Prevention of Fungal Contamination in Semi-Hard Cheeses by Whey–Gelatin Film Incorporated with Levilactobacillus brevis SJC120
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms and Growth Conditions
2.2. Production of Films
2.3. Antifungal Activity of Films with LAB-Fermented Whey
2.4. Characterization of the Antifungal Properties of Cell-Free Supernatant
2.5. Enumeration of LAB in the Films
2.6. Film Characterization
2.7. Antifungal Activity of Films for the Control of Fungal Growth in Cheese
2.8. Cheese Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Antifungal Activity of Films with LAB-Fermented Whey
3.2. Characterization of the Antifungal Properties of CFS
3.3. L. brevis SJC120 Viability in the Film
3.4. Film Characterization
3.5. Antifungal Activity of Films Used in Cheese
3.6. Effect of Film Application on Cheese Ripening
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kure, C.F.; Skaar, I. The fungal problem in cheese industry. Curr. Opin. Food Sci. 2019, 29, 14–19. [Google Scholar] [CrossRef]
- Hymery, N.; Vasseur, V.; Coton, M.; Mounier, J.; Jany, J.L.; Barbier, G.; Coton, E. Filamentous fungi and mycotoxins in cheese: A review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 437–456. [Google Scholar] [CrossRef] [PubMed]
- Garnier, L.; Valence, F.; Mounier, J. Diversity and control of spoilage fungi in dairy products: An update. Microorganisms 2017, 5, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitt, J. Penicillium and Related Genera; Food Spoilage Microorganisms Woodhead Publishing Series in Food Science, Technology and Nutrition; Springer: Berlin/Heidelberg, Germany, 2006; pp. 437–450. [Google Scholar]
- Kandasamy, S.; Park, W.S.; Yoo, J.; Yun, J.; Kang, H.B.; Seol, K.-H.; Oh, M.-H.; Ham, J.S. Characterisation of fungal contamination sources for use in quality management of cheese production farms in Korea. Asian-Australas. J. Anim. Sci. 2019, 33, 1002–1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marín, P.; Palmero, D.; Jurado, M. Occurrence of moulds associated with ovine raw milk and cheeses of the Spanish region of Castilla La Mancha. Int. J. Dairy Technol. 2015, 68, 565–572. [Google Scholar] [CrossRef] [Green Version]
- Serra, R.; Abrunhosa, L.; Kozakiewicz, Z.; Venâncio, A.; Lima, N. Use of ozone to reduce molds in a cheese ripening room. J. Food Prot. 2003, 66, 2355–2358. [Google Scholar] [CrossRef] [Green Version]
- Zamani Mazdeh, F.; Sasanfar, S.; Chalipour, A.; Pirhadi, E.; Yahyapour, G.; Mohammadi, A.; Rostami, A.; Amini, M.; Hajimahmoodi, M. Simultaneous determination of preservatives in dairy products by HPLC and chemometric analysis. Int. J. Anal. Chem. 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Azhdari, S.; Moradi, M. Application of antimicrobial coating based on carboxymethyl cellulose and natamycin in active packaging of cheese. Int. J. Biol. Macromol. 2022, 209, 2042–2049. [Google Scholar] [CrossRef]
- Ribes, S.; Fuentes, A.; Talens, P.; Barat, J.M. Prevention of fungal spoilage in food products using natural compounds: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 2002–2016. [Google Scholar] [CrossRef]
- Coelho, M.C.; Malcata, F.X.; Silva, C.C. Lactic acid bacteria in raw-milk cheeses: From starter cultures to probiotic functions. Foods 2022, 11, 2276. [Google Scholar] [CrossRef]
- Nasrollahzadeh, A.; Mokhtari, S.; Khomeiri, M.; Saris, P.E. Antifungal preservation of food by lactic acid bacteria. Foods 2022, 11, 395. [Google Scholar] [CrossRef]
- Gerez, C.L.; Torino, M.I.; Rollán, G.; de Valdez, G.F. Prevention of bread mould spoilage by using lactic acid bacteria with antifungal properties. Food Control. 2009, 20, 144–148. [Google Scholar] [CrossRef]
- Lavermicocca, P.; Valerio, F.; Evidente, A.; Lazzaroni, S.; Corsetti, A.; Gobbetti, M. Purification and characterization of novel antifungal compounds from the sourdough lactobacillus plantarum strain 21B. Appl. Environ. Microbiol. 2000, 66, 4084–4090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynch, K.M.; Pawlowska, A.M.; Brosnan, B.; Coffey, A.; Zannini, E.; Furey, A.; McSweeney, P.L.; Waters, D.M.; Arendt, E.K. Application of Lactobacillus amylovorus as an antifungal adjunct to extend the shelf-life of Cheddar cheese. Int. Dairy J. 2014, 34, 167–173. [Google Scholar] [CrossRef]
- Magnusson, J.; Schnurer, J. Lactobacillus coryniformis subsp. coryniformis strain Si3 produces a broad-spectrum proteinaceous antifungal compound. Appl. Environ. Microbiol. 2001, 67, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muhialdin, B.J.; Hassan, Z.; Sadon, S.K. Antifungal Activity of Lactobacillus fermentum Te007, Pediococcus pentosaceus Te010, Lactobacillus pentosus G004, and L. paracasi D5 on Selected Foods. J. Food Sci. 2011, 76, M493–M499. [Google Scholar] [CrossRef]
- Ström, K.; Sjögren, J.r.; Broberg, A.; Schnürer, J. Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo (L-Phe-L-Pro) and cyclo (L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid. Appl. Environ. Microbiol. 2002, 68, 4322–4327. [Google Scholar] [CrossRef] [Green Version]
- Sjögren, J.r.; Magnusson, J.; Broberg, A.; Schnürer, J.; Kenne, L. Antifungal 3-hydroxy fatty acids from Lactobacillus plantarum MiLAB 14. Appl. Environ. Microbiol. 2003, 69, 7554–7557. [Google Scholar] [CrossRef] [Green Version]
- Vimont, A.; Fernandez, B.; Ahmed, G.; Fortin, H.-P.; Fliss, I. Quantitative antifungal activity of reuterin against food isolates of yeasts and moulds and its potential application in yogurt. Int. J. Food Microbiol. 2019, 289, 182–188. [Google Scholar] [CrossRef]
- De Lacey, A.L.; López-Caballero, M.; Gómez-Estaca, J.; Gómez-Guillén, M.; Montero, P. Functionality of Lactobacillus acidophilus and Bifidobacterium bifidum incorporated to edible coatings and films. Innov. Food Sci. Emerg. Technol. 2012, 16, 277–282. [Google Scholar] [CrossRef]
- Pereira, J.O.; Soares, J.; Sousa, S.; Madureira, A.R.; Gomes, A.; Pintado, M. Edible films as carrier for lactic acid bacteria. LWT 2016, 73, 543–550. [Google Scholar] [CrossRef]
- Sogut, E.; Filiz, B.E.; Seydim, A. Whey protein isolate-and carrageenan-based edible films as carriers of different probiotic bacteria. J. Dairy Sci. 2022, 105, 4829–4842. [Google Scholar] [CrossRef]
- Soukoulis, C.; Behboudi-Jobbehdar, S.; Yonekura, L.; Parmenter, C.; Fisk, I.D. Stability of Lactobacillus rhamnosus GG in prebiotic edible films. Food Chem. 2014, 159, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Concha-Meyer, A.; Schöbitz, R.; Brito, C.; Fuentes, R. Lactic acid bacteria in an alginate film inhibit Listeria monocytogenes growth on smoked salmon. Food Control 2011, 22, 485–489. [Google Scholar] [CrossRef]
- Gialamas, H.; Zinoviadou, K.G.; Biliaderis, C.G.; Koutsoumanis, K.P. Development of a novel bioactive packaging based on the incorporation of Lactobacillus sakei into sodium-caseinate films for controlling Listeria monocytogenes in foods. Food Res. Int. 2010, 43, 2402–2408. [Google Scholar] [CrossRef]
- La Storia, A.; Di Giuseppe, F.A.; Volpe, S.; Oliviero, V.; Villani, F.; Torrieri, E. Physical properties and antimicrobial activity of bioactive film based on whey protein and Lactobacillus curvatus 54M16 producer of bacteriocins. Food Hydrocoll. 2020, 108, 105959. [Google Scholar] [CrossRef]
- De Lima Marques, J.; Funck, G.D.; da Silva Dannenberg, G.; dos Santos Cruxen, C.E.; El Halal, S.L.M.; Dias, A.R.G.; Fiorentini, Â.M.; da Silva, W.P. Bacteriocin-like substances of Lactobacillus curvatus P99: Characterization and application in biodegradable films for control of Listeria monocytogenes in cheese. Food Microbiol. 2017, 63, 159–163. [Google Scholar] [CrossRef]
- Silva, S.P.; Ribeiro, S.C.; Teixeira, J.A.; Silva, C.C. Application of an alginate-based edible coating with bacteriocin-producing Lactococcus strains in fresh cheese preservation. LWT 2022, 153, 112486. [Google Scholar] [CrossRef]
- Parente Ribeiro Cerqueira, M.Â. Edible Packaging. In Encyclopedia of Food Chemistry; Melton, L., Shahidi, F., Varelis, P., Eds.; Academic Press: Oxford, UK, 2019; pp. 173–176. [Google Scholar]
- Trinetta, V. Edible Packaging; Elsevier-Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Mo, X.; Peng, X.; Liang, X.; Fang, S.; Xie, H.; Chen, J.; Meng, Y. Development of antifungal gelatin-based nanocomposite films functionalized with natamycin-loaded zein/casein nanoparticles. Food Hydrocoll. 2021, 113, 106506. [Google Scholar] [CrossRef]
- Wu, H.; Ma, L.; Li, S.; Wang, J.; Li, T.; Peng, L.; Li, S.; Li, Q.; Yuan, X.; Zhou, M. Sustained-release antibacterial gelatin films: Effects of diatomite/carvacrol complex on their structure, physicochemical and antibacterial properties. Food Packag. Shelf Life 2023, 35, 101019. [Google Scholar] [CrossRef]
- Silva, S.P.; Teixeira, J.A.; Silva, C.C. Application of enterocin-whey films to reduce Listeria monocytogenes contamination on ripened cheese. Food Microbiol. 2023, 109, 104134. [Google Scholar] [CrossRef] [PubMed]
- Dopazo, V.; Luz, C.; Calpe, J.; Vila-Donat, P.; Rodriguez, L.; Meca, G. Antifungal properties of whey fermented by lactic acid bacteria in films for the preservation of cheese slices. Int. J. Dairy Technol. 2022, 75, 619–629. [Google Scholar] [CrossRef]
- Pereira, J.O.; Soares, J.; Monteiro, M.J.; Gomes, A.; Pintado, M. Impact of whey protein coating incorporated with Bifidobacterium and Lactobacillus on sliced ham properties. Meat Sci. 2018, 139, 125–133. [Google Scholar] [CrossRef]
- Bernárdez, P.F.; Amado, I.R.; Castro, L.P.; Guerra, N.P. Production of a potentially probiotic culture of Lactobacillus casei subsp. casei CECT 4043 in whey. Int. Dairy J. 2008, 18, 1057–1065. [Google Scholar] [CrossRef]
- Juodeikiene, G.; Zadeike, D.; Bartkiene, E.; Klupsaite, D. Application of acid tolerant Pedioccocus strains for increasing the sustainability of lactic acid production from cheese whey. LWT Food Sci. Technol. 2016, 72, 399–406. [Google Scholar] [CrossRef]
- Lavari, L.; Páez, R.; Cuatrin, A.; Reinheimer, J.; Vinderola, G. Use of cheese whey for biomass production and spray drying of probiotic lactobacilli. J. Dairy Res. 2014, 81, 267–274. [Google Scholar] [CrossRef]
- Soriano-Perez, S.; Flores-Velez, L.; Alonso-Davila, P.; Cervantes-Cruz, G.; Arriaga, S. Production of lactic acid from cheese whey by batch cultures of Lactobacillus helveticus. Ann. Microbiol. 2012, 62, 313–317. [Google Scholar] [CrossRef]
- Pires, A.F.; Marnotes, N.G.; Rubio, O.D.; Garcia, A.C.; Pereira, C.D. Dairy by-products: A review on the valorization of whey and second cheese whey. Foods 2021, 10, 1067. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, P.M.; Teixeira, J.A.; Domingues, L. Fermentation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valorisation of cheese whey. Biotechnol. Adv. 2010, 28, 375–384. [Google Scholar] [CrossRef] [Green Version]
- Bambace, M.F.; Alvarez, M.V.; del Rosario Moreira, M. Novel functional blueberries: Fructo-oligosaccharides and probiotic lactobacilli incorporated into alginate edible coatings. Food Res. Int. 2019, 122, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Gregirchak, N.; Stabnikova, O.; Stabnikov, V. Application of lactic acid bacteria for coating of wheat bread to protect it from microbial spoilage. Plant Foods Hum. Nutr. 2020, 75, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Marín, A.; Plotto, A.; Atarés, L.; Chiralt, A. Lactic acid bacteria incorporated into edible coatings to control fungal growth and maintain postharvest quality of grapes. HortScience 2019, 54, 337–343. [Google Scholar] [CrossRef] [Green Version]
- Guimarães, A.; Ramos, Ó.; Cerqueira, M.; Venâncio, A.; Abrunhosa, L. Active whey protein edible films and coatings incorporating Lactobacillus buchneri for Penicillium nordicum control in cheese. Food Bioprocess Technol. 2020, 13, 1074–1086. [Google Scholar] [CrossRef]
- Silva, C.; Domingos-Lopes, M.; Magalhães, V.; Freitas, D.; Coelho, M.; Rosa, H.; Dapkevicius, M. Latin-style fresh cheese enhances lactic acid bacteria survival but not Listeria monocytogenes resistance under in vitro simulated gastrointestinal conditions. J. Dairy Sci. 2015, 98, 4377–4383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coelho, M.C. Lactic Acid Bacteria in Artisanal S. Jorge PDO Cheese: Biodiversity, Technological and Probiotic Properties. Ph.D. Thesis, University of the Azores, Angra do Heroísmo, Portugal, 2021. [Google Scholar]
- Guimarães, A.; Venancio, A.; Abrunhosa, L. Antifungal effect of organic acids from lactic acid bacteria on Penicillium nordicum. Food Addit. Contam. Part A 2018, 35, 1803–1818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, D.; Jiang, Y.; Ahmed, S.; Qin, W.; Liu, Y. Physical and antimicrobial properties of edible films containing Lactococcus lactis. Int. J. Biol. Macromol. 2019, 141, 378–386. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Zhang, W.; Kwok, L.-Y.; Menghe, B. Screening of Lactobacillus plantarum with broad-spectrum antifungal activity and its application in preservation of golden-red apples. Czech J. Food Sci. 2020, 38, 315–322. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Method I-16.233, Moisture content. In Official Methods of Analysis of Association of Official Analytical Chemists, 13th ed.; Association of Official Analytical Chemists: Rockville, MD, USA, 1980. [Google Scholar]
- ISO 3433:2008. Cheese. Determination of fat content. Van Gulik method. International Standards Organization: Geneva, Switzerland.
- ISO 8968-1:2014. Milk and milk products, Determination of nitrogen content, Part 1: Kjeldahl principle and crude protein calculation. International Standards Organization: Geneva, Switzerland.
- Radeljević, B.; Mikulec, N.; Antunac, N.; Prpić, Z.; Maletić, M.; Havranek, J. Influence of starter culture on total free aminoacids concentration during ripening of Krk cheese. Mljekarstvo Časopis Unaprjeđenje Proizv. Prerade Mlijeka 2013, 63, 15–21. [Google Scholar]
- Primo-Martín, C.; De Beukelaer, H.; Hamer, R.; Van Vliet, T. Fracture behaviour of bread crust: Effect of ingredient modification. J. Cereal Sci. 2008, 48, 604–612. [Google Scholar] [CrossRef]
- Arasu, M.V.; Al-Dhabi, N.A.; Rejiniemon, T.S.; Lee, K.D.; Huxley, V.; Kim, D.H.; Duraipandiyan, V.; Karuppiah, P.; Choi, K.C. Identification and characterization of Lactobacillus brevis P68 with antifungal, antioxidant and probiotic functional properties. Indian J. Microbiol. 2015, 55, 19–28. [Google Scholar] [CrossRef]
- Barrios-Salgado, G.; Vázquez-Ovando, A.; Rosas-Quijano, R.; Gálvez-López, D.; Salvador-Figueroa, M. Inhibitory Capacity of Chitosan Films Containing Lactic Acid Bacteria Cell-Free Supernatants against Colletotrichum gloeosporioides. Food Bioprocess Technol. 2022, 15, 1182–1187. [Google Scholar] [CrossRef]
- Falguni, P.; Shilpa, V.; Mann, B. Production of proteinaceous antifungal substances from Lactobacillus brevis NCDC 02. Int. J. Dairy Technol. 2010, 63, 70–76. [Google Scholar] [CrossRef]
- Somashekaraiah, R.; Mottawea, W.; Gunduraj, A.; Joshi, U.; Hammami, R.; Sreenivasa, M. Probiotic and antifungal attributes of Levilactobacillus brevis MYSN105, isolated from an Indian traditional fermented food Pozha. Front. Microbiol. 2021, 12, 696267. [Google Scholar] [CrossRef] [PubMed]
- Gerez, C.L.; Torres, M.J.; De Valdez, G.F.; Rollán, G. Control of spoilage fungi by lactic acid bacteria. Biol. Control 2013, 64, 231–237. [Google Scholar] [CrossRef]
- Gomaa, E.Z.; Abdelall, M.F.; El-Mahdy, O.M. Detoxification of aflatoxin B1 by antifungal compounds from Lactobacillus brevis and Lactobacillus paracasei, isolated from dairy products. Probiotics Antimicrob. Proteins 2018, 10, 201–209. [Google Scholar] [CrossRef]
- Sánchez-González, L.; Saavedra, J.I.Q.; Chiralt, A. Physical properties and antilisterial activity of bioactive edible films containing Lactobacillus plantarum. Food Hydrocoll. 2013, 33, 92–98. [Google Scholar] [CrossRef]
- Soukoulis, C.; Behboudi-Jobbehdar, S.; Yonekura, L.; Parmenter, C.; Fisk, I. Impact of milk protein type on the viability and storage stability of microencapsulated Lactobacillus acidophilus NCIMB 701748 using spray drying. Food Bioprocess Technol. 2014, 7, 1255–1268. [Google Scholar] [CrossRef]
- Soukoulis, C.; Singh, P.; Macnaughtan, W.; Parmenter, C.; Fisk, I.D. Compositional and physicochemical factors governing the viability of Lactobacillus rhamnosus GG embedded in starch-protein based edible films. Food Hydrocoll. 2016, 52, 876–887. [Google Scholar] [CrossRef] [PubMed]
- Soukoulis, C.; Behboudi-Jobbehdar, S.; Macnaughtan, W.; Parmenter, C.; Fisk, I.D. Stability of Lactobacillus rhamnosus GG incorporated in edible films: Impact of anionic biopolymers and whey protein concentrate. Food Hydrocoll. 2017, 70, 345–355. [Google Scholar] [CrossRef]
- Tripathi, M.K.; Giri, S.K. Probiotic functional foods: Survival of probiotics during processing and storage. J. Funct. Foods 2014, 9, 225–241. [Google Scholar] [CrossRef]
- Ebrahimi, B.; Mohammadi, R.; Rouhi, M.; Mortazavian, A.M.; Shojaee-Aliabadi, S.; Koushki, M.R. Survival of probiotic bacteria in carboxymethyl cellulose-based edible film and assessment of quality parameters. LWT 2018, 87, 54–60. [Google Scholar] [CrossRef]
- Kanmani, P.; Lim, S.T. Development and characterization of novel probiotic-residing pullulan/starch edible films. Food Chem. 2013, 141, 1041–1049. [Google Scholar] [CrossRef] [PubMed]
- Khodaei, D.; Hamidi-Esfahani, Z.; Lacroix, M. Gelatin and low methoxyl pectin films containing probiotics: Film characterization and cell viability. Food Biosci. 2020, 36, 100660. [Google Scholar] [CrossRef]
- Giteru, S.G.; Coorey, R.; Bertolatti, D.; Watkin, E.; Johnson, S.; Fang, Z. Physicochemical and antimicrobial properties of citral and quercetin incorporated kafirin-based bioactive films. Food Chem. 2015, 168, 341–347. [Google Scholar] [CrossRef]
- Bekhit, M.; Arab-Tehrany, E.; Kahn, C.J.; Cleymand, F.; Fleutot, S.; Desobry, S.; Sánchez-González, L. Bioactive films containing alginate-pectin composite microbeads with Lactococcus lactis subsp. lactis: Physicochemical characterization and antilisterial activity. Int. J. Mol. Sci. 2018, 19, 574. [Google Scholar] [CrossRef] [Green Version]
- Hammam, A.R. Technological, applications, and characteristics of edible films and coatings: A review. SN Appl. Sci. 2019, 1, 632 . [Google Scholar] [CrossRef] [Green Version]
- Utama, G.L.; Dinika, I.; Nurmilah, S.; Masruchin, N.; Nurhadi, B.; Balia, R.L. Characterization of Antimicrobial Composite Edible Film Formulated from Fermented Cheese Whey and Cassava Peel Starch. Membranes 2022, 12, 636. [Google Scholar] [CrossRef]
- Ture, H.; Eroglu, E.; Ozen, B.; Soyer, F. Effect of biopolymers containing natamycin against Aspergillus niger and Penicillium roquefortii on fresh kashar cheese. Int. J. Food Sci. Technol. 2011, 46, 154–160. [Google Scholar] [CrossRef]
- Fajardo, P.; Martins, J.; Fuciños, C.; Pastrana, L.; Teixeira, J.; Vicente, A. Evaluation of a chitosan-based edible film as carrier of natamycin to improve the storability of Saloio cheese. J. Food Eng. 2010, 101, 349–356. [Google Scholar] [CrossRef] [Green Version]
- Henriques, M.; Santos, G.; Rodrigues, A.; Gomes, D.; Pereira, C.; Gil, M. Replacement of conventional cheese coatings by natural whey protein edible coatings with antimicrobial activity. J. Hyg. Eng. Des. 2013, 3, 34–47. [Google Scholar]
- Meira, S.M.M.; Daroit, D.J.; Helfer, V.E.; Corrêa, A.P.F.; Segalin, J.; Carro, S.; Brandelli, A. Bioactive peptides in water-soluble extracts of ovine cheeses from Southern Brazil and Uruguay. Food Res. Int. 2012, 48, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Sallami, L.; Kheadr, E.; Fliss, I.; Vuillemard, J. Impact of autolytic, proteolytic, and nisin-producing adjunct cultures on biochemical and textural properties of Cheddar cheese. J. Dairy Sci. 2004, 87, 1585–1594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Picque, D.; Leclercq-Perlat, M.N.; Guillemin, H.; Perret, B.; Cattenoz, T.; Provost, J.; Corrieu, G. Camembert-type cheese ripening dynamics are changed by the properties of wrapping films. J. Dairy Sci. 2010, 93, 5601–5612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerqueira, M.A.; Sousa-Gallagher, M.J.; Macedo, I.; Rodriguez-Aguilera, R.; Souza, B.W.; Teixeira, J.A.; Vicente, A.A. Use of galactomannan edible coating application and storage temperature for prolonging shelf-life of “Regional” cheese. J. Food Eng. 2010, 97, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Ceylan, H.G.; Atasoy, A.F. Optimization and characterization of prebiotic concentration of edible films containing Bifidobacterium animalis subsp. lactis BB-12® and its application to block type processed cheese. Int. Dairy J. 2022, 134, 105443. [Google Scholar] [CrossRef]
- Bonilla, J.; Sobral, P.J. Gelatin-chitosan edible film activated with Boldo extract for improving microbiological and antioxidant stability of sliced Prato cheese. Int. J. Food Sci. Technol. 2019, 54, 1617–1624. [Google Scholar] [CrossRef]
Control Film 1 | Film with L. brevis 1 | |
---|---|---|
Thickness (mm) | 0.157 ± 0.009 a | 0.189 ± 0.012 b |
Moisture content (%) | 27.2 ± 0.5 a | 28.3 ± 0.5 a |
Solubility (%) | 56.6 ± 3.7 a | 60.3 ± 2.6 a |
WVTR (g/hm2) | 8.56 ± 1.51 a | 8.20 ± 2.05 a |
WVP (g mm/m2 h kPa) | 0.542 ± 0.096 a | 0.742 ± 0.173 a |
LP (g mm/m2 h kPa) | 0.242 ± 0.084 a | 0.280 ± 0.056 a |
Tensile strength (N/mm2) | 1.836 ± 0.115 a | 1.925 ± 0.036 a |
Elongation at break (%) | 211.7 ± 1.8 a | 232.3 ± 1.7 b |
L* | 39.970 ± 0.147 a | 39.429 ± 0.127 a |
a* | −0.746 ± 0.023 a | −0.527 ± 0.035 b |
b* | 1.379 ± 0.091 a | 0.979 ± 0.091 a |
Opacity (UA/mm) | 0.839 ± 0.084 a | 0.895 ± 0.008 a |
Cheese Samples | Ripening (Day) | Fat (%) | Protein (%) | Moisture (%) | WSE (%) | FAA (mM Leu) | Fracturability (N) |
---|---|---|---|---|---|---|---|
Uncovered * | 0 | 50.3 ± 0.6 a | 0.381 ± 0.061 a | 1.490 ± 0.255 a | 9.96 ± 0.28 a | ||
15 | 37.7 ± 1.8 b | 0.690 ± 0.019 b | 2.700 ± 0.080 ab | 17.61 ± 1.79 b | |||
30 | 28 ± 1.2 a | 26.4 ± 3.7 a | 35.4 ± 1.3 b | 0.845 ± 0.030 c | 2.880 ± 0.232 b | 28.58 ± 0.47 b | |
Control film | 0 | 50.9 ± 1.4 a | 0.381 ± 0.061 a | 1.471 ± 0.141 a | 9.42 ± 0.68 a | ||
15 | 37.1 ± 2.1 b | 0.576 ± 0.019 b | 2.116 ± 0.105a b | 17.26 ± 1.75 b | |||
30 | 25 ±1.5 a | 26.8 ± 1.3 a | 35.7 ± 1.2 b | 0.954 ± 0.079 c | 2.723 ± 0.241 b | 28.04 ± 1.20 b | |
L. brevis film | 0 | 50.3 ± 1.4 a | 0.381 ± 0.061 a | 1.538 ± 0.018 a | 9.27 ± 0.42 a | ||
15 | 37.7 ± 2.4 b | 0.577 ± 0.028 b | 2.199 ± 0.098 ab | 17.61 ± 1.79 b | |||
30 | 27 ± 1.1 a | 27.3 ± 1.3 a | 35.7 ± 0.4 b | 0.806 ± 0.030 c | 2.318 ± 0.168 b | 28.66 ± 0.62 b |
Cheese Samples | Ripening (Day) | L* | a* | b* | Opacity * (UA/mm) |
---|---|---|---|---|---|
Uncovered | 0 | 86.276 ± 0.274 | 3.509 ± 0.113 | 34.022 ± 0.761 | na |
15 | 69.444 ± 0.437 | 8.018 ± 0.076 | 38.295 ± 0.531 | na | |
30 | 69.655 ± 0.775 | 7.143 ± 0.131 | 43.093 ± 0.270 | na | |
Wrapped with film | |||||
Control film | 0 | 83.356 ± 1.339 | 4.301 ± 0.180 | 39.477 ± 0.505 | 0.865 ± 0.049 |
15 | 74.622 ± 0.896 | 4.367 ± 0.390 | 25.629 ± 1.560 | 3.893 ± 0.148 | |
30 | 76.786 ± 0.738 | 2.966 ± 0.296 | 20.155 ± 0.991 | 6.571 ± 0.384 | |
L. brevis film | 0 | 83.715 ± 0.583 | 4.069 ± 0.268 | 33.383 ± 1.114 | 0.844 ± 0.078 |
15 | 73.125 ± 0.639 | 4.168 ± 0.286 | 29.770 ± 1.422 | 3.664 ± 0.505 | |
30 | 78.332 ± 1.563 | 2.639 ± 0.232 | 17.941 ± 1.802 | 6.687 ± 0.499 | |
After film removed | |||||
Control film | 15 | 69.790 ± 2.183 | 6.898 ± 0.040 | 37.776 ± 0.529 | na |
30 | 67.320 ± 0.354 | 6.582 ± 0.082 | 43.660 ± 0.226 | na | |
L. brevis film | 15 | 70.040 ± 0.411 | 7.656 ± 0.072 | 40.792 ± 0.072 | na |
30 | 67.530 ± 0.857 | 7.298 ± 0.046 | 42.126 ± 0.291 | na | |
Two-way ANOVA | Cheese samples | p < 0.001 | p < 0.001 | p < 0.001 | p > 0.05 |
Time | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | |
Interaction | p < 0.001 | p < 0.001 | p < 0.001 | p > 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, S.P.M.; Teixeira, J.A.; Silva, C.C.G. Prevention of Fungal Contamination in Semi-Hard Cheeses by Whey–Gelatin Film Incorporated with Levilactobacillus brevis SJC120. Foods 2023, 12, 1396. https://doi.org/10.3390/foods12071396
Silva SPM, Teixeira JA, Silva CCG. Prevention of Fungal Contamination in Semi-Hard Cheeses by Whey–Gelatin Film Incorporated with Levilactobacillus brevis SJC120. Foods. 2023; 12(7):1396. https://doi.org/10.3390/foods12071396
Chicago/Turabian StyleSilva, Sofia P. M., José A. Teixeira, and Célia C. G. Silva. 2023. "Prevention of Fungal Contamination in Semi-Hard Cheeses by Whey–Gelatin Film Incorporated with Levilactobacillus brevis SJC120" Foods 12, no. 7: 1396. https://doi.org/10.3390/foods12071396
APA StyleSilva, S. P. M., Teixeira, J. A., & Silva, C. C. G. (2023). Prevention of Fungal Contamination in Semi-Hard Cheeses by Whey–Gelatin Film Incorporated with Levilactobacillus brevis SJC120. Foods, 12(7), 1396. https://doi.org/10.3390/foods12071396