Optimization of the Black Garlic Processing Method and Development of Black Garlic Jam Using High-Pressure Processing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Black Garlic Sample Preparation
2.3. Antioxidant Activities and Bioactive Compounds Analyses
2.4. Browning Reaction Analyses
2.5. Preparation of Black Garlic Jam, Texture Analysis, and Sensory Evaluation
2.6. Statistical Analysis
3. Results and Discussion
3.1. Appearance and Physicochemical Properties of Aged Black Garlic for Different Aging Times
ΔE = [(L − L0)2 + (a − a0)2 + (b − b0)2]1/2
3.2. Antioxidant Activity of Fresh Garlic and Black Garlic Samples
3.3. Bioactive Compounds in Fresh Garlic and Black Garlic Extracts
3.4. Browning Reaction Analyses for Black Garlic
3.5. Sensory Evaluation of Black Garlic Jam by HPP Treatment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bayan, L.; Koulivand, P.H.; Gorji, A. Garlic: A Review of Potential Therapeutic Effects. Avicenna J. Phytomed. 2014, 4, 1–14. [Google Scholar] [PubMed]
- Shang, A.; Cao, S.Y.; Xu, X.Y.; Gan, R.Y.; Tang, G.Y.; Corke, H.; Mavumengwana, V.; Li, H.B. Bioactive Compounds and Biological Functions of Garlic (Allium sativum L.). Foods 2019, 8, 246. [Google Scholar] [CrossRef] [Green Version]
- Bigham, M.; Mohammadipour, A.; Hosseini, M.; Malvandi, A.M.; Ebrahimzadeh-Bideskan, A. Neuroprotective Effects of Garlic Extract on Dopaminergic Neurons of Substantia Nigra in A Rat Model of Parkinson’s Disease: Motor and Non-Motor Outcomes. Metab. Brain Dis. 2021, 36, 927–937. [Google Scholar] [CrossRef]
- Zilbeyaz, K.; Oztekin, A.; Kutluana, E.G. Design and Synthesis of Garlic-Related Unsymmetrical Thiosulfonates as Potential Alzheimer’s Disease Therapeutics: In vitro and In Silico Study. Bioorg. Med. Chem. 2021, 40, 116194. [Google Scholar] [CrossRef] [PubMed]
- Farhat, Z.; Hershberger, P.A.; Freudenheim, J.L.; Mammen, M.J.; Blair, R.H.; Aga, D.S.; Mu, L.N. Types of Garlic and Their Anticancer and Antioxidant Activity: A Review of The Epidemiologic and Experimental Evidence. Eur. J. Nutr. 2021, 60, 3585–3609. [Google Scholar] [CrossRef]
- Borlinghaus, J.; Foerster, J.; Kappler, U.; Antelmann, H.; Noll, U.; Gruhlke, M.C.H.; Slusarenko, A.J. Allicin the Odor of Freshly Crushed Garlic: A Review of Recent Progress in Understanding Allicin’s Effects on Cells. Molecules 2021, 26, 1505. [Google Scholar] [CrossRef] [PubMed]
- Corzo-Martinez, M.; Corzo, N.; Villamiel, M. Biological Properties of Onions and Garlic. Trends Food Sci. Technol. 2007, 18, 609–625. [Google Scholar] [CrossRef]
- Qiu, Z.C.; Zheng, Z.J.; Zhang, B.; Sun-Waterhouse, D.; Qiao, X.G. Formation, Nutritional Value, and Enhancement of Characteristic Components in Black Garlic: A Review for Maximizing the Goodness to Humans. Compr. Rev. Food Sci. Food Saf. 2020, 19, 801–834. [Google Scholar] [CrossRef] [Green Version]
- Tran, G.B.; Pham, T.V.; Trinh, N.N. Black Garlic and Its Therapeutic Benefits. In Medicinal Plants—Use in Prevention and Treatment of Diseases; Hassan, B.A.R., Ed.; IntechOpen: London, UK, 2019. [Google Scholar]
- Kimura, S.; Tung, Y.C.; Pan, M.H.; Su, N.W.; Lai, Y.J.; Cheng, K.C. Black Garlic: A Critical Review of Its Production, Bioactivity, and Application. J. Food Drug Anal. 2017, 25, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Choi, I.S.; Cha, H.S.; Lee, Y.S. Physicochemical and Antioxidant Properties of Black Garlic. Molecules 2014, 19, 16811–16823. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.L.; Lu, X.M.; Li, N.Y.; Zheng, Z.J.; Zhao, R.X.; Tang, X.Z.; Qiao, X.G. Effects and Mechanism of Free Amino Acids on Browning in the Processing of Black Garlic. J. Sci. Food Agric. 2019, 99, 4670–4676. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Choi, Y.W.; Lee, E.N.; Park, J.K.; Kim, S.G.; Park, D.J.; Kim, B.S.; Lim, Y.T.; Yoon, S. 5-Hydroxymethylfurfural from Black Garlic Extract Prevents TNFα-Induced Monocytic Cell Adhesion to HUVECs by Suppression of Vascular Cell Adhesion Molecule-1 Expression, Reactive Oxygen Species Generation and NF-κB Activation. Phytother. Res. 2011, 25, 965–974. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Kang, O.J.; Gweon, O.C. Comparison of Phenolic Acids and Flavonoids in Black Garlic at Different Thermal Processing Steps. J. Funct. Foods 2013, 5, 80–86. [Google Scholar] [CrossRef]
- Sun, Y.E.; Wang, W. Changes in Nutritional and Bio-Functional Compounds and Antioxidant Capacity During Black Garlic Processing. J. Food Sci. Technol. 2018, 55, 479–488. [Google Scholar] [CrossRef] [PubMed]
- George, J.M.; Rastogi, N.K. High Pressure Processing for Food Fermentation. In Novel Food Fermentation Technologies; Ojha, K.S., Tiwari, B.K., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 57–83. [Google Scholar]
- Rastogi, N.K.; Raghavarao, K.S.; Balasubramaniam, V.M.; Niranjan, K.; Knorr, D. Opportunities and Challenges in High Pressure Processing of Foods. Crit. Rev. Food Sci. Nutr. 2007, 47, 69–112. [Google Scholar] [CrossRef]
- Tao, D.; Li, F.; Hu, X.; Liao, X.; Zhang, Y. Quality Comparison of “Laba” Garlic Processed by High Hydrostatic Pressure and High Pressure Carbon Dioxide. Sci. Rep. 2020, 10, 3719. [Google Scholar] [CrossRef] [Green Version]
- Unni, L.E.; Chauhan, O.P.; Raju, P.S. High Pressure Processing of Garlic Paste: Effect on the Quality Attributes. Int. J. Food Sci. Technol. 2014, 49, 1579–1585. [Google Scholar] [CrossRef]
- Li, F.; Cao, J.; Liu, Q.; Hu, X.; Liao, X.; Zhang, Y. Acceleration of the Maillard Reaction and Achievement of Product Quality by High Pressure Pretreatment during Black Garlic Processing. Food Chem. 2020, 318, 126517. [Google Scholar] [CrossRef]
- Zheng, C.; Riccardo, B.; Guglielmina, F. EC50 Estimation of Antioxidant Activity in DPPH· Assay Using Several Statistical Programs. Food Chem. 2013, 138, 414–420. [Google Scholar]
- Arnao, M.B.; Cano, A.; Alcolea, J.F.; Acosta, M. Estimation of Free Radical-Quenching Activity of Leaf Pigment Extracts. Phytochem. Anal. 2001, 12, 138–143. [Google Scholar] [CrossRef]
- Jayaprakasha, G.K.; Singh, R.P.; Sakariah, K.K. Antioxidant Activity of Grape Seed (Vitis vinifera) Extracts on Peroxidation Models in Vitro. Food Chem. 2001, 73, 285–290. [Google Scholar] [CrossRef]
- Kim, D.O.; Jeong, S.W.; Lee, C.Y. Antioxidant Capacity of Phenolic Phytochemicals from Various Cultivars of Plums. Food Chem. 2003, 81, 321–326. [Google Scholar] [CrossRef]
- Moreira, L.; Dias, L.G.; Pereira, J.A.; Estevinho, L. Antioxidant Properties, Total Phenols and Pollen Analysis of Propolis Samples from Portugal. Food Chem. Toxicol. 2008, 46, 3482–3485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubola, J.; Siriamornpun, S. Phytochemicals and Antioxidant Activity of Different Fruit Fractions (Peel, Pulp, Aril and Seed) of Thai Gac (Momordica cochinchinensis Spreng). Food Chem. 2011, 127, 1138–1145. [Google Scholar] [CrossRef]
- Deshavath, N.N.; Mukherjee, G.; Goud, V.V.; Veeranki, V.D.; Sastri, C.V. Pitfalls in the 3, 5-dinitrosalicylic Acid (DNS) Assay for the Reducing Sugars: Interference of furfural and 5-hydroxymethylfurfural. Int. J. Biol. Macromol. 2020, 156, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Habeeb, A.F.S. Determination of Free Amino Groups in Proteins by Trinitrobenzenesulfonic Acid. Anal. Biochem. 1966, 14, 328–336. [Google Scholar] [CrossRef]
- Ajandouz, E.H.; Tchiakpe, L.S.; Dalle Ore, F.; Benajiba, A.; Puigserver, A. Effects of pH on Caramelization and Maillard Reaction Kinetics in Fructose-Lysine Model Systems. J. Food Sci. 2001, 66, 926–931. [Google Scholar] [CrossRef]
- Hwang, I.G.; Kim, H.Y.; Woo, K.S.; Lee, J.; Jeong, H.S. Biological Activities of Maillard Reaction Products (MRPs) in a Sugar-Amino Acid Model System. Food Chem. 2011, 126, 221–227. [Google Scholar] [CrossRef]
- Huang, R.T.; Lu, Y.F.; Inbaraj, B.S.; Chen, B.H. Determination of Phenolic Acids and Flavonoids in Rhinacanthus nasutus (L.) Kurz by High-Performance-Liquid-Chromatography with Photodiode-Array Detection and Tandem Mass Spectrometry. J. Funct. Foods 2015, 12, 498–508. [Google Scholar] [CrossRef]
- Fiorentini, M.; Kinchla, A.J.; Nolden, A.A. Role of sensory evaluation in consumer acceptance of plant-based meat analogs and meat extenders: A scoping review. Foods. 2020, 9, 1334. [Google Scholar] [CrossRef]
- Zhang, X.; Li, N.; Lu, X.; Liu, P.; Qiao, X. Effects of Temperature on the Quality of Black Garlic. J. Sci. Food Agric. 2016, 96, 2366–2372. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Li, N.; Qiao, X.; Qiu, Z.; Liu, P. Composition Analysis and Antioxidant Properties of Black Garlic Extract. J. Food Drug Anal. 2017, 25, 340–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, S.E.; Cho, S.Y.; Won, Y.D.; Lee, S.H.; Park, H.J. Changes in S-allyl Cysteine Contents and Physicochemical Properties of Black Garlic during Heat Treatment. LWT—Food Sci. Technol. 2014, 55, 397–402. [Google Scholar] [CrossRef]
- Nantitanon, W.; Yotsawimonwat, S.; Okonogi, S. Factors Influencing Antioxidant Activities and Total Phenolic Content of Guava Leaf Extract. LWT—Food Sci. Technol. 2010, 43, 1095–1103. [Google Scholar] [CrossRef]
- Amagase, H. Clarifying the Real Bioactive Constituents of Garlic. J. Nutr. 2006, 136, 716S–725S. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Herrera, A.; Martínez-Gutiérrez, G.A.; León-Martínez, F.M.; Sánchez-Medina, M.A. The Effect of the Presence of Seeds on the Nutraceutical, Sensory and Rheological Properties of Physalis spp. Fruits Jam: A Comparative Analysis. Food Chem. 2020, 302, 125141. [Google Scholar] [CrossRef]
- Yuste, J.; Capellas, M.; Pla, R.; Fung, D.Y.C.; Mor-Mur, M. High Pressure Processing for Food Safety and Preservation: A review. J. Rapid Methods Autom. Microbiol. 2001, 9, 1–10. [Google Scholar] [CrossRef]
- Oey, I.; Lille, M.; Van Loey, A.; Hendrickx, M. Effect of High-Pressure Processing on Colour, Texture and Flavour of Fruit- and Vegetable-Based Food Products: A Review. Trends Food Sci. Technol. 2008, 19, 320–328. [Google Scholar] [CrossRef]
Time (Days) | Extract Yield (%) | Water Activity (Aw) | Hunter Color Values | |||
---|---|---|---|---|---|---|
L | a | b | ΔE | |||
0 | 33.69 ± 1.47 c | 0.97 ± 0.003 a | 59.98 ± 0.80 a | −1.35 ± 0.47 c | 17.57 ± 1.06 a | - |
5 | 63.85 ± 2.87 ab | 0.88 ± 0.011 b | 18.34 ± 2.40 b | 6.86 ± 0.53 a | 8.25 ± 1.34 b | 43.45 |
10 | 67.36 ± 2.49 a | 0.75 ± 0.012 c | 16.14 ± 1.62 c | 1.37 ± 0.65 b | 1.76 ± 1.27 c | 46.68 |
20 | 68.93 ± 2.67 a | 0.69 ± 0.007 d | 15.92 ± 1.00 c | −0.29 ± 0.96 c | 0.40 ± 0.53 c | 47.3 |
30 | 58.43 ± 3.41 b | 0.70 ± 0.012 d | 12.76 ± 1.08 d | 0.96 ± 0.53 b | 1.49 ± 0.77 c | 49.93 |
40 | 52.71 ± 2.09 c | 0.60 ± 0.010 e | 13.59 ± 1.35 d | 0.54 ± 0.85 b | 0.36 ± 0.63 c | 49.52 |
45 | 49.23 ± 3.15 c | 0.58 ± 0.006 e | 13.63 ± 1.21 d | −0.25 ± 0.33 bc | 0.34 ± 0.33 c | 49.7 |
Time (Days) | Contents | |
---|---|---|
Total Phenolics | Total Flavonoids | |
(mg GAE/g Dry Weight) | (mg RE/g Dry Weight) | |
0 | 6.73 ± 0.67 g | 0.57 ± 0.3 c |
5 | 10.87 ± 0.57 f | 1.34 ± 0.24 c |
10 | 28.35 ± 0.31 e | 4.79 ± 0.95 b |
20 | 58.24 ± 0.89 b | 12.28 ± 0.78 a |
30 | 74.86 ± 1.13 a | 13.28 ± 0.51 a |
40 | 50.75 ± 0.41 c | 12.85 ± 0.66 a |
45 | 46.79 ± 0.42 d | 12.91 ± 0.31 a |
Time (Days) | 5-HMF |
---|---|
(mg/g Dry Weight) | |
0 | N.D. |
5 | N.D. |
10 | N.D. |
20 | 0.12 ± 0.05 d |
30 | 1.81 ± 0.16 c |
40 | 3.04 ± 0.57 b |
45 | 3.43 ± 0.83 a |
Groups | Hardness (g) | Fracturability (g) | Adhesiveness (g*s) | Springiness (s/s) |
---|---|---|---|---|
1:1.5:2 | 102.78 ± 0.12 e | 102.83 ± 0.21 f | −215.01 ± 0.10 a | 0.96 ± 0.02 bc |
1:2:1 | 612.98 ± 0.18 b | 613.00 ± 0.22 b | −1012.44 ± 0.64 d | 1.05 ± 0.03 a |
1:1:2 | 762.87 ± 74.59 a | 726.41 ± 49.47 a | −367.29 ± 7.62 b | 0.92 ± 0.08 c |
1:1:1 | 491.90 ± 3.25 c | 491.90 ± 2.75 d | −1112.00 ± 0.02 e | 1.04 ± 0.03 ab |
1:2:1.5 | 616.86 ± 0.42 b | 573.70 ± 0.07 c | −1398.76 ± 0.15 f | 1.09 ± 0.02 a |
1:1.5:1 | 171.00 ± 0.12 d | 170.95 ± 0.12 e | −450.47 ± 0.08 c | 1.06 ± 0.02 a |
Groups | Chewiness (g) | Gumminess (g) | Cohesiveness | Resilience |
1:1.5:2 | 81.89 ± 0.21 e | 82.03 ± 0.15 e | 0.80 ± 0.02 bc | 0.03 ± 0.01 d |
1:2:1 | 635.63 ± 0.48 a | 611.88 ± 0.30 a | 1.01 ± 0.03 a | 0.07 ± 0.02 b |
1:1:2 | 135.59 ± 13.65 d | 322.38 ± 4.61 c | 0.62 ± 0.19 d | 0.05 ± 0.01 bc |
1:1:1 | 405.04 ± 0.15 c | 403.95 ± 0.17 b | 0.87 ± 0.01 b | 0.04 ± 0.01 cd |
1:2:1.5 | 440.98 ± 0.07 b | 403.83 ± 0.13 b | 0.67 ± 0.02 cd | 0.23 ± 0.01 a |
1:1.5:1 | 153.02 ± 0.10 d | 144.99 ± 0.02 d | 0.86 ± 0.01 b | 0.04 ± 0.01 cd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, W.-C.; Lin, W.-C.; Wu, S.-C. Optimization of the Black Garlic Processing Method and Development of Black Garlic Jam Using High-Pressure Processing. Foods 2023, 12, 1584. https://doi.org/10.3390/foods12081584
Chang W-C, Lin W-C, Wu S-C. Optimization of the Black Garlic Processing Method and Development of Black Garlic Jam Using High-Pressure Processing. Foods. 2023; 12(8):1584. https://doi.org/10.3390/foods12081584
Chicago/Turabian StyleChang, Wen-Chang, Wen-Chun Lin, and She-Ching Wu. 2023. "Optimization of the Black Garlic Processing Method and Development of Black Garlic Jam Using High-Pressure Processing" Foods 12, no. 8: 1584. https://doi.org/10.3390/foods12081584
APA StyleChang, W.-C., Lin, W.-C., & Wu, S.-C. (2023). Optimization of the Black Garlic Processing Method and Development of Black Garlic Jam Using High-Pressure Processing. Foods, 12(8), 1584. https://doi.org/10.3390/foods12081584