Principles, Application, and Gaps of High-Intensity Ultrasound and High-Pressure Processing to Improve Meat Texture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol of the Systematic Data Search
2.2. Outcomes of Interest
2.2.1. Primary Outcome
2.2.2. Secondary Outcomes
2.3. Inclusion and Exclusion Criteria
2.3.1. Inclusion Criteria
2.3.2. Exclusion Criteria
2.4. Search Strategy
2.5. Studies Quality Evaluation
2.6. Risk of Bias Assessment
2.7. Data Extraction and Statistical Analysis
3. Results and Discussion
3.1. Data Search and Studies Characteristics
3.2. High-Intensity Ultrasound
3.2.1. Tenderization Mechanism and Associated Factors
3.2.2. Muscle Composition
3.2.3. Sonication Time
3.3. High-Pressure Processing
3.3.1. Tenderization Mechanism and Associated Factors
3.3.2. Pressure Range
3.3.3. Processing Time
3.4. Effects of Tenderization by HIUS and HPP on Meat Quality
3.4.1. Physicochemical Alterations
3.4.2. Meat Structure and Microstructure
3.4.3. Sensory Analysis
3.5. Papain: A Good Adjuvant for NTT-Assisted Tenderization?
3.6. HIUS and HPP: How to Fill the Gaps for Industrial Application?
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aaslyng, M.D.; Jensen, H.; Karlsson, A.H. The gender background of texture attributes of pork loin. Meat Sci. 2018, 136, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Nair, M.N.; Canto, A.C.; Rentfrow, G.; Suman, S.P. Muscle-specific effect of aging on beef tenderness. LWT 2019, 100, 250–252. [Google Scholar] [CrossRef]
- Vaskoska, R.; Ha, M.; Ong, L.; Kearney, G.; White, J.D.; Gras, S.; Warner, R.D. Ageing and cathepsin inhibition affect the shrinkage of fibre fragments of bovine semitendinosus, biceps femoris and psoas major during heating. Meat Sci. 2021, 172, 108339. [Google Scholar] [CrossRef]
- Ladrat, C.D.; Chéret, R.; Taylor, R.; Verrez-Bagnis, V. Trends in Postmortem Aging in Fish: Understanding of Proteolysis and Disorganization of the Myofibrillar Structure. Crit. Rev. Food Sci. Nutr. 2006, 46, 409–421. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.B.; Kemp, R.; Samuelsson, L.M. Effects of dry-aging on meat quality attributes and metabolite profiles of beef loins. Meat Sci. 2016, 111, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Beldarrain, L.R.; Etaio, I.; Morán, L.; Sentandreu, M.; Barron, L.J.R.; Aldai, N. Effect of ageing time on consumer preference and sensory description of foal meat. Food Res. Int. 2020, 129, 108871. [Google Scholar] [CrossRef] [PubMed]
- de Huidobro, F.R.; Miguel, E.; Onega, E.; Blázquez, B. Changes in meat quality characteristics of bovine meat during the first 6 days post mortem. Meat Sci. 2003, 65, 1439–1446. [Google Scholar] [CrossRef]
- Beriain, M.J.; Goñi, M.V.; Indurain, G.; Sarriés, M.V.; Insausti, K. Predicting Longissimus Dorsi Myoglobin Oxidation in Aged Beef Based on Early Post-Mortem Colour Measurements on the Carcass as a Colour Stability Index. Meat Sci. 2009, 81, 439–445. [Google Scholar] [CrossRef]
- Salim, A.P.A.A.; Canto, A.C.V.C.S.; Costa-Lima, B.R.C.; Simoes, J.S.; Panzenhagen, P.H.N.; Costa, M.P.; Franco, R.M.; Silva, T.J.P.; Conte-Junior, C.A. Inhibitory effect of acid concentration, aging, and different packaging on Escherichia coli O157:H7 and on color stability of beef. J. Food Process. Preserv. 2018, 42, e13402. [Google Scholar] [CrossRef]
- Warner, R.D.; Wheeler, T.L.; Ha, M.; Li, X.; Bekhit, A.E.-D.; Morton, J.; Vaskoska, R.; Dunshea, F.R.; Liu, R.; Purslow, P.; et al. Meat tenderness: Advances in biology, biochemistry, molecular mechanisms and new technologies. Meat Sci. 2022, 185, 108657. [Google Scholar] [CrossRef]
- Bhat, Z.F.; Morton, J.D.; Mason, S.L.; Bekhit, A.E.-D.A. Applied and Emerging Methods for Meat Tenderization: A Comparative Perspective: Advanced Methods for Meat Tenderization. Compr. Rev. Food Sci. Food Saf. 2018, 17, 841–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosario, D.K.A.; Rodrigues, B.L.; Bernardes, P.C.; Conte-Junior, C.A. Principles and applications of non-thermal technologies and alternative chemical compounds in meat and fish. Crit. Rev. Food Sci. Nutr. 2021, 61, 1163–1183. [Google Scholar] [CrossRef] [PubMed]
- Alarcon-Rojo, A.D.; Carrillo-Lopez, L.M.; Reyes-Villagrana, R.; Huerta-Jiménez, M.; Garcia-Galicia, I.A. Ultrasound and meat quality: A review. Ultrason. Sonochem. 2019, 55, 369–382. [Google Scholar] [CrossRef] [PubMed]
- Al-Hilphy, A.R.; Al-Temimi, A.B.; Al Rubaiy, H.H.M.; Anand, U.; Delgado-Pando, G.; Lakhssassi, N. Ultrasound applications in poultry meat processing: A systematic review. J. Food Sci. 2020, 85, 1386–1396. [Google Scholar] [CrossRef] [Green Version]
- Marco Campus High Pressure Processing of Meat, Meat Products and Seafood. Food Eng. Rev. 2010, 2, 256–273. [CrossRef]
- Gonzalez-Gonzalez, L.; Alarcon-Rojo, A.D.; Carrillo-Lopez, L.M.; Garcia-Galicia, I.A.; Huerta-Jimenez, M.; Paniwnyk, L. Does ultrasound equally improve the quality of beef? An insight into longissimus lumborum, infraspinatus and cleidooccipitalis. Meat Sci. 2020, 160, 107963. [Google Scholar] [CrossRef]
- Ma, Y.; Yuan, Y.; Bi, X.; Zhang, L.; Xing, Y.; Che, Z. Tenderization of Yak Meat by the Combination of Papain and High-Pressure Processing Treatments. Food Bioprocess Technol. 2019, 12, 681–693. [Google Scholar] [CrossRef]
- Barekat, S.; Soltanizadeh, N. Improvement of meat tenderness by simultaneous application of high-intensity ultrasonic radiation and papain treatment. Innov. Food Sci. Emerg. Technol. 2017, 39, 223–229. [Google Scholar] [CrossRef]
- Carrillo-Lopez, L.M.; Huerta-Jimenez, M.; Garcia-Galicia, I.A.; Alarcon-Rojo, A.D. Bacterial control and structural and physicochemical modification of bovine Longissimus dorsi by ultrasound. Ultrason. Sonochemistry 2019, 58, 104608. [Google Scholar] [CrossRef]
- Chang, H.-J.; Wang, Q.; Tang, C.-H.; Zhou, G.-H. Effects of Ultrasound Treatment on Connective Tissue Collagen and Meat Quality of Beef Semitendinosus Muscle: Ultrasound on Collagen and Meat Quality of Beef. J. Food Qual. 2015, 38, 256–267. [Google Scholar] [CrossRef]
- Garcia-Galicia, I.A.; Huerta-Jimenez, M.; Morales-Piñon, C.; Diaz-Almanza, S.; Carrillo-Lopez, L.M.; Reyes-Villagrana, R.; Estepp, C.; Alarcon-Rojo, A.D. The impact of ultrasound and vacuum pack on quality properties of beef after modified atmosphere on display. J. Food Process. Eng. 2020, 43, e13044. [Google Scholar] [CrossRef]
- Garcia-Galicia, I.A.; Gonzalez-Vacame, V.G.; Huerta-Jimenez, M.; Carrillo-Lopez, L.M.; Tirado-Gallegos, J.M.; Reyes-Villagrana, R.A.; Alarcon-Rojo, A.D. Ultrasound Versus traditional ageing: Physicochemical properties in beef longissimus lumborum. CyTA—J. Food 2020, 18, 675–682. [Google Scholar] [CrossRef]
- Peña-González, E.M.; Alarcón-Rojo, A.D.; Rentería, A.; García, I.; Santellano, E.; Quintero, A.; Luna, L. Quality and sensory profile of ultrasound-treated beef. Ital. J. Food Sci. 2017, 29, 463–475. [Google Scholar] [CrossRef]
- Peña-Gonzalez, E.; Alarcon-Rojo, A.D.; Garcia-Galicia, I.; Carrillo-Lopez, L.; Huerta-Jimenez, M. Ultrasound as a potential process to tenderize beef: Sensory and technological parameters. Ultrason. Sonochemistry 2019, 53, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Stadnik, J.; Dolatowski, Z.J. Influence of sonication on Warner-Bratzler shear force, colour and myoglobin of beef (m. semimembranosus). Eur. Food Res. Technol. 2011, 233, 553–559. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.; Kang, D.; Zhang, W.; Zhang, C.; Zou, Y.; Zhou, G. Changes in calpain activity, protein degradation and microstructure of beef M. semitendinosus by the application of ultrasound. Food Chem. 2018, 245, 724–730. [Google Scholar] [CrossRef]
- Duranton, F.; Simonin, H.; Chéret, R.; Guillou, S.; de Lamballerie, M. Effect of High Pressure and Salt on Pork Meat Quality and Microstructure. J. Food Sci. 2012, 77, E188–E194. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Lee, E.-J.; Lee, N.-H.; Kim, Y.-H.; Yamamoto, K. Effects of Hydrostatic Pressure Treatment on the Physicochemical, Morphological, and Textural Properties of Bovine Semitendinosus Muscle. Food Sci. Biotechnol. 2007, 16, 49–54. [Google Scholar]
- Neto, O.C.; Rosenthal, A.; Deliza, R.; Torrezan, R.; Ferreira, J.C.S.; Leal, W.F.; Gaspar, A. Effects of Hydrostatic Pressure Processing on Texture and Color of Zebu Beef. Food Bioprocess Technol. 2015, 8, 837–843. [Google Scholar] [CrossRef]
- Utama, D.T.; Lee, S.G.; Baek, K.H.; Jang, A.; Pak, J.I.; Lee, S.K. Effects of high-pressure processing on taste-related ATP breakdown compounds and aroma volatiles in grass-fed beef during vacuum aging. Asian-Australasian J. Anim. Sci. 2018, 31, 1336–1344. [Google Scholar] [CrossRef]
- PRISMA-P Group; Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (prisma-p) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef]
- Kmet, L.M.; Lee, R.C.; Cook, L.S. Standard Quality Assessment Criteria for Evaluating Primary Research Papers from a Variety of Fields; Alberta Heritage Foundation for Medical Research: Edmonton, AB, Canada, 2004; ISBN 978-1-896956-77-0. [Google Scholar]
- Deeks, J.J.; Higgins, J.P. Statistical Algorithms in Review Manager 5; 2010; pp. 1–11. Available online: https://training.cochrane.org/handbook/current/statistical-methods-revman5 (accessed on 17 August 2022).
- Alvares, T.S.; de Oliveira, G.V.; Volino-Souza, M.; Conte-Junior, C.A.; Murias, J.M. Effect of dietary nitrate ingestion on muscular performance: A systematic review and meta-analysis of randomized controlled trials. Crit. Rev. Food Sci. Nutr. 2022, 62, 5284–5306. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, S.A.; Dar, A.H.; Bhat, S.A.; Fayaz, J.; Makroo, H.A.; Dwivedi, M. High Intensity Ultrasound Processing in Liquid Foods. Food Rev. Int. 2022, 38, 1123–1148. [Google Scholar] [CrossRef]
- Awad, T.S.; Moharram, H.A.; Shaltout, O.E.; Asker, D.; Youssef, M.M. Applications of ultrasound in analysis, processing and quality control of food: A review. Food Res. Int. 2012, 48, 410–427. [Google Scholar] [CrossRef]
- Chemat, F.; Khan, M.K. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason. Sonochem. 2011, 18, 813–835. [Google Scholar] [CrossRef] [PubMed]
- Turantaş, F.; Kılıç, G.B.; Kılıç, B. Ultrasound in the meat industry: General applications and decontamination efficiency. Int. J. Food Microbiol. 2015, 198, 59–69. [Google Scholar] [CrossRef]
- Alarcon-Rojo, A.; Janacua, H.; Rodriguez, J.; Paniwnyk, L.; Mason, T. Power ultrasound in meat processing. Meat Sci. 2015, 107, 86–93. [Google Scholar] [CrossRef] [Green Version]
- Jayasooriya, S.D.; Bhandari, B.; Torley, P.; D'Arcy, B.R. Effect of High Power Ultrasound Waves on Properties of Meat: A Review. Int. J. Food Prop. 2004, 7, 301–319. [Google Scholar] [CrossRef]
- Lang, Y.; Zhang, S.; Xie, P.; Yang, X.; Sun, B.; Yang, H. Muscle fiber characteristics and postmortem quality of longissimus thoracis, psoas major and semitendinosus from Chinese Simmental bulls. Food Sci. Nutr. 2020, 8, 6083–6094. [Google Scholar] [CrossRef]
- Picard, B.; Gagaoua, M. Muscle Fiber Properties in Cattle and Their Relationships with Meat Qualities: An Overview. J. Agric. Food Chem. 2020, 68, 6021–6039. [Google Scholar] [CrossRef] [PubMed]
- Nam, Y.J.; Choi, Y.M.; Lee, S.H.; Choe, J.H.; Jeong, D.W.; Kim, Y.Y.; Kim, B.C. Sensory evaluations of porcine longissimus dorsi muscle: Relationships with postmortem meat quality traits and muscle fiber characteristics. Meat Sci. 2009, 83, 731–736. [Google Scholar] [CrossRef] [PubMed]
- Listrat, A.; Gagaoua, M.; Normand, J.; Gruffat, D.; Andueza, D.; Mairesse, G.; Mourot, B.-P.; Chesneau, G.; Gobert, C.; Picard, B. Contribution of connective tissue components, muscle fibres and marbling to beef tenderness variability in longissimus thoracis, rectus abdominis, semimembranosus and semitendinosus muscles. J. Sci. Food Agric. 2020, 100, 2502–2511. [Google Scholar] [CrossRef] [PubMed]
- Purslow, P.P. Intramuscular connective tissue and its role in meat quality. Meat Sci. 2005, 70, 435–447. [Google Scholar] [CrossRef]
- Purslow, P.P. Contribution of collagen and connective tissue to cooked meat toughness; some paradigms reviewed. Meat Sci. 2018, 144, 127–134. [Google Scholar] [CrossRef]
- Alves, L.L.; Rampelotto, C.; Silva, M.S.; De Moura, H.C.; Durante, E.C.; Mello, R.O.; Menezes, C.R.; Barin, J.S.; Campagnol, P.C.B.; Cichoski, A.J. The effect of cold storage on physicochemical and microbiological properties of beef Semitendinosus muscle subjected to ultrasonic treatment in different systems (bath or probe). Int. Food Res. J. 2018, 25, 504–514. [Google Scholar]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A Comprehensive Review on Lipid Oxidation in Meat and Meat Products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Li, H.; Emara, A.; Hu, Y.; Wang, Z.; Wang, M.; He, Z. Effect of in vitro oxidation on the water retention mechanism of myofibrillar proteins gel from pork muscles. Food Chem. 2020, 315, 126226. [Google Scholar] [CrossRef]
- Bao, Y.; Ertbjerg, P. Effects of protein oxidation on the texture and water-holding of meat: A review. Crit. Rev. Food Sci. Nutr. 2018, 59, 3564–3578. [Google Scholar] [CrossRef] [Green Version]
- Jimenez-Colmenero, F.; Borderias, A.J. High-pressure processing of myosystems. Uncertainties in methodology and their consequences for evaluation of results. Eur. Food Res. Technol. 2003, 217, 461–465. [Google Scholar] [CrossRef] [Green Version]
- Bajovic, B.; Bolumar, T.; Heinz, V. Quality considerations with high pressure processing of fresh and value added meat products. Meat Sci. 2012, 92, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Martín, J.; Asuero, A.G. High hydrostatic pressure for recovery of anthocyanins: Effects, performance, and applications. Sep. Purif. Rev. 2019, 50, 159–176. [Google Scholar] [CrossRef]
- Warner, R.; McDonnell, C.; Bekhit, A.; Claus, J.; Vaskoska, R.; Sikes, A.; Dunshea, F.; Ha, M. Systematic review of emerging and innovative technologies for meat tenderisation. Meat Sci. 2017, 132, 72–89. [Google Scholar] [CrossRef] [PubMed]
- Bhat, Z.; Morton, J.D.; Mason, S.L.; Bekhit, A.E.-D.A. Role of calpain system in meat tenderness: A review. Food Sci. Hum. Wellness 2018, 7, 196–204. [Google Scholar] [CrossRef]
- Gao, M.; Xu, Q.; Zeng, W. Effect of tea polyphenols on the tenderness of yak meat. J. Food Process. Preserv. 2020, 44, e14433. [Google Scholar] [CrossRef]
- Medina-Meza, I.G.; Barnaba, C.; Barbosa-Cánovas, G.V. Effects of high pressure processing on lipid oxidation: A review. Innov. Food Sci. Emerg. Technol. 2014, 22, 1–10. [Google Scholar] [CrossRef]
- Carrillo-Lopez, L.M.; Robledo, D.; Martínez, V.; Huerta-Jimenez, M.; Titulaer, M.; Alarcon-Rojo, A.D.; Chavez-Martinez, A.; Luna-Rodriguez, L.; Garcia-Flores, L.R. Post-mortem ultrasound and freezing of rabbit meat: Effects on the physicochemical quality and weight loss. Ultrason. Sonochem. 2021, 79, 105766. [Google Scholar] [CrossRef]
- Xiong, G.; Fu, X.; Pan, D.; Qi, J.; Xu, X.; Jiang, X. Influence of ultrasound-assisted sodium bicarbonate marination on the curing efficiency of chicken breast meat. Ultrason. Sonochem. 2020, 60, 104808. [Google Scholar] [CrossRef]
- Bao, G.; Niu, J.; Li, S.; Zhang, L.; Luo, Y. Effects of ultrasound pretreatment on the quality, nutrients and volatile compounds of dry-cured yak meat. Ultrason. Sonochem. 2022, 82, 105864. [Google Scholar] [CrossRef]
- Schreuders, F.K.; Schlangen, M.; Kyriakopoulou, K.; Boom, R.M.; van der Goot, A.J. Texture methods for evaluating meat and meat analogue structures: A review. Food Control. 2021, 127, 108103. [Google Scholar] [CrossRef]
- Bekhit, A.A.; Hopkins, D.L.; Geesink, G.; Bekhit, A.A.; Franks, P. Exogenous Proteases for Meat Tenderization. Crit. Rev. Food Sci. Nutr. 2013, 54, 1012–1031. [Google Scholar] [CrossRef]
- Fernández-Lucas, J.; Castañeda, D.; Hormigo, D. New trends for a classical enzyme: Papain, a biotechnological success story in the food industry. Trends Food Sci. Technol. 2017, 68, 91–101. [Google Scholar] [CrossRef]
- Arshad, M.S.; Kwon, J.-H.; Imran, M.; Sohaib, M.; Aslam, A.; Nawaz, I.; Amjad, Z.; Khan, U.; Javed, M. Plant and bacterial proteases: A key towards improving meat tenderization, a mini review. Cogent Food Agric. 2016, 2, 1261780. [Google Scholar] [CrossRef]
- Abdel-Naeem, H.H.; Mohamed, H.M. Improving the physico-chemical and sensory characteristics of camel meat burger patties using ginger extract and papain. Meat Sci. 2016, 118, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Xiao, Z.; Tong, H.; Tao, X.; Gu, D.; Wu, Y.; Xu, Z.; Ge, C. Effect of ultrasound-assisted enzyme treatment on the quality of chicken breast meat. Food Bioprod. Process. 2021, 125, 193–203. [Google Scholar] [CrossRef]
- Estévez, M. Protein carbonyls in meat systems: A review. Meat Sci. 2011, 89, 259–279. [Google Scholar] [CrossRef] [PubMed]
- Ha, M.; Bekhit, A.E.-D.A.; Carne, A.; Hopkins, D.L. Characterisation of commercial papain, bromelain, actinidin and zingibain protease preparations and their activities toward meat proteins. Food Chem. 2012, 134, 95–105. [Google Scholar] [CrossRef]
Breed | Muscle | Conditions | Tenderization 1 | Findings | Reference |
---|---|---|---|---|---|
Holstein | L. lumborum | Probe, 20 kHz, 100–300 W, 10–30 min | Positive | Lower shear force at 100 W, 20 min; HIUS combined with papain enhanced muscle disruption and proteolytic activity; Myofibrillar swelling due to absorption of water into the myofibrillar spaces. | Barekat & Soltanizadeh [18] |
Not informed | L. thoraci et lumborum | Bath, 37 kHz, 16–90 W/cm2, 20–40 min | Inconclusive | Lower shear force was achieved only after 4 °C storage (7 days); Instrumental color was not significative affected; HIUS modified the myofibrillar structure without changing the shear force; Mesophilic and Enterobacteriaceae counts were controlled during storage. | Carrillo-Lopez et al. [19] |
Simmental x Nanyang | Semitendinosus | Bath, 40 kHz, 1500 W, 10–60 min | Positive | Lower shear force at 1500 W, 30 min; HIUS had no effects on the insoluble collagen content; Reduction of epimysium and perimysium content by increasing sonication time; Increased sarcomeres shrunk, extracellular spaces, canals, and protein aggregates. | Chang et al. [20] |
Angus x Cebu | Semitendinosus | Bath, 37 kHz, 16 W/cm2 OR 28 W/cm2, 40 min. Vacuum package (VP) or modified atmosphere package (MAP) | Negative | Intensity does not significatively affect shear force; Muscles at VP and MAP presented similar shear forces; VP exhibited the potential to inhibit lipid oxidation. | Garcia-Galicia et al. [21] |
Brahman x Angus | L. lumborum | Bath, 37 kHz, 90 W/cm2, 40 min | Inconclusive | HIUS increased water holding capacity (WHC); Improved a * value (redness), as the package is a barrier to pigment extraction. | Garcia-Galicia et al. [22] |
Hereford | L. lumborum, Infraspinatus, and Cleidoocciptalis | Bath, 40 kHz, 11 W/cm2, 40–80 min | Positive | Lower shear force at 11 W/cm2, 80 min; Decreasing a * value (redness); Total collagen content does not reduce in muscle L. lumborum; Sonicated samples presented higher pH values. | Gonzalez-Gonzalez et al. [16] |
Hereford | L. thoraci et lumborum | Bath, 40 kHz, 11 W/cm2, 60 min | Positive | Lower shear force at 11 W/cm2, 60 min; Higher lipid oxidation was observed in treated samples during storage (4 °C, 14 days); Panelists’ perceptions were not altered during the sensory test. | Peña-González et al. [23] |
Hereford | L. thoraci et lumborum | Bath, 40 kHz, 11 W/cm2, 60 min | Positive | Positive effects on flavor, smell, color, and texture after storage (4 °C, 14 days); Wide spaces between muscle fibers and improved degradation of connective tissue. | Peña-Gonzalez et al. [24] |
Lowland black-white | Semimembranosus | Bath, 45 kHz, 2 W/cm2, 2 min | Inconclusive | After four days of storage (4 °C), the shear force of control samples does not differ from sonicated samples; Total myoglobin content does not differ between control and sonicated samples. | Stadnik & Dolatowski [25] |
Not informed | Semitendinosus | Probe, 20 kHz, 25 W/cm2, 20–40 min | Inconclusive | Control and sonicated samples only exhibited significant differences in shear force after three days of storage (5 °C); HIUS improved the activation of μ-calpain, increasing protein breakdown. | Wang et al. [26] |
Breed | Muscle | Conditions | Tenderization 1 | Findings | Reference |
---|---|---|---|---|---|
Not informed | Biceps femoris | 500 MPa, 6 min, 20 °C | Inconclusive | Treated samples exhibit higher shear force than control samples when cooked; The use of salt (1.5%) prevented the hardening effect of HPP reached at 500 MPa. | Duranton et al. [27] |
Holstein | Semitendinosus | 100–500 MPa, 5 min, 15 °C | Inconclusive | Lower shear force at 300 MPa; Pressure above 300 MPa causes meat hardening; Increased pressure results in higher protein solubility; Calcium ATPase activity decreased at higher pressures. | Y.-J. Kim et al. [28] |
Yak | Thigh muscle | 50–450 MPa (15 min), 250 MPa (5–30 min) | Positive | Lower shear force at 250 MPa, 15–20 min; Pressure above 250 MPa causes meat hardening; Processing times above 20 min causes meat hardening; WHC was improved at pressures between 50–250 MPa; Treated meat showed higher sensory scores than the control. | Ma et al. [17] |
Nelore | L. thoraci et lumborum | 100–400 MPa, 15 min | Inconclusive | Lower shear force at 200 MPa, with low cooking loss (CL); Decreasing a * value (redness). | Neto et al. [29] |
Friesian-Holstein | L. lumborum | 300 and 500 MPa, 4 min | Inconclusive | Meat treated at 300 and 500 MPa presented no significant differences in shear force; HPP tended to reduce total mesophilic bacteria count and total volatile basic nitrogen (TVBN) content; Reduced inosinic acid but increased hypoxanthine content at day 0; Increased content of volatile organic compounds. | Utama et al. [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernardo, Y.A.d.A.; do Rosario, D.K.A.; Conte-Junior, C.A. Principles, Application, and Gaps of High-Intensity Ultrasound and High-Pressure Processing to Improve Meat Texture. Foods 2023, 12, 476. https://doi.org/10.3390/foods12030476
Bernardo YAdA, do Rosario DKA, Conte-Junior CA. Principles, Application, and Gaps of High-Intensity Ultrasound and High-Pressure Processing to Improve Meat Texture. Foods. 2023; 12(3):476. https://doi.org/10.3390/foods12030476
Chicago/Turabian StyleBernardo, Yago Alves de Aguiar, Denes Kaic Alves do Rosario, and Carlos Adam Conte-Junior. 2023. "Principles, Application, and Gaps of High-Intensity Ultrasound and High-Pressure Processing to Improve Meat Texture" Foods 12, no. 3: 476. https://doi.org/10.3390/foods12030476
APA StyleBernardo, Y. A. d. A., do Rosario, D. K. A., & Conte-Junior, C. A. (2023). Principles, Application, and Gaps of High-Intensity Ultrasound and High-Pressure Processing to Improve Meat Texture. Foods, 12(3), 476. https://doi.org/10.3390/foods12030476