Monitoring Moroccan Honeys: Physicochemical Properties and Contamination Pattern
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Honey Samples
2.3. Chemicals and Reagents
2.4. Physicochemical Parameters
- M: mass of honey (g); 20: is the theoretical nominal mass of honey; A: water content in %.
2.5. Pesticide, PCB, and PAH Residues
2.6. PAEs and NPPs Residues
2.7. BP Residues
2.8. Inorganic Elements
2.9. Statistical Analysis
2.10. Assessment of the Dietary Exposure to Contaminants
3. Results and Discussion
3.1. Physicochemical Parameters
3.1.1. Moisture, TSS, Acidity and pH
3.1.2. Electrical Conductivity, Ash, and Mineral Content
3.2. Pesticide, PCB, and PAH Residues
3.3. Plasticizers and BPs
3.4. Potentially Toxic Elements
3.5. PCA Analysis
3.6. Dietary Exposure to Contaminants
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Christy, E.M.L.; Anna, M.C. An overview of honey: Therapeutic properties and contribution in nutrition and human health. Afr. J. Microbiol. Res. 2011, 5, 844–852. [Google Scholar]
- Di Bella, G.; Licata, P.; Potortì, A.G.; Crupi, R.; Nava, V.; Qada, B.; Lo Turco, V. Mineral content and physico-chemical parameters of honey from North regions of Algeria. Nat. Prod. Res. 2022, 36, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Przybylowski, P.; Wilenzynka, A. Honey as an environmental marker. Food Chem. 2001, 74, 289–291. [Google Scholar] [CrossRef]
- Cicero, N.; Naccari, C.; Cammilleri, G.; Giangrosso, G.; Cicero, A.; Gervasi, T.; Albergamo, A.; Ferrantelli, V. Monitoring of neonicotinoid pesticides in beekeeping. Nat. Prod. Res. 2017, 31, 1258–1262. [Google Scholar] [CrossRef] [PubMed]
- Di Bella, G.; Potortì, A.G.; Beltifa, A.; Ben Mansour, H.; Nava, V.; Lo Turco, V. Discrimination of Tunisian honey by mineral and trace element chemometrics profiling. Foods 2021, 10, 724. [Google Scholar] [CrossRef]
- Saitta, M.; Di Bella, G.; Fede, M.R.; Lo Turco, V.; Potortì, A.G.; Rando, R.; Dugo, G. Gas chromatography-tandem mass spectrometry multi-residual analysis of contaminants in Italian honey samples. Food Addit. Contam. Part A 2017, 34, 800–808. [Google Scholar] [CrossRef]
- Hungerford, N.L.; Fletcher, M.T.; Tsai, H.H.; Hnatko, D.; Swann, L.J.; Kelly, C.L.; Tan, B.L. Occurrence of environmental contaminants (pesticides, herbicides, PAHs) in Australian/Queensland Apis mellifera honey. Food Addit. Contam. Part B 2021, 14, 193–205. [Google Scholar] [CrossRef]
- Bargańska, Ż.; Ślebioda, M.; Namieśnik, J. Honey bees and their products: Bioindicators of environmental contamination. Crit. Rev. Environ. Sci. Technol. 2016, 46, 235–248. [Google Scholar] [CrossRef]
- Stockholm Convention. All POPs Listed in the Stockholm Convention. 2011. Available online: http://chm.pops.int/TheConvention/ThePOPs/AllPOPs/tabid/2509/Default.aspx (accessed on 28 December 2022).
- Erdoğrul, Ö. Levels of selected pesticides in honey samples from Kahramanmaraş, Turkey. Food Control 2007, 18, 866–871. [Google Scholar] [CrossRef]
- Kuzukiran, O.; Yurdakok-Dikmen, B.; Totan, F.E.; Celik, C.; Orhan, E.C.; Bilir, E.K.; Filazi, A.Y. Analytical Method Development and Validation for Some Persistent Organic Pollutants in water and Sediments by Gas Chromatography Mass Spectrometry. Int. J. Environ. Res. 2016, 10, 401–410. [Google Scholar]
- Kuzukiran, O.; Yurdakok-Dikmen, B.; Sevin, S.; Sireli, U.T.; Iplikcioglu-Cil, G.; Filazi, A. Determination of selected endocrine disruptors in organic, free-range, and battery-produced hen eggs and risk assessment. Environ. Sci. Pollut. Res. 2018, 25, 35376–35386. [Google Scholar] [CrossRef] [PubMed]
- Villalba, A.; Maggi, M.; Ondarza, P.M.; Szawarski, N.; Miglioranza, K.S.B. Influence of land use on chlorpyrifos and persistent organic pollutant levels in honey bees, bee bread and honey: Beehive exposure assessment. Sci. Total Environ. 2020, 713, 136554. [Google Scholar] [CrossRef]
- Bogdanov, S. Contaminants of bee products. Apidologie 2005, 37, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Notardonato, I.; Passarella, S.; Ianiri, G.; Di Fiore, C.; Russo, M.V.; Avino, P. Analytical method development and chemometric approach for evidencing presence of plasticizer residues in nectar honey samples. Int. J. Environ. Res. Public Health 2020, 17, 1692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo Turco, V.; Di Bella, G.; Potortì, A.G.; Tropea, A.; Casale, E.K.; Fede, M.R.; Dugo, G. Determination of plasticisers and BPA in Sicilian and Calabrian nectar honeys by selected ion monitoring GC/MS. Food Addit. Contam. Part A 2016, 33, 1693–1699. [Google Scholar] [CrossRef]
- von Eyken, A.; Ramachandran, S.; Bayen, S. Suspected-target screening for the assessment of plastic-related chemicals in honey. Food Control 2020, 109, 106941. [Google Scholar] [CrossRef]
- Codex Alimentarius Commission. Revised codex standard for honey codex Stan 12-1981, Rev. 1 (1987), Rev. 2 (2001). In Codex Standard; Codex Alimentarius Commission: Rome, Italy, 1981; Volume 12, pp. 1–7. [Google Scholar]
- Council of the European Union. Council Directive 2001/110/EC of 20 December 2001 relating to honey. Off. J. Eur. Communities 2002, 10, 47–52. [Google Scholar]
- CXS 193-1995; General Standard for Contaminants and Toxins in Food and Feed. Codex Alimentarius Commission: Rome, Italy, 2014.
- European Commission. Technical Guidelines for Determining the Magnitude of Pesticide Residues in Honey and Setting Maximum Residue Levels in Honey; SANTE/11956/2016 rev. 9; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- European Commission. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 2006, 364, 5–24. [Google Scholar]
- European Commission. Commission Regulation No. 10/2011 on plastic materials and articles intended to come into contact with food. Off. J. Eur. Union 2011, 12, 1–89. [Google Scholar]
- European Commission. Commission Regulation No. 2018/213 of 12 February 2018 on the use of bisphenol A in varnishes and coatings intended to come into contact with food and amending Regulation (EU) No 10/2011 as regards the use of that substance in plastic food contact materials. Off. J. Eur. Union 2018, 41, 6–12. [Google Scholar]
- European Commission. Regulation (EC) No. 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the registration, evaluation, authorisation and restriction of chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. Off. J. Eur. Union 2006, 396, 1–849. [Google Scholar]
- Sabbahi, R. Economic value of insect pollination of major crops in Morocco. Int. J. Trop. Insect Sci. 2022, 42, 1275–1284. [Google Scholar] [CrossRef]
- Les Chiffres Clés de La Filière Maraîchage—Fellah Trade. Available online: www.fellah-trade.com (accessed on 11 October 2022).
- Bouddine, T.; Laaroussi, H.; Bakour, M.; Guirrou, I.; Khallouki, F.; Mazouz, H.; Hajji, L. Organic Honey from the Middle Atlas of Morocco: Physicochemical Parameters, Antioxidant Properties, Pollen Spectra, and Sugar Profiles. Foods 2022, 11, 3362. [Google Scholar] [CrossRef]
- Chaachouay, N.; Douira, A.; Zidane, L. Herbal medicine used in the treatment of human diseases in the Rif, Northern Morocco. Arab. J. Sci. Eng. 2022, 47, 131–153. [Google Scholar] [CrossRef]
- El Alami, A.; Fattah, A.; Aboufatimad, R.; Chait, A. Ethnopharmacological Survey of Euphorbia resinifera in the Atlas Mountains of Azilal-Béni Mellal, Morocco. Int. J. Pharma Sci. Res. 2020, 11, 240–245. [Google Scholar]
- Ministère de L’agriculture et de la Pêche Maritime. Labelled Products in Morocco. 2015. Available online: https://www.agriculture.gov.ma/sites/default/files/siam15-produit_terroir-vang.pdf (accessed on 7 December 2022).
- Aazza, S.; Lyoussi, B.; Antunes, D.; Miguel, M.G. Physicochemical characterization and antioxidant activity of 17 commercial Moroccan honeys. Int. J. Food Sci. Nutr. 2014, 65, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Chakir, A.; Romane, A.; Marcazzan, G.L.; Ferrazzi, P. Physicochemical properties of some honeys produced from different plants in Morocco. Arab. J. Chem. 2016, 9, S946–S954. [Google Scholar] [CrossRef] [Green Version]
- Bouhlali, E.D.T.; Bammou, M.; Sellam, K.; El Midaoui, A.; Bourkhis, B.; Ennassir, J.; Filali-Zegzouti, Y. Physicochemical properties of eleven monofloral honey samples produced in Morocco. Arab. J. Basic Appl. Sci. 2019, 26, 476–487. [Google Scholar] [CrossRef] [Green Version]
- Elamine, Y.; Aazza, S.; Lyoussi, B.; Dulce Antunes, M.; Estevinho, L.M.; Anjos, O.; Miguel, M.G. Preliminary characterization of a Moroccan honey with a predominance of Bupleurum spinosum pollen. J. Apic. Res. 2018, 57, 153–165. [Google Scholar] [CrossRef] [Green Version]
- Elamine, Y.; Lyoussi, B.; Miguel, M.G.; Anjos, O.; Estevinho, L.; Alaiz, M.; Vioque, J. Physicochemical characteristics and antiproliferative and antioxidant activities of Moroccan Zantaz honey rich in methyl syringate. Food Chem. 2021, 339, 128098. [Google Scholar] [CrossRef]
- Petretto, G.L.; Tuberoso, C.I.G.; Vlahopoulou, G.; Atzei, A.; Mannu, A.; Zrira, S.; Pintore, G. Volatiles, color characteristics and other physico–chemical parameters of commercial Moroccan honeys. Nat. Prod. Res. 2016, 30, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Bettar, I.; González-Miret, M.L.; Hernanz, D.; Marconi, A.; Heredia, F.J.; Terrab, A. Characterisation of Moroccan Spurge (Euphorbia) honeys by their physicochemical characteristics, mineral contents and colour. Arab. J. Chem. 2019, 12, 2052–2060. [Google Scholar] [CrossRef] [Green Version]
- Laaroussi, H.; Bouddine, T.; Bakour, M.; Ousaaid, D.; Lyoussi, B. Physicochemical properties, mineral content, antioxidant activities, and microbiological quality of Bupleurum spinosum Gouan honey from the middle atlas in Morocco. J. Food Qual. 2020, 2020, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Benlyas, M.; Alem, C.; Filali-Zegzouti, Y. Evaluation of antioxidant, antibacterial and antifungal activities of eleven monofloral honey samples collected from Morocco. J. Chem. Pharm. Res. 2016, 8, 299–306. [Google Scholar]
- Lyoussi, B.; Bakour, M.; El-Haskoury, R.; Imtara, H.; Hano, C. Characterization of Various Honey Samples from Different Regions of Morocco Using Physicochemical Parameters, Minerals Content, Antioxidant Properties, and Honey-Specific Protein Pattern. J. Food Qual. 2022, 2022, 1–12. [Google Scholar] [CrossRef]
- El-Haskoury, R.; Kriaa, W.; Lyoussi, B.; Makni, M. Ceratonia siliqua honeys from Morocco: Physicochemical properties, mineral contents, and antioxidant activities. J. Food Drug Anal. 2018, 26, 67–73. [Google Scholar] [CrossRef]
- Moujanni, A.; Terrab, A.; Eddoha, R.; Nasser, B.; Benbachir, M.; Tannaoui, M.; Essamadi, A.K. Quantification of heavy metals and pesticides residues in labeled Moroccan Euphorbia resinifera honey from Tadla-Azilal. J. Mater. Environ. Sci. 2017, 8, 1826–1836. [Google Scholar]
- Mohr, S.; García-Bermejo, Á.; Herrero, L.; Gómara, B.; Costabeber, I.H.; González, M.J. Levels of brominated flame retardants (BFRs) in honey samples from different geographic regions. Sci. Total Environ. 2014, 472, 741–745. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.; Karima, S.; Nadia, O. The use of medicinal plants against cancer: An ethnobotanical study in the Béni Mellal-Khénifra Region in Morocco. Eur. J. Integr. Med. 2022, 52, 102137. [Google Scholar] [CrossRef]
- Chetoui, A.; Kaoutar, K.; Boutahar, K.; El Kardoudi, A.; BenChaoucha-Chekir, R.; Chigr, F.; Najimi, M. Herbal medicine use among Moroccan type 2 diabetes patients in the Béni Mellal-Khénifra region. J. Herb. Med. 2021, 29, 100480. [Google Scholar] [CrossRef]
- El Baghdadi, M.; Jakani, K.; Barakat, A.; Bay, Y. Magnetic susceptibility and heavy metal contamination in agricultural soil of Tadla plain. J. Mater. Environ. Sci. 2011, 2, 513–519. [Google Scholar]
- Oumenskou, H.; El Baghdadi, M.; Barakat, A.; Aquit, M.; Ennaji, W.; Karroum, L.A.; Aadraoui, M. Assessment of the heavy metal contamination using GIS-based approach and pollution indices in agricultural soils from Beni Amir irrigated perimeter, Tadla plain, Morocco. Arab. J. Geosci. 2018, 11, 1–18. [Google Scholar] [CrossRef]
- Hafiane, F.Z.; El Bouzaidi, H.; Nouayti, N.; Tahri, L.; El Jarmouni, M.; Didi, S.; Fekhaoui, M. Inventory: The pesticides application and its risk assessment in the irrigated perimeter of Tadla-Morocco. Limnol. Rev. 2021, 21, 15–27. [Google Scholar] [CrossRef]
- Barakat, A.; Ennaji, W.; Krimissa, S.; Bouzaid, M. Heavy metal contamination and ecological-health risk evaluation in peri-urban wastewater-irrigated soils of Béni Mellal city (Morocco). Int. J. Environ. Health Res. 2020, 30, 372–387. [Google Scholar] [CrossRef]
- Bogdanov, S.; Martin, P.; Lullmann, C. Harmonised Methods of the International Honey Commission; Swiss Bee Research Centre: Liebefeld, Switzerland, 2022; pp. 1–62. [Google Scholar]
- AOAC. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists Arlington: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Liotta, L.; Litrenta, F.; Lo Turco, V.; Potortì, A.G.; Lopreiato, V.; Nava, V.; Di Bella, G. Evaluation of Chemical Contaminants in Conventional and Unconventional Ragusana Provola Cheese. Foods 2022, 11, 3817. [Google Scholar] [CrossRef]
- Gugliandolo, E.; Licata, P.; Crupi, R.; Albergamo, A.; Jebara, A.; Lo Turco, V.; Di Bella, G. Plasticizers as Microplastics Tracers in Tunisian Marine Environment. Front. Mar. Sci. 2020, 7, 589398. [Google Scholar] [CrossRef]
- Di Bella, G.; Vecchio, G.L.; Albergamo, A.; Nava, V.; Bartolomeo, G.; Macrì, A.; Potortì, A.G. Chemical characterization of Sicilian dried nopal [Opuntia ficus-indica (L.) Mill.]. J. Food Compos. Anal. 2022, 106, 104307. [Google Scholar] [CrossRef]
- Nava, V.; Albergamo, A.; Bartolomeo, G.; Rando, R.; Litrenta, F.; Lo Vecchio, G. Monitoring Cannabinoids and the Safety of the Trace Element Profile of Light Cannabis sativa L. from Different Varieties and Geographical Origin. Toxics 2022, 10, 758. [Google Scholar] [CrossRef] [PubMed]
- Albergamo, A.; Mottese, A.F.; Bua, G.D.; Caridi, F.; Sabatino, G.; Barrega, L.; Dugo, G. Discrimination of the Sicilian prickly pear (Opuntia ficus-indica L.; cv. Muscaredda) according to the provenance by testing unsupervised and supervised chemometrics. J. Food Sci. 2018, 83, 2933–2942. [Google Scholar] [CrossRef] [PubMed]
- Smetanska, I.; Alharthi, S.S.; Selim, K.A. Physicochemical, antioxidant capacity and color analysis of six honeys from different origin. J. King Saud Univ. Sci. 2021, 33, 101447. [Google Scholar] [CrossRef]
- Arvanitoyannis, I.S.; Chalhoub, C.; Gotsiou, P.; Lydakis-Simantiris, N.; Kefalas, P. Novel quality control methods in conjunction with chemometrics (multivariate analysis) for detecting honey authenticity. Crit. Rev. Food Sci. Nutr. 2005, 45, 193–203. [Google Scholar] [CrossRef]
- Nanda, V.; Sarkar, B.C.; Sharma, H.K.; Bawa, A.S. Physico-chemical properties and estimation of mineral content in honey produced from different plants in Northern India. J. Food Compos. Anal. 2003, 16, 613–619. [Google Scholar] [CrossRef]
- Terrab, A.; Recamales, A.F.; Hernanz, D.; Heredia, F.J. Characterisation of Spanish thyme honeys by their physicochemical characteristics and mineral contents. Food Chem. 2004, 88, 537–542. [Google Scholar] [CrossRef]
- Moujanni, A.; Partida, L.; Essamadi, A.K.; Hernanz, D.; Heredia, F.J.; Terrab, A. Physicochemical characterization of unique unifloral honey: Euphorbia resinifera. CyTA-J. Food 2018, 16, 27–35. [Google Scholar]
- Živkov-Baloš, M.M.; Jakšić, S.M.; Popov, N.S.; Polacek, V.A. Characterization of Serbian sunflower honeys by their physicochemical characteristics. Food Feed Res. 2021, 48, 1–8. [Google Scholar] [CrossRef]
- Terrab, A.; Gonzalez, A.G.; Díez, M.J.; Heredia, F.J. Mineral content and electrical conductivity of the honeys produced in Northwest Morocco and their contribution to the characterisation of unifloral honeys. J. Sci. Food Agric. 2003, 83, 637–643. [Google Scholar] [CrossRef]
- Mondragoón-Corteza, P.; Ulloa, J.A.; Rosas-Ulloa, P.; Rodríguez-Rodríguez, R.; Resendiz Vázquez, J.A. Physicochemical characterization of honey from the West region of México. CyTA-J. Food 2013, 11, 7–13. [Google Scholar] [CrossRef]
- Stankovska, E.; Stafilov, T.; Šajn, R. Monitoring of trace elements in honey from the Republic of Macedonia by atomic absorption spectrometry. Environ. Monit. Assess. 2008, 142, 117–126. [Google Scholar] [CrossRef]
- Grainger, M.N.; Klaus, H.; Hewitt, N.; French, A.D. Investigation of inorganic elemental content of honey from regions of North Island, New Zealand. Food Chem. 2021, 361, 130110. [Google Scholar] [CrossRef]
- Chiesa, L.M.; Labella, G.F.; Giorgi, A.; Panseri, S.; Pavlovic, R.; Bonacci, S.; Arioli, F. The occurrence of pesticides and persistent organic pollutants in Italian organic honeys from different productive areas in relation to potential environmental pollution. Chemosphere 2016, 154, 482–490. [Google Scholar] [CrossRef]
- European Union. Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on Maximum Residue Levels of Pesticides in or on Food and Feed of Plant and Animal Origin and Amending Council Directive 91/414/EEC Text with EEA Relevance; Publications Office of the EU: Luxembourg, 2005. [Google Scholar]
- Chakir, A.; Romane, A.; Barbagianni, N.; Bartoli, D.; Ferrazzi, P. Polyciclic aromatic hydrocarbons (PAHs) and Polychlorinated Biphenyls (PCBs) in Moroccan honey. In Apimedica & Apiquality Forum 2010; Slovenian Beekeeper Association: Lukovica pri Domžalah, Slovenia, 2010; pp. 48–49. [Google Scholar]
- Di Bella, G.; Potortì, A.G.; Lo Turco, V.; Saitta, M.; Dugo, G. Plasticizer residues by HRGC–MS in espresso coffees from capsules, pods and moka pots. Food Control 2014, 41, 185–192. [Google Scholar] [CrossRef]
- Lo Turco, V.; Di Bella, G.; Potortì, A.G.; Fede, M.R.; Dugo, G. Determination of plasticizer residues in tea by solid phase extraction–gas chromatography–mass spectrometry. Eur. Food Res. Technol. 2015, 240, 451–458. [Google Scholar] [CrossRef]
- Katsara, K.; Kenanakis, G.; Alissandrakis, E.; Papadakis, V.M. Honey Quality and Microplastic Migration from Food Packaging: A Potential Threat for Consumer Health? Microplastics 2022, 1, 406–427. [Google Scholar] [CrossRef]
- Chicas-Mosier, A.M.; Cooper, B.A.; Melendez, A.M.; Pérez, M.; Oskay, D.; Abramson, C.I. The effects of ingested aqueous aluminum on floral fidelity and foraging strategy in honey bees (Apis mellifera). Ecotoxicol. Environ. Saf. 2017, 143, 80–86. [Google Scholar] [CrossRef]
- The European Commission. Commission Regulation (EU) 2015/1005 of 25 June 2015, Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels of Lead in Certain Foodstuffs; Publications Office of the EU: Luxembourg, 2015. [Google Scholar]
- Borsuk, G.; Sulborska, A.; Stawiarz, E.; Olszewski, K.; Wiącek, D.; Ramzi, N.; Jędryczka, M. Capacity of honeybees to remove heavy metals from nectar and excrete the contaminants from their bodies. Apidologie 2021, 52, 1098–1111. [Google Scholar] [CrossRef]
- Dżugan, M.; Wesołowska, M.; Zaguła, G.; Kaczmarski, M.; Czernicka, M.; Puchalski, C. Honeybees (Apis mellifera) as a biological barrier for contamination of honey by environmental toxic metals. Environ. Monit. Assess. 2018, 190, 1–9. [Google Scholar] [CrossRef]
- Madejczyk, M.; Baralkiewicz, D. Characterization of Polish rape and honeydew honey according to their mineral contents using ICP-MS and F-AAS/AES. Anal. Chim. Acta 2008, 617, 11–17. [Google Scholar] [CrossRef]
- Dżugan, M.; Zaguła, G.; Wesołowska, M.; Sowa, P.; Puchalski, C. Levels of toxic and essential metals in varietal honeys from Podkarpacie. J. Elem. 2017, 22, 1039. [Google Scholar] [CrossRef]
- Salama, A.S.; Etorki, A.M.; Awad, M.H. Determination of physicochemical properties and toxic heavy metals levels in honey samples from West of Libya. J. Adv. Chem. Eng. 2019, 5, 618–620. [Google Scholar]
- Perna, A.M.; Grassi, G.; Gambacorta, E.; Simonetti, A. Minerals content in Basilicata region (southern Italy) honeys from areas with different anthropic impact. Int. J. Food Sci. Technol. 2021, 56, 4465–4472. [Google Scholar] [CrossRef]
- Scivicco, M.; Squillante, J.; Velotto, S.; Esposito, F.; Cirillo, T.; Severino, L. Dietary exposure to heavy metals through polyfloral honey from Campania region (Italy). J. Food Compos. Anal. 2022, 114, 104748. [Google Scholar] [CrossRef]
- Meli, M.A.; Desideri, D.; Roselli, C.; Benedetti, C.; Feduzi, L. Essential and toxic elements in honeys from a region of central Italy. J. Toxicol. Environ. Health Part A 2015, 78, 617–627. [Google Scholar] [CrossRef] [PubMed]
- Di Bella, G.; Turco, V.L.; Potortì, A.G.; Bua, G.D.; Fede, M.R.; Dugo, G. Geographical discrimination of Italian honey by multi-element analysis with a chemometric approach. J. Food Compos. Anal. 2015, 44, 25–35. [Google Scholar] [CrossRef]
- Squadrone, S.; Brizio, P.; Stella, C.; Pederiva, S.; Brusa, F.; Mogliotti, P.; Abete, M.C. Trace and rare earth elements in monofloral and multifloral honeys from Northwestern Italy; A first attempt of characterization by a multi-elemental profile. J. Trace Elem. Med. Biol. 2020, 61, 126556. [Google Scholar] [CrossRef] [PubMed]
- Corredera, L.; Bayarri, S.; Pérez-Arquillué, C.; Lázaro, R.; Molino, F.; Herrera, A. Evaluation of heavy metals and polycyclic aromatic hydrocarbons in honeys from different origins. J. Food Prot. 2014, 77, 504–509. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT. Food and Agriculture Organization Statistic Database. 2013. Available online: http://faostat3.fao.org/faostatgateway/go/to/home/E (accessed on 14 November 2022).
- EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP); Silano, V.; Barat Baviera, J.M.; Bolognesi, C.; Chesson, A.; Cocconcelli, P.S.; Castle, L. Update of the risk assessment of di-butylphthalate (DBP), butyl-benzyl-phthalate (BBP), bis (2-ethylhexyl) phthalate (DEHP), di-isononylphthalate (DINP) and di-isodecylphthalate (DIDP) for use in food contact materials. EFSA J. 2019, 17, e05838. [Google Scholar]
- Scientific Committee for Food. Opinion of the Scientific Committee on Food on a Survey on Dietary Intake of the Food Contact Material di-2-(ethylhexyl) Adipate (DEHA); Report No SCF/CS/PM/3276 final/31920; European Commission: Brussels, Belgium, 2000. [Google Scholar]
- EFSA: Scientific opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs: Part I—Exposure assessment. EFSA J. 2015, 13, 40187.
- EFSA. Safety of aluminium from dietary intake. Scientific Opinion of the Panel on Food Additives, Flavourings, Processing Aids and Food Contact Materials on a request from the European Commission on safety of aluminium from dietary intake. EFSA J. 2008, 754, 1–34. [Google Scholar]
- WHO. Nickel in Drinking-Water, Background Document for Development of WHO Guidelines for Drinking-Water Quality. 2005. Available online: http://www.who.int/water_sanitation_health/gdwqrevision/nickel2005.pdf (accessed on 3 January 2023).
Parameter | Jujube Honey (Khénifra) | Sweet Orange Honey (Béni Mellal) | Euphorbia Honey (PGI, Azilal) | G. alypum Honey (Fquih Ben Salah) | F Statistic | p-Value |
---|---|---|---|---|---|---|
Moisture (%) | 14.93 a ± 0.15 | 16.57 b ± 0.21 | 15.47 ab ± 0.25 | 16.40 b ± 0.26 | 9.667 | 0.022 |
TSS (°Brix) | 85.00 ab ± 1.00 | 82.67 a ± 0.58 | 84.27 ab ± 0.64 | 85.83 b ± 1.26 | 8.048 | 0.045 |
Free acidity (meq/kg) | 25.46 a ± 0.15 | 15.41 b ± 0.07 | 27.49 a ± 0.34 | 39.28 c ± 0.85 | 10.395 | 0.016 |
Combined acidity (meq/kg) | 0.99 a ± 0.01 | 0.98 a ± 0.01 | 1.50 b ± 0.02 | 0.60 c ± 0.10 | 9.721 | 0.021 |
Total acidity (meq/kg) | 26.45 a ± 0.16 | 16.39 b ± 0.08 | 28.98 a ± 0.33 | 39.88 c ± 0.83 | 10.385 | 0.016 |
pH | 4.24 ± 0.08 | 4.24 ± 0.06 | 4.10 ± 0.10 | 3.98 ± 0.06 | 7.307 | 0.063 |
Parameter | Jujube Honey (Khénifra) | Sweet Orange Honey (Béni Mellal) | Euphorbia Honey (PGI, Azilal) | G. alypum Honey (Fquih Ben Salah) | F Statistic | p-Value |
---|---|---|---|---|---|---|
Conductivity (µS/cm) | 381.33 a ± 18.23 | 157.00 b ± 1.00 | 362.67 a ± 8.62 | 633.67 c ± 8.02 | 9.974 | 0.019 |
Ash (g/Kg) | 1.17 a ± 0.18 | 0.34 b ± 0.05 | 0.97 a ± 0.08 | 1.51 c ± 0.10 | 9.112 | 0.025 |
K (mg/Kg) | 753.25 a ± 72.86 | 102.80 b ± 2.71 | 695.87 a ± 38.61 | 849.73 c ± 81.83 | 9.667 | 0.022 |
Ca (mg/Kg) | 98.18 a ± 0.89 | 81.70 a ± 0.80 | 125.62 b ± 1.00 | 110.75 b ± 1.68 | 10.385 | 0.016 |
Na (mg/Kg) | 76.84 a ± 0.32 | 35.21 b ± 0.67 | 60.41 a,c ± 1.06 | 89.99 a ± 2.14 | 10.385 | 0.016 |
Mg (mg/Kg) | 57.87 a ± 2.42 | 65.46 ab ± 0.94 | 69.54 ab ± 0.91 | 85.24 b ± 1.67 | 10.385 | 0.016 |
Mn (mg/Kg) | 1.35 a ± 0.11 | 0.57 a ± 0.03 | 4.00 b ± 0.11 | 2.24 ab ± 0.12 | 10.385 | 0.016 |
Fe (mg/Kg) | 9.50 a ± 0.63 | 6.89 a ± 0.10 | 14.34 b ± 0.29 | 16.51 b ± 0.24 | 10.385 | 0.016 |
Zn (mg/Kg) | 2.81 ab ± 0.06 | 1.41 a ± 0.03 | 6.98 c ± 0.51 | 3.60 b ± 0.18 | 10.385 | 0.016 |
Cu (mg/Kg) | 0.27 a ± 0.09 | 0.27 a ± 0.06 | 0.86 b ± 0.06 | 1.59 b ± 0.18 | 9.539 | 0.025 |
Se mg/Kg) | 0.25 a ± 0.03 | 0.09 b ± 0.01 | 0.16 c ± 0.01 | 0.17 c ± 0.01 | 9.462 | 0.024 |
Cr (mg/Kg) | 0.09 a ± 0.01 | 0.06 a ± 0.01 | 0.11 a ± 0.01 | 0.94 b ± 0.05 | 10.385 | 0.016 |
Co (mg/Kg) | 0.04 ab ± 0.01 | 0.01 a ± 0.01 | 0.24 b ± 0.11 | 0.05 ab ± 0.02 | 9.585 | 0.022 |
Ni (mg/Kg) | 0.54 a ± 0.11 | 0.17 b ± 0.04 | 0.17 b ± 0.01 | 0.21 b ± 0.03 | 8.231 | 0.041 |
Analyte (µg/kg) | Jujube Honey (Khénifra) | Sweet Orange Honey (Béni Mellal) | Euphorbia Honey (PGI, Azilal) | G. alypum Honey (Fquih Ben Salah) | F Statistic | p-Value |
---|---|---|---|---|---|---|
Carbaryl | 1060.90 a ± 71.34 | 146.30 b ± 7.24 | 277.41 b ± 23.24 | 16.62 c ± 0.70 | 10.385 | 0.016 |
Dimethoate | 72.01 a ± 4.92 | 14.31 b ± 1.28 | <LOQ | <LOQ | 10.649 | 0.014 |
Carbofuran | 77.30 a ± 1.90 | 5.30 b ± 1.00 | <LOQ | <LOQ | 10.649 | 0.014 |
Diazinon | <LOQ | 25.50 a ± 0.81 | 27.31 a ± 1.56 | 2.41 b ± 0.35 | 10.116 | 0.018 |
Alachlor | 22.66 a ± 1.21 | 9.05 b ± 0.24 | 8.75 b ± 0.44 | 1.37 c ± 0.17 | 9.667 | 0.022 |
Metalaxyl-M | <LOQ | 11.43 b ± 1.19 | 28.35 c ± 1.10 | <LOQ | 10.649 | 0.014 |
Quinalphos | 5.92 a ± 0.30 | <LOQ | <LOQ | <LOQ | 10.735 | 0.013 |
Fenthion Sulfoxide | 16.53 a ± 1.05 | <LOQ | <LOQ | <LOQ | 10.735 | 0.013 |
Fenthion Sulfone | <LOQ | 5.26 a ± 0.74 | 6.11 a ± 3.25 | <LOQ | 9.598 | 0.022 |
Acephate | 1251.19 a ± 147.67 | 11.46 b ± 0.69 | 25.49 b ± 1.61 | 11.45 b ± 1.25 | 9.359 | 0.025 |
Cyromazine | 2060.99 a ± 75.05 | 223.72 b ± 12.71 | 113.60 b ± 3.86 | 21.72 c ± 1.48 | 10.385 | 0.016 |
PCB118 | 0.71 a ± 0.01 | <LOQ | <LOQ | <LOQ | 10.800 | 0.013 |
PCB180 | 0.72 a ± 0.07 | 0.43 b ± 0.03 | 0.42 b ± 0.04 | <LOQ | 9.565 | 0.023 |
Acenaphthylene | 0.66 a ± 0.05 | < LOQ | <LOQ | <LOQ | 10.735 | 0.013 |
Fluorene | 1.14 a ± 0.10 | 0.86 a ± 0.05 | <LOQ | <LOQ | 10.649 | 0.014 |
Phenanthrene | 0.65 a ± 0.04 | <LOQ | <LOQ | <LOQ | 10.735 | 0.013 |
Anthracene | 1.54 a ± 0.11 | <LOQ | <LOQ | <LOQ | 10.735 | 0.013 |
Benzo[a]anthracene | <LOQ | 1.71 a ± 0.09 | <LOQ | <LOQ | 10.735 | 0.013 |
Chrysene | 2.10 a ± 0.06 | 1.62 a ± 0.06 | <LOQ | < LOQ | 10.649 | 0.014 |
Analyte | Jujube Honey (Khénifra) | Sweet orange Honey (Béni Mellal) | Euphorbia Honey (PGI, Azilal) | G. alypum Honey (Fquih Ben Salah) | F Statistic | p-Value |
---|---|---|---|---|---|---|
Plasticizers (mg/Kg) | ||||||
DEHP | 0.59 ab ± 0.03 | 0.36 a ± 0.02 | 0.35 a ± 0.03 | 1.06 b ± 0.03 | 9.359 | 0.025 |
DEP | 2.95 a ± 0.10 | 3.1 a ± 0.05 | 2.42 a ± 0.28 | 0.94 b ± 0.06 | 10.385 | 0.016 |
DPrP | 0.61 a ± 0.03 | 0.65 a ± 0.02 | 0.57 a ± 0.01 | 0.42 b ± 0.01 | 9.974 | 0.019 |
DiBP | 0.77 a ± 0.04 | 0.79 a ± 0.03 | 0.60 ab ± 0.07 | 0.45 b ± 0.02 | 9.359 | 0.025 |
DBP | 0.89 a ± 0.06 | 1.05 a ± 0.05 | 0.84 a ± 0.04 | 0.49 b ± 0.04 | 9.667 | 0.022 |
DEA | 5.65 a ± 0.48 | 5.30 a ± 0.07 | 1.35 b ± 0.09 | 1.30 b ± 0.16 | 8.436 | 0.038 |
DiBA | 0.85 a ± 0.05 | 0.82 a ± 0.03 | 0.76 a ± 0.01 | 0.53 b ± 0.08 | 9.462 | 0.024 |
DBA | 12.42 a ± 0.31 | 12.23 a ± 0.40 | 8.62 b ± 0.65 | 0.50 c ± 0.04 | 9.667 | 0.022 |
DEHA | 0.39 ± 0.06 | 0.36 ± 0.08 | 0.36 ± 0.05 | 0.63 ± 0.05 | 9.368 | 0.095 |
DEHT | 0.59 ± 0.03 | 0.52 ± 0.07 | 0.58 ± 0.09 | 1.14 ± 0.10 | 6.897 | 0.075 |
Bisphenols (µg/kg) | ||||||
BPA | <LOQ | 7.74 b ± 0.69 | 8.07 b ± 0.08 | <LOQ | 9.598 | 0.022 |
BPB | 8.75 b ± 1.15 | 5.72 ab ± 0.61 | 4.62 a ± 0.31 | 4.16 a ± 0.10 | 10.385 | 0.016 |
BPAF | 1.48 ± 0.17 | 1.55 ± 0.24 | 1.58 ± 0.17 | <LOQ | 6.668 | 0.083 |
Analyte (mg/Kg) | Jujube Honey (Khénifra) | Sweet Orange Honey (Béni Mellal) | Euphorbia Honey (PGI, Azilal) | G. alypum Honey (Fquih Ben Salah) | F Statistic | p-Value |
---|---|---|---|---|---|---|
Al | 1.69 a ± 0.15 | 2.73 ab ± 0.19 | 5.56 b ± 0.12 | 2.67 ab ± 0.12 | 9.359 | 0.025 |
Pb | 0.06 ± 0.01 | 0.16 ± 0.06 | 0.15 ± 0.04 | 0.12 ± 0.03 | 3.873 | 0.276 |
Cd | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | 0.108 |
As | 0.06 ± 0.01 | 0.11 ± 0.04 | 0.09 ± 0.03 | 0.06 ± 0.02 | 9.430 | 0.249 |
Contaminant | Jujube Honey (Khénifra) | Sweet Orange Honey (Béni Mellal) | Euphorbia Honey (PGI, Azilal) | G. alypum Honey (Fquih Ben Salah) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Europe | North Africa | Europe | North Africa | Europe | North Africa | Europe | North Africa | |||||||||
EDI | HQ | EDI | HQ | EDI | HQ | EDI | HQ | EDI | HQ | EDI | HQ | EDI | HQ | EDI | HQ | |
Plasticizers and BPs | ||||||||||||||||
DEHP | 1.52 × 105 | <1 | 2.53 × 106 | <1 | 9.25 × 106 | <1 | 1.54 × 106 | <1 | 9.00 × 106 | <1 | 1.50 × 106 | <1 | 2.73 × 105 | <1 | 4.54 × 106 | <1 |
DEP | 7.59 × 105 | <1 | 1.26 × 105 | <1 | 7.97 × 105 | <1 | 1.32 × 105 | <1 | 6.22 × 105 | <1 | 1.04 × 105 | <1 | 2.42 × 105 | <1 | 4.03 × 106 | <1 |
DBP | 2.29 × 105 | <1 | 3.81 × 106 | <1 | 0.27 × 105 | <1 | 0.45 × 105 | <1 | 0.21 × 104 | <1 | 3.60 × 106 | <1 | 1.26 × 105 | <1 | 2.10 × 106 | <1 |
DEHA | 1.00 × 105 | <1 | 1.67 × 106 | <1 | 9.25 × 106 | <1 | 1.54 × 106 | <1 | 9.25 × 106 | <1 | 1.54 × 106 | <1 | 1.62 × 105 | <1 | 2.70 × 106 | <1 |
BPA * | - | - | - | - | 0.20 × 103 | <1 | 3.31 × 105 | <1 | 0.21 × 103 | <1 | 3.46 × 105 | <1 | - | - | 4.54 × 106 | - |
Potentially toxic elements | ||||||||||||||||
Al * | 3.04 × 104 | <1 | 5.07 × 105 | <1 | 4.91 × 104 | <1 | 8.19 × 105 | <1 | 1.00 × 103 | <1 | 1.67 × 104 | <1 | 4.81 × 104 | <1 | 8.01 × 105 | <1 |
Pb | 1.54 × 106 | <1 | 2.57 × 107 | <1 | 4.11 × 106 | <1 | 6.86 × 107 | <1 | 3.86 × 106 | <1 | 6.43 × 107 | <1 | 3.09 × 106 | <1 | 5.14 × 107 | <1 |
As | 1.54 × 103 | <1 | 2.57 × 104 | <1 | 2.83 × 103 | <1 | 4.71 × 104 | <1 | 2.31 × 103 | <1 | 3.86 × 104 | <1 | 1.54 × 103 | <1 | 2.57 × 104 | <1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massous, A.; Ouchbani, T.; Lo Turco, V.; Litrenta, F.; Nava, V.; Albergamo, A.; Potortì, A.G.; Di Bella, G. Monitoring Moroccan Honeys: Physicochemical Properties and Contamination Pattern. Foods 2023, 12, 969. https://doi.org/10.3390/foods12050969
Massous A, Ouchbani T, Lo Turco V, Litrenta F, Nava V, Albergamo A, Potortì AG, Di Bella G. Monitoring Moroccan Honeys: Physicochemical Properties and Contamination Pattern. Foods. 2023; 12(5):969. https://doi.org/10.3390/foods12050969
Chicago/Turabian StyleMassous, Abir, Tarik Ouchbani, Vincenzo Lo Turco, Federica Litrenta, Vincenzo Nava, Ambrogina Albergamo, Angela Giorgia Potortì, and Giuseppa Di Bella. 2023. "Monitoring Moroccan Honeys: Physicochemical Properties and Contamination Pattern" Foods 12, no. 5: 969. https://doi.org/10.3390/foods12050969
APA StyleMassous, A., Ouchbani, T., Lo Turco, V., Litrenta, F., Nava, V., Albergamo, A., Potortì, A. G., & Di Bella, G. (2023). Monitoring Moroccan Honeys: Physicochemical Properties and Contamination Pattern. Foods, 12(5), 969. https://doi.org/10.3390/foods12050969