Aflatoxins in Maize from Serbia and Croatia: Implications of Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Serbia
2.1.1. Samples
2.1.2. Analysis
2.2. Croatia
2.2.1. Samples
2.2.2. Analysis
2.3. Weather Analysis for Serbia and Croatia
2.4. Moisture Determination
2.5. Statistical Analysis
3. Results and Discussion
3.1. Serbia
3.1.1. Aflatoxin Occurrence in 2018–2021
3.1.2. Weather Conditions in 2018–2021
3.2. Croatia
3.2.1. Aflatoxin Occurrence in 2018–2021
3.2.2. Weather Conditions in 2018–2021
3.3. Comparative Study
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO/WHO, Food and Agriculture Organization of the United Nations/World Health Organization. Aflatoxins. Safety evaluation of certain contaminants in food: Prepared by the eighty-third meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). WHO Food Addit. Ser. 2018, 74, 1–280. [Google Scholar]
- European Food Safety Authority. EFSA CONTAM Panel, 2020. Scientific opinion—Risk assessment of aflatoxins in food. EFSA J. 2020, 18, e06040. [Google Scholar]
- Abdulrauf, L.B. Aflatoxin Occurrences and Food Safety. In Aflatoxins: Occurrence, Detoxification, Determination and Health Risks; Abdulrauf, L.B., Ed.; IntechOpen: London, UK, 2021; Volume 1, pp. 1–205. [Google Scholar]
- Frisvad, J.C.; Hubka, V.; Ezekiel, C.N.; Hong, S.B.; Nováková, A.; Chen, A.J.; Mahakarnchanakul, W.; Samson, R.A.; Houbraken, J. Taxonomy of Aspergillus section Flavi and their production of aflatoxins, ochratoxins and other mycotoxins. Stud. Mycol. 2019, 91, 37–59. [Google Scholar]
- International Agency for Research on Cancer. Some naturally occurring substances: Food items and constituents, heterocyclic aromatic amines and mycotoxins. In IARC Monograph on The Evaluation of Carcinogenic Risks to Humans, Vol. 56; World Health Organization, IARC: Lyon, France, 1993; pp. 1–609. [Google Scholar]
- International Agency for Research on Cancer. Chemical agents and related occupations, a review of human carcinogens. In IARC Monograph on the Evaluation of Carcinogenic Risk to Humans, Vol. 100F; World Health Organization, IARC: Lyon, France, 2012; pp. 1–628. [Google Scholar]
- European Food Safety Authority. Opinion of the Scientific Panel on Contaminants in the food chain on a request from the commission related to aflatoxin B1 as undesirable substance in animal feed. Request No EFSA-Q-2003-035. EFSA J. 2004, 39, 1–27. [Google Scholar]
- European Food Safety Authority. Climate change as a driver of emerging risks for food and feed safety, plant, animal health and nutritional quality. EFSA Support. Publ. 2020, 17, 1–147. [Google Scholar]
- European Commission. European Commission Regulation No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 2006, 364, 1–20. [Google Scholar]
- European Commission. Commission Directive 2003/100/EC of 31 October 2003 amending Annex I to Directive 2002/32/EC of the European Parliament and of the Council on undesirable substances in animal feed. Off. J. Eur. Union 2003, 285, 1–5. [Google Scholar]
- Serbian Regulation. Maximum allowed contents of contaminants in food and feed. Off. Bull. Repub. Serb. 2011, 28, 1–16. [Google Scholar]
- Serbian Regulation. Quality of animal feed. Off. Bull. Repub. Serb. 2017, 54, 1–10. [Google Scholar]
- Asefa, D.T.; Kure, C.F.; Gjerde, R.O.; Langsrud, S.; Omer, M.K.; Nesbakken, T.; Skaar, I. A HACCP plan for mycotoxigenic hazards associated with dry-cured meat production processes. Food Control 2011, 22, 831–837. [Google Scholar] [CrossRef]
- Binder, E.M.; Tan, L.M.; Chin, L.J.; Handl, J.; Richard, J. Worldwide occurrence of mycotoxins in commodities, feeds and feed ingredients. Anim. Feed Sci. Technol. 2007, 137, 265–282. [Google Scholar] [CrossRef]
- Sanchis, V.; Magan, N. Environmental conditions affecting mycotoxins. In Mycotoxins in Food; Magan, N., Olsen, M., Eds.; Woodhead Publishing: Sawston, UK, 2004; pp. 174–189. [Google Scholar]
- Kos, J.; Mastilović, J.; Hajnal, E.J.; Šarić, B. Natural occurrence of aflatoxins in maize harvested in Serbia during 2009–2012. Food Control 2013, 34, 31–34. [Google Scholar] [CrossRef]
- Kos, J.; Janić Hajnal, E.; Šarić, B.; Jovanov, P.; Mandić, A.; Đuragić, O.; Kokić, B. Aflatoxins in maize harvested in the Republic of Serbia over the period 2012–2016. Food Addit. Contam. Part B 2018, 11, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Kos, J.; Hajnal, E.J.; Malachová, A.; Steiner, D.; Stranska, M.; Krska, R.; Poschmaier, B.; Sulyok, M. Mycotoxins in maize harvested in Republic of Serbia in the period 2012–2015. Part 1: Regulated mycotoxins and its derivatives. Food Chem. 2020, 312, 126034. [Google Scholar] [CrossRef] [PubMed]
- Kos, J.; Janić Hajnal, E.; Radić, B.; Pezo, L.; Malachová, A.; Krska, R.; Sulyok, M. Two years study of Aspergillus metabolites prevalence in maize from the Republic of Serbia. J. Food Process. Preserv. 2022, 46, e15897. [Google Scholar] [CrossRef]
- Pleadin, J.; Vulić, A.; Perši, N.; Škrivanko, M.; Capek, B.; Cvetnić, Ž. Aflatoxin B1 occurrence in maize sampled from Croatian farms and feed factories during 2013. Food Control 2014, 40, 286–291. [Google Scholar] [CrossRef]
- Pleadin, J.; Vulić, A.; Perši, N.; Škrivanko, M.; Capek, B.; Cvetnić, Ž. Annual and regional variations of aflatoxin B1 levels seen in grains and feed coming from Croatian dairy farms over a 5-year period. Food Control 2015, 47, 221–225. [Google Scholar] [CrossRef]
- Tóth, B.; Kótai, É.; Varga, M.; Pálfi, X.; Baranyi, N.; Szigeti, G.; Kocsubé, S.; Varga, J. Climate change and mycotoxin contamination in Central Europe: An overview of recent findings. J. Agric. Rural. Dev. 2013, 2, 461–466. [Google Scholar]
- Serbian Regulation. Methods for physical and chemical analysis for quality control of cereals, mills and bakery products, pasta and fast frozen dough. Off. Bull. SFRJ 1988, 74, 1–93. [Google Scholar]
- European Regulation. No 2006/401/EC of 23 February 2006 laying down the methods of sampling and analysis for the official control of the levels of mycotoxins in foodstuffs. Off. J. Eur. Union 2006, 70, 1–23. [Google Scholar]
- Hofmann, S.; Scheibner, O. Quantification of 48 myco- and phytoxins in Cereal Using Liquid Chromotography-Triple Quadrupole Mass Spectrometry. ThermoFisher Scientific, Application Note 65969. 2021, pp. 1–9. Available online: https://assets.thermofisher.com/TFS-Assets/CMD/Application-Notes/an-65969-mycotoxin-phytotoxins-cereal-tsq-quantis-an65969-en.pdf (accessed on 14 January 2022).
- European Commission. Commission Regulation 2002/657/EC of 14 August 2002 implementing council directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Off. J. Eur. Communities 2002, 221, 1–29. [Google Scholar]
- CEN/TR 16059; Food Analysis-Performance Criteria for Single Laboratory Validated Methods of Analysis for the Determination of Mycotoxins. European Committee for Standardization, Management Centre: Brussels, Belgium, 2012; pp. 1–14.
- ISO/IEC 17025; General Requirements for the Competence of Testing and Calibration Laboratories. ISO: Geneva, Switzerland, 2017; pp. 1–30.
- Shrivastava, A.; Gupta, V.B. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci. 2011, 2, 21–25. [Google Scholar] [CrossRef]
- Republic Hydrometeorological Service of Serbia. Available online: http://www.hidmet.gov.rs/ciril/meteorologija/agro.php (accessed on 1 November 2022).
- Croatian Meteorological and Hydrological Service. Available online: https://meteo.hr/index_en.php (accessed on 1 November 2022).
- SRPS EN ISO 6540; International Standard Organisation (ISO): Maize—Determination of Moisture Content (on Milled Grains and on Whole Grains). ISO: Geneva, Switzerland, 2012.
- ISO 6540:1980; International Standard Organisation (ISO): Maize—Determination of Moisture Content (on Milled Grains and on Whole Grains). ISO: Geneva, Switzerland, 1980.
- Pitt, I.I.; Hocking, A.D. Current mycotoxin issues in Australia and Southeast Asia. In Meeting the Mycotoxin Menace; Barug, D., van Egmond, H.P., Lopez-Garcia, R., van Ossenbruggen, T., Visconti, A., Eds.; Wageningen Academic Publishing: Wageningen, The Netherlands, 2004; pp. 69–80. [Google Scholar]
- Turner, P.C.; Sylla, A.; Gong, Y.Y.; Diallo, M.S.; Sutcliffe, A.E.; Hall, A.J.; Wild, C.P. Reduction in exposure to carcinogenic aflatoxins by postharvest intervention measures in West Africa: A community-based intervention study. Lancet 2005, 365, 1950–1956. [Google Scholar] [CrossRef] [PubMed]
- Shephard, G.S. Risk assessment of aflatoxins in food in Africa. Food Addit. Contam. 2008, 25, 1246–1256. [Google Scholar] [CrossRef]
- Karami-Osboo, R.; Mirabolfathy, M.; Kamran, R.; Shetab-Boushehri, M. Aflatoxin B1 in maize harvested over 3 year in Iran. Food Control 2012, 23, 271–274. [Google Scholar] [CrossRef]
- Valencia-Quintana, R.; Milić, M.; Jakšić, D.; Šegvić Klarić, M.; Tenorio-Arvide, M.G.; Pérez-Flores, G.A.; Stefano, B.; Sánchez-Alarcón, J. Environment changes, aflatoxins, and health issues: A review. Int. J. Environ. Res. Public Health. 2020, 17, 7850. [Google Scholar] [CrossRef]
- Moretti, A.; Pascale, M.; Logrieco, A.F. Mycotoxin risks under a climate change scenario in Europe. Trends Food Sci. Technol. 2019, 84, 38–40. [Google Scholar] [CrossRef]
- Assunção, R.; Martins, C.; Viegas, S.; Viegas, C.; Jakobsen, L.S.; Pires, S.; Alvito, P. Climate change and the health impact of aflatoxins exposure in Portugal—An overview. Food Addit. Contam. Part A 2018, 35, 1610–1621. [Google Scholar] [CrossRef] [Green Version]
- Sinha, R.N. Stored grain ecosystem. In Thestored-Grain Ecosystem; Jayas, D.S., White, N.D.G., Muir, W.E., Eds.; Marcell Dekker: New York, NY, USA, 1995; pp. 1–32. [Google Scholar]
- Magan, N.; Aldred, D.; Sanchis, V. Role of spoilage fungi in seed deterioration. In Fungal Biotechnology in Agricultural, Food, and Environmental Applications; Arora, D., Ed.; Marcel Dekker: New York, NY, USA, 2003; pp. 311–323. [Google Scholar]
- Venkateswarlu, B.; Shanker, A.K. Climate change and agriculture: Adaptation and mitigation stategies. Indian J. Agron. 2009, 54, 226. [Google Scholar]
- Vuković, A.J.; Vujadinović, M.P.; Rendulić, S.M.; Đurđević, V.S.; Ruml, M.M.; Babić, V.P.; Popović, D.P. Global warming impact on climate change in Serbia for the period 1961–2100. Therm. Sci. 2018, 22, 2267–2280. [Google Scholar] [CrossRef]
- Petrović, G.; Karabašević, D.; Vukotić, S.; Mirčetić, V.; Radosavac, A. The impact of climate change on the corn yield in Serbia. Acta Agric. Serb. 2020, 25, 133–140. [Google Scholar] [CrossRef]
- Marinović, I.; Cindrić Kalin, K.; Güttler, I.; Pasarić, Z. Dry spells in Croatia: Observed climate change and climate projections. Atmosphere 2021, 12, 652. [Google Scholar] [CrossRef]
- Miklin, L.; Podolszki, L.; Gulam, V.; Markotić, I. The Impact of Climate Changes on Slope Stability and Landslide Conditioning Factors: An Example from Kravarsko, Croatia. Remote Sens. 2022, 14, 1794. [Google Scholar] [CrossRef]
- Lević, J.; Gošić-Dondo, S.; Ivanović, D.; Stanković, S.; Krnjaja, V.; Bočarov-Stančić, A.; Stepanić, A. An outbreak of Aspergillus species in response to environmental conditions in Serbia. Pestic. Phytomedicine 2013, 28, 167–179. [Google Scholar] [CrossRef]
- Kos, J.; Lević, J.; Đuragić, O.; Kokić, B.; Miladinović, I. Occurrence and estimation of aflatoxin M1 exposure in milk in Serbia. Food Control 2014, 38, 41–46. [Google Scholar] [CrossRef]
- Torović, L. Aflatoxin M1 in processed milk and infant formulae and corresponding exposure of adult population in Serbia in 2013–2014. Food Addit. Contam. Part B 2015, 8, 235–244. [Google Scholar]
- Milićević, D.R.; Spirić, D.; Radičević, T.; Velebit, B.; Stefanović, S.; Milojević, L.; Janković, S. A review of the current situation of aflatoxin M1 in cow’s milk in Serbia: Risk assessment and regulatory aspects. Food Addit. Contam. Part A 2017, 34, 1617–1631. [Google Scholar] [CrossRef] [PubMed]
- Maslac, T. US Department of Agriculture Grain and Feed, Annual Report on Wheat, Corn, and Barley. 2013, pp. 1–17. Available online: http://www.thefarmsite.com/reports/contents/sgmar13.pdf (accessed on 10 November 2022).
- Miocinovic, J.; Keskic, T.; Miloradovic, Z.; Kos, A.; Tomasevic, I.; Pudja, P. The aflatoxin M1 crisis in the Serbian dairy sector: The year after. Food Addit. Contam. Part B 2017, 10, 1–4. [Google Scholar] [CrossRef]
- Olesen, J.E.; Trnka, M.; Kersebaum, K.C.; Skjelvåg, A.O.; Seguin, B.; Peltonen-Sainio, P.; Rossi, F.; Kozyra, J.; Micale, F. Impacts and adaptation of European crop production systems to climate change. Eur. J. Agron. 2011, 34, 96–112. [Google Scholar] [CrossRef]
- Bryden, W.L. Food and feed, mycotoxins and the perpetual pentagram in a changing animal production environment. Anim. Prod. Sci. 2012, 52, 383–397. [Google Scholar] [CrossRef]
- Santin, E. Mould growth and mycotoxin production. In Mycotoxin Blue Book; Diaz, D.E., Ed.; Nottingham University Press: Nottingham, UK, 2005; pp. 225–234. [Google Scholar]
- Bilandžić, N.; Božić, Đ.; Đokić, M.; Sedak, M.; Kolanović, B.S.; Varenina, I.; Cvetnić, Ž. Assessment of aflatoxin M1 contamination in the milk of four dairy species in Croatia. Food Control 2014, 43, 18–21. [Google Scholar] [CrossRef]
- Bilandžić, N.; Varga, I.; Varenina, I.; Kolanović, B.S.; Božić Luburić, Đ.; Đokić, M.; Sedak, M.; Cvetnić, Ž. Seasonal Occurrence of Aflatoxin M1 in Raw Milk during a Five-Year Period in Croatia: Dietary Exposure and Risk Assessment. Foods 2022, 11, 1959. [Google Scholar] [CrossRef]
- Indexmundi. Available online: https://www.indexmundi.com/agriculture/ (accessed on 10 November 2022).
- CEIC-Micro and Macroeconomic Data. Available online: https://www.ceicdata.com/en/croatia/agricultural-production-yield/agricultural-production-yield-late-crops-maize (accessed on 10 November 2022).
- Battilani, P.; Toscano, P.; der Fels-Klerx, V.; Moretti, A.; Camardo Leggieri, M.; Brera, C.; Rortais, A.; Goumperis, T.; Robinson, T. Aflatoxin B1 contamination in maize in Europe increases due to climate change. Sci. Rep. 2016, 6, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kresovic, B.; Matovic, G.; Gregoric, E.; Djuricin, S.; Bodroža, D. Irrigation as a climate change impact mitigation measure: An agronomic and economic assessment of maize production in Serbia. Agric. Water Manag. 2014, 139, 7–16. [Google Scholar] [CrossRef]
- Maslac, T.; US Department of Agriculture (USDA) Grain and Feed Annual. Annual Report on Wheat, Corn and Barley for Serbia; US Department of Agriculture: Washington, DC, USA, 2021; pp. 1–18.
- Kovacevic, V.; Sostaric, J. Impact of weather on the spring crops yield in Croatia with emphasis on climatic change and the 2014 growing season. Acta Agrar. Debr. 2016, 70, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Pandžić, K.; Likso, T.; Pejić, I.; Šarčević, H.; Pecina, M.; Šestak, I.; Tomšić, D.; Strelec Mahović, N. Application of the self-calibrated palmer drought severity index and standardized precipitation index for estimation of drought impact on maize grain yield in Pannonian part of Croatia. Nat. Hazards 2022, 113, 1237–1262. [Google Scholar] [CrossRef]
- Grillakis, M.G. Increase in severe and extreme soil moisture droughts for Europe under climate change. Sci. Total Environ. 2019, 660, 1245–1255. [Google Scholar] [CrossRef]
- Lhotka, O.; Kyselý, J.; Farda, A. Climate change scenarios of heat waves in Central Europe and their uncertainties. Theor. Appl. Climatol. 2018, 131, 1043–1054. [Google Scholar] [CrossRef]
- Copernicus Climate Change Servise. European State of The Climate. Available online: https://climate.copernicus.eu/ESOTC (accessed on 5 November 2022).
- The World Meteorological Organization. Available online: https://public.wmo.int/en/about-us (accessed on 5 November 2022).
Year | Aflatoxin | N 1 (%) | Min–Max 2 | Mean ± Std 3 | Median 4 | Moisture 5 |
---|---|---|---|---|---|---|
2018 | AFB1 AFB2 AFG1 AFG2 AFs | 8 (8) nd 6 1 (1) 1 (1) 8 (8) | 0.8–8.3 nd 1.7 3.1 8 (8) | 3.6 ± 2.3 nd 1.7 3.1 8.1 | 3.3 nd 1.7 3.1 8.1 | 13.4 |
2019 | AFB1 AFB2 AFG1 AFG2 AFs | 11 (11) nd nd nd 11 (11) | 0.6–10.9 nd nd nd 0.6–10.9 | 3.0 ± 2.5 nd nd nd 3.0 ± 2.5 | 1.6 nd nd nd 1.6 | 12.9 |
2020 | AFB1 AFB2 AFG1 AFG2 AFs | 5 (5) nd nd nd 5 (5) | 1.1–3.0 nd nd nd 1.1–3.0 | 2.1 ± 0.7 nd nd nd 2.1 ± 0.7 | 2.2 nd nd nd 2.2 | 13.2 |
2021 | AFB1 AFB2 AFG1 AFG2 AFs | 84 (84) 26 (26) 20 (20) 10 (10) 84 (84) | 0.5–246.3 1.8–13.9 1.2–173.9 2.7–30.7 0.5–246.3 | 30.5 ± 41.0 3.9 ± 3.1 26.0 ± 53.2 7.7 ± 9.5 38.8 ± 48.3 | 13.2 2.9 4.0 3.1 16.8 | 12.4 |
Year | N 1 T 2 > 30 °C | N T > 35 °C | N Precipitation | ∑3 P 4 (mm) | ∑ P (%) |
---|---|---|---|---|---|
2018 | 42 | 0 | 54 | 382 | 106 |
2019 | 36 | 1 | 54 | 424 | 118 |
2020 | 37 | 1 | 44 | 332 | 91 |
2021 | 50 | 13 | 44 | 296 | 81 |
Month | T 1 (°C) | ∑ P 4 (mm) | Drought Indicators | |||||||
---|---|---|---|---|---|---|---|---|---|---|
ΔTaver 2 | Tmax 3 | 2021 | 1981–2010 | SPI-2 5 | Z 6 | PDSI 7 | ||||
June | 1.8 | 38.1 | 49 | 83 | −1.0 | MoD 8 | −3.9 | ED 10 | −2.2 | MoD |
July | 3.1 | 37.3 | 99 | 63 | −0.1 | N 9 | 0.5 | N | −1.6 | N |
August | 0.7 | 37.2 | 44 | 56 | 0.5 | N | −1.1 | MoD | −2.0 | MoD |
September | 1.4 | 33.2 | 16 | 52 | −1.2 | MoD | −2.8 | ED | −2.8 | MoD |
Croatian Region | Parameter | Year | |||
---|---|---|---|---|---|
2018 | 2019 | 2020 | 2021 | ||
Central | N 1 total | 30 | 28 | 22 | 37 |
N (%) of positives | 4 (13) | 3 (11) | 3 (14) | 14 (38) | |
Min–Max 2 | 1.6–75.1 | 1.5–26.9 | 1.5–2.1 | 1.6–1.7 | |
Mean ± Std 3 | 6.9 ± 19.6 | 3.5 ± 6.8 | 1.6 ± 0.6 | 1.6 ± 0.2 | |
Median 4 Moisture 6 (%) | 1.7 11.9 | 1.6 12.0 | 1.7 13.0 | 1.7 11.8 | |
Northern | N total | 29 | 27 | 29 | 25 |
N (%) of positives | 3 (10) | 4 (15) | 5 (17) | 10 (40) | |
Min–Max | 1.7–25.4 | 1.5–2.7 | 1.6–2.1 | 2.2–23.2 | |
Mean ± Std | 3.4 ± 5.8 | 1.7 ± 0.5 | 1.7 ± 0.5 | 9.3 ± 12.0 | |
Median Moisture (%) | 2.0 12.1 | 1.7 12.1 | 1.7 12.0 | 2.5 11.7 | |
Eastern | N total | 45 | 48 | 41 | 42 |
N (%) of positives | 7 (16) | 9 (19) | 12 (29) | 18 (43) | |
Min–Max | 1.7–31.2 | 1.5–13.3 | 1.5–3.2 | 1.8–422.2 | |
Mean ± Std | 3.5 ± 6.8 | 2.3 ± 3.1 | 1.6 ± 0.6 | 54.6 ± 133.3 | |
Median Moisture (%) | 2.0 13.0 | 1.7 12.4 | 1.6 12.1 | 2.4 11.9 | |
Western | N total | 6 | 6 | 11 | 7 |
N (%) of positives | 1 (17) | 1 (17) | 0 (0) | 2 (29) | |
Min–Max | 1.6–68.2 | 1.5–1.7 | 5 nd | 1.5–2.6 | |
Mean ± Std | 40.4 ± 35.1 | 1.6 ± 0.5 | 2.0 ± 0.9 | 2.0 ± 1.1 | |
Median Moisture (%) | 52.0 11.9 | 1.7 13.6 | 1.9 13.8 | 2.012.5 | |
All regions (total) | N total | 110 | 109 | 103 | 111 |
N (%) of positives | 15 (14) | 17 (16) | 20 (19) | 44 (40) | |
Min–Max | 1.6–75.1 | 1.5–26.9 | 1.5–3.3 | 1.5–422.2 | |
Mean ± Std | 6.2 ± 14.9 | 2.5 ± 4.3 | 1.6 ± 0.6 | 34.1 ± 103.2 | |
Median Moisture (%) | 2.0 12.2 | 1.7 12.5 | 1.6 12.7 | 2.3 12.0 |
Year | N 1 T 2 > 30 °C | N T > 35 °C | N Precipitation | ∑ 3 P 4 (mm) | ∑ P (%) |
---|---|---|---|---|---|
2018 | 35 | 0 | 45 | 442 | 93 |
2019 | 43 | 1 | 53 | 615 | 129 |
2020 | 31 | 1 | 47 | 462 | 96 |
2021 | 42 | 8 | 42 | 379 | 80 |
Month | T 1 (°C) | ∑ P 4 (mm) | Drought Indicators | |||||||
---|---|---|---|---|---|---|---|---|---|---|
ΔTaver 2 | Tmax 3 | 2021 | 1981–2010 | SPI-2 5 | Z 6 | PDSI 7 | ||||
June | 3.1 | 36.3 | 17 | 97 | −0.8 | N 8 | 1.5 | SW 10 | −1.8 | MiD 13 |
July | 2.3 | 36.5 | 88 | 73 | −1.3 | SD 9 | 3.5 | ED 11 | −1.7 | MiD |
August | 0.2 | 36.4 | 62 | 80 | 0.1 | N | 0.1 | N | −1.9 | MiD |
September | 0.7 | 32.1 | 40 | 80 | −0.9 | N | 1.1 | MoD 12 | −2.2 | MoD |
Month | Palmer Drought Severity Index | |||||||
---|---|---|---|---|---|---|---|---|
Year | ||||||||
2012 | 2013 | 2015 | 2017 | |||||
June | −4.0 | ED 1 | 0.7 | N 2 | −0.1 | N | −3.0 | SD 4 |
July | −4.2 | ED | −0.5 | N | −2.8 | MoD | −3.9 | SD |
August | −4.5 | ED | −2.1 | MoD 3 | −2.4 | MoD | −4.0 | ED |
September | −2.0 | MoD | −0.9 | N | −2.0 | MoD | −3.2 | SD |
Month | Palmer Drought Severity Index | |||||||
---|---|---|---|---|---|---|---|---|
Year | ||||||||
2012 | 2013 | 2015 | 2017 | |||||
June | −5.1 | ED 1 | −0.2 | N 2 | 2.2 | MW 3 | −0.5 | N |
July | −5.5 | ED | −0.5 | N | 1.8 | SW 4 | −0.7 | N |
August | −6.1 | ED | −0.7 | N | 1.6 | SW | −1.2 | MiD 5 |
September | −5.5 | ED | −0.5 | N | 1.5 | SW | 0.2 | N |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pleadin, J.; Kos, J.; Radić, B.; Vulić, A.; Kudumija, N.; Radović, R.; Janić Hajnal, E.; Mandić, A.; Anić, M. Aflatoxins in Maize from Serbia and Croatia: Implications of Climate Change. Foods 2023, 12, 548. https://doi.org/10.3390/foods12030548
Pleadin J, Kos J, Radić B, Vulić A, Kudumija N, Radović R, Janić Hajnal E, Mandić A, Anić M. Aflatoxins in Maize from Serbia and Croatia: Implications of Climate Change. Foods. 2023; 12(3):548. https://doi.org/10.3390/foods12030548
Chicago/Turabian StylePleadin, Jelka, Jovana Kos, Bojana Radić, Ana Vulić, Nina Kudumija, Radmila Radović, Elizabet Janić Hajnal, Anamarija Mandić, and Mislav Anić. 2023. "Aflatoxins in Maize from Serbia and Croatia: Implications of Climate Change" Foods 12, no. 3: 548. https://doi.org/10.3390/foods12030548
APA StylePleadin, J., Kos, J., Radić, B., Vulić, A., Kudumija, N., Radović, R., Janić Hajnal, E., Mandić, A., & Anić, M. (2023). Aflatoxins in Maize from Serbia and Croatia: Implications of Climate Change. Foods, 12(3), 548. https://doi.org/10.3390/foods12030548