthesis of Alkyl and Phenylalkyl β-d-Glucopyranosides Using Facile and Novel Biocatalysts of Plant Origin. Ind. Crops Prod. 2015, 74, 918–924. [Google Scholar] [CrossRef]
- Berrin, J.-G.; McLauchlan, W.R.; Needs, P.; Williamson, G.; Puigserver, A.; Kroon, P.A.; Juge, N. Functional Expression of Human Liver Cytosolic β-Glucosidase in Pichia pastoris: Insights into Its Role in the Metabolism of Dietary Glucosides. Eur. J. Biochem. 2002, 269, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Fluitman, K.S.; Van Den Broek, T.J.; Nieuwdorp, M.; Visser, M.; Ijzerman, R.G.; Keijser, B.J.F. Associations of the Oral Microbiota and Candida with Taste, Smell, Appetite and Undernutrition in Older Adults. Sci. Rep. 2021, 11, 23254. [Google Scholar] [CrossRef] [PubMed]
- Besnard, P.; Christensen, J.E.; Bernard, A.; Collet, X.; Verges, B.; Burcelin, R. Fatty Taste Variability in Obese Subjects: The Oral Microbiota Hypothesis. OCL 2020, 27, 38. [Google Scholar] [CrossRef]
- Besnard, P.; Christensen, J.E.; Bernard, A.; Simoneau-Robin, I.; Collet, X.; Verges, B.; Burcelin, R. Identification of an Oral Microbiota Signature Associated with an Impaired Orosensory Perception of Lipids in Insulin-Resistant Patients. Acta Diabetol. 2020, 57, 1445–1451. [Google Scholar] [CrossRef] [PubMed]
- Altayb, H.N.; Chaieb, K.; Baothman, O.; Alzahrani, F.A.; Zamzami, M.A.; Almugadam, B.S. Study of Oral Microbiota Diversity among Groups of Families Originally from Different Countries. Saudi J. Biol. Sci. 2022, 29, 103317. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, Y.; Yang, X.; Li, C.; Song, Z. The Oral Microbiota: Community Composition, Influencing Factors, Pathogenesis, and Interventions. Front. Microbiol. 2022, 13, 895537. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, M.; Neiers, F.; Charles, J.; Heydel, J.; Muñoz-González, C.; Feron, G.; Canon, F. Oral Enzymatic Detoxification System: Insights Obtained from Proteome Analysis to Understand Its Potential Impact on Aroma Metabolization. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5516–5547. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, M.; Canon, F.; Feron, G.; Neiers, F.; Gamero, A. Impact of Oral Microbiota on Flavor Perception: From Food Processing to In-Mouth Metabolization. Foods 2021, 10, 2006. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-González, C.; Feron, G.; Guichard, E.; Rodríguez-Bencomo, J.J.; Martín-Álvarez, P.J.; Moreno-Arribas, M.V.; Pozo-Bayón, M.Á. Understanding the Role of Saliva in Aroma Release from Wine by Using Static and Dynamic Headspace Conditions. J. Agric. Food Chem. 2014, 62, 8274–8288. [Google Scholar] [CrossRef]
- Mayr, C.M.; Parker, M.; Baldock, G.A.; Black, C.A.; Pardon, K.H.; Williamson, P.O.; Herderich, M.J.; Francis, I.L. Determination of the Importance of In-Mouth Release of Volatile Phenol Glycoconjugates to the Flavor of Smoke-Tainted Wines. J. Agric. Food Chem. 2014, 62, 2327–2336. [Google Scholar] [CrossRef] [PubMed]
- Dziadas, M.; Junka, A.; Jeleń, H. Human Saliva-Mediated Hydrolysis of Eugenyl-β-D-Glucoside and Fluorescein-Di-β-D-Glucoside in In Vivo and In Vitro Models. Biomolecules 2021, 11, 172. [Google Scholar] [CrossRef]
- Duarte-Coimbra, S.; Forcina, G.; Pérez-Pardal, L.; Beja-Pereira, A. Characterization of Tongue Dorsum Microbiome in Wine Tasters. Food Res. Int. 2023, 163, 112259. [Google Scholar] [CrossRef] [PubMed]
- Walle, T.; Browning, A.M.; Steed, L.L.; Reed, S.G.; Walle, U.K. Flavonoid Glucosides Are Hydrolyzed and Thus Activated in the Oral Cavity in Humans. J. Nutr. 2005, 135, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Esteban-Fernández, A.; Rocha-Alcubilla, N.; Muñoz-González, C.; Moreno-Arribas, M.V.; Pozo-Bayón, M.Á. Intra-Oral Adsorption and Release of Aroma Compounds Following in-Mouth Wine Exposure. Food Chem. 2016, 205, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-González, C.; Martín-Álvarez, P.J.; Moreno-Arribas, M.V.; Pozo-Bayón, M.Á. Impact of the Nonvolatile Wine Matrix Composition on the in Vivo Aroma Release from Wines. J. Agric. Food Chem. 2014, 62, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Esteban-Fernández, A.; Muñoz-González, C.; Jiménez-Girón, A.; Pérez-Jiménez, M.; Pozo-Bayón, M.Á. Aroma Release in the Oral Cavity after Wine Intake Is Influenced by Wine Matrix Composition. Food Chem. 2018, 243, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Parker, M.; Black, C.A.; Barker, A.; Pearson, W.; Hayasaka, Y.; Francis, I.L. The Contribution of Wine-Derived Monoterpene Glycosides to Retronasal Odour during Tasting. Food Chem. 2017, 232, 413–424. [Google Scholar] [CrossRef] [PubMed]
- Kamonpatana, K.; Failla, M.L.; Kumar, P.S.; Giusti, M.M. Anthocyanin Structure Determines Susceptibility to Microbial Degradation and Bioavailability to the Buccal Mucosa. J. Agric. Food Chem. 2014, 62, 6903–6910. [Google Scholar] [CrossRef] [PubMed]
- Stradwick, L.; Inglis, D.; Kelly, J.; Pickering, G. Development and Application of Assay for Determining β-Glucosidase Activity in Human Saliva. Flavour 2017, 6, 1. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muradova, M.; Proskura, A.; Canon, F.; Aleksandrova, I.; Schwartz, M.; Heydel, J.-M.; Baranenko, D.; Nadtochii, L.; Neiers, F. Unlocking Flavor Potential Using Microbial β-Glucosidases in Food Processing. Foods 2023, 12, 4484. https://doi.org/10.3390/foods12244484
Muradova M, Proskura A, Canon F, Aleksandrova I, Schwartz M, Heydel J-M, Baranenko D, Nadtochii L, Neiers F. Unlocking Flavor Potential Using Microbial β-Glucosidases in Food Processing. Foods. 2023; 12(24):4484. https://doi.org/10.3390/foods12244484
Chicago/Turabian StyleMuradova, Mariam, Alena Proskura, Francis Canon, Irina Aleksandrova, Mathieu Schwartz, Jean-Marie Heydel, Denis Baranenko, Liudmila Nadtochii, and Fabrice Neiers. 2023. "Unlocking Flavor Potential Using Microbial β-Glucosidases in Food Processing" Foods 12, no. 24: 4484. https://doi.org/10.3390/foods12244484