Synbiotic-Glyconutrient Additive Reveals a Conducive Effect on Growth Performance, Fatty Acid Profile, Sensory Characteristics, and Texture Profile Analysis in Finishing Pig
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Experimental Design, Animals, and Management
2.3. Experimental Diets and Dietary Regimen
2.4. Sampling and Analysis
2.4.1. Growth Performance
2.4.2. Meat Quality
2.4.3. Texture Profile Analysis
2.4.4. Sensory Evaluation
2.4.5. Fatty Acid Analyses
2.4.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Font-i-Furnols, M. Meat Consumption, Sustainability and Alternatives: An Overview of Motives and Barriers. Foods 2023, 26, 2144. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, H.; Rosado, P.; Roser, M. Hunger and Undernourishment. Our World Data. 2023. Available online: https://ourworldindata.org/hunger-and-undernourishment (accessed on 22 December 2023).
- Listrat, A.; Lebret, B.; Louveau, I.; Astruc, T.; Bonnet, M.; Lefaucheur, L.; Picard, B.; Bugeon, J. How muscle structure and composition influence meat and flesh quality. Sci. World J. 2016, 2016, 3182746. [Google Scholar] [CrossRef] [PubMed]
- Olsson, V.; Pickova, J. The influence of production systems on meat quality, with emphasis on pork. Ambio 2005, 34, 338–343. [Google Scholar] [CrossRef] [PubMed]
- Hutkins, R.W.; Krumbeck, J.A.; Bindels, L.B.; Cani, P.D.; Fahey, G., Jr.; Goh, Y.J.; Hamaker, B.; Martens, E.C.; Mills, D.A.; Rastal, R.A.; et al. Prebiotics: Why definitions matter. Curr. Opin. Biotechnol. 2016, 37, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.R.; Roberfroid, M.B. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 1995, 125, 1401–1412. [Google Scholar] [CrossRef]
- Sampath, V.; Song, J.H.; Jeong, J.; Mun, S.; Han, K.; Kim, I.H. Nourishing neonatal piglets with synthetic milk and Lactobacillus sp. at birth highly modifies the gut microbial communities at the post-weaning stage. Front. Microbiol. 2022, 13, 1044256. [Google Scholar] [CrossRef]
- Salma, U.; Miah, A.G.; Maki, T.; Nishimura, M.; Tsujii, H. Effect of dietary Rhodobacter capsulatus on cholesterol concentration and fatty acid composition in broiler meat. Poult. Sci. 2007, 86, 1920–1926. [Google Scholar] [CrossRef]
- Kalavathy, R.; Abdullah, N.; Jalaludin, S.; Wong, M.C.; Ho, Y.W. Effect of lactobacillus feed supplementation on cholesterol, fat content and fatty acid composition of the liver, muscle and carcass of broiler chicks. Anim. Res. 2006, 55, 77–82. [Google Scholar]
- Markowiak, P.; Śliżewska, K. The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathog. 2018, 10, 21. [Google Scholar] [CrossRef]
- Swanson, K.S.; Gibson, G.R.; Hutkins, R.; Reimer, R.A.; Reid, G.; Verbeke, K.; Scott, K.P.; Holscher, H.D.; Azad, M.B.; Delzenne, N.M.; et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 687–701. [Google Scholar] [CrossRef]
- Sekhon, B.S.; Jairath, S. Prebiotics, probiotics and synbiotics: An overview. J. Pharm. Educ. Res. 2010, 1, 13–36. [Google Scholar]
- Hassanpour, H.; Moghaddam, A.Z.; Khosravi, M.; Mayahi, M. Effects of synbiotic on the intestinal morphology and humoral immune response in broiler chickens. Livest. Sci. 2013, 153, 116–122. [Google Scholar] [CrossRef]
- Ghasemi, H.A.; Shivazad, M.; Mirzapour Rezaei, S.S.; Karimi Torshizi, M.A. Effect of synbiotic supplementation and dietary fat sources on broiler performance, serum lipids, muscle fatty acid profile and meat quality. Br. Poult. Sci. 2016, 57, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Sierpina, V.S.; Murray, R.K. Glyconutrients: The state of the science and the impact of glycomics. Explore 2006, 2, 488–494. [Google Scholar] [CrossRef] [PubMed]
- De Vries, H.; Geervliet, M.; Jansen, C.A.; Rutten, V.P.; Van Hees, H.; Groothuis, N.; Wells, J.M.; Savelkoul, H.F.; Tijhaar, E.; Smidt, H. Impact of yeast-derived β-glucans on the porcine gut microbiota and immune system in early life. Microorganisms 2020, 8, 1573. [Google Scholar] [CrossRef] [PubMed]
- Awad, W.A.; Ghareeb, K.; Abdel-Raheem, S.; Bohm, J. Effects of dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens. Poult. Sci. 2009, 88, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Shin, N.H.; Ok, J.U.; Jung, H.S.; Chu, G.M.; Kim, J.D.; Kim, I.H.; Lee, S.S. Effects of dietary synbiotics from anaerobic microflora on growth performance, noxious gas emission and fecal pathogenic bacteria population in weaning pigs. Asian-Australas. J. Anim. Sci. 2009, 26, 1202–1208. [Google Scholar] [CrossRef]
- Aksu, M.I.; Karaoǧlu, M.; Esenbuǧa, N.; Kaya, M.; Macit, M.; Ockerman, H.W. Effect of a dietary probiotic on some quality characteristics of raw broiler drumsticks and breast meat. J. Muscle Foods 2005, 16, 306–317. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Zhou, T.X.; Ao, X.; Kim, I.H. Effects of β-glucan and Bacillus subtilis on growth performance, blood profiles, relative organ weight and meat quality in broilers fed maize soybean meal-based diets. Livest. Sci. 2012, 150, 419–424. [Google Scholar] [CrossRef]
- Valencia, G.L.; Zapata-Ramirez, O.; Nunez-Gonzalez, L.; Nunez-Benitez, V.; lópez, H.L.; Lopez-Soto, M.; Serrano, A.B.; Gonzalez-Vizcarra, V.; Estrada-Angulo, A.; Plascencia, A. Effective use of probiotic-glyconutrient combination as an adjuvant to antibiotic therapy for diarrhea in rearing dairy calves. Turk. J. Vet. Anim. 2017, 41, 578–581. [Google Scholar] [CrossRef]
- Castro-Pérez, B.I.; Núñez-Benítez, V.H.; Estrada-Angulo, A.; Urías-Estrada, J.D.; Gaxiola-Camacho, S.M.; Rodríguez-Gaxiola, M.A.; Angulo-Montoya, C.; Barreras, A.; Zinn, R.A.; Perea-Domínguez, X.P.; et al. Evaluation of standardized mixture of synbiotic-glyconutrients supplemented in lambs finished during summer season in tropical environment: Growth performance, dietary energetics, and carcass characteristics. Can. J. Anim. Sci. 2021, 102, 155–164. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Swine, 11th ed.; National Research Council of the National Academies, The National Academies Press: Washington, DC, USA, 2021. [Google Scholar]
- Brown, C.R. When the Plain Text Isn’t So Plain: How National Pork Producers Council Restricts the Clean Water Act’s Purpose and Impairs Its Enforcement against Factory Farms. Drake J. Agric. L. 2011, 16, 375. [Google Scholar]
- Grau, R.; Hamm, R. Eine einfache Methode zur Bestimmung der Wasserbindung im Muskel. Naturwissenschaften 1953, 40, 29–30. [Google Scholar] [CrossRef]
- Choe, J.; Moyo, K.M.; Park, K.; Jeong, J.; Kim, H.; Ryu, Y.; Kim, J.; Kim, J.M.; Lee, S.; Go, G.W. Meat quality traits of pigs finished on food waste. Korean J. Food Sci. Anim. Resour. 2017, 37, 690. [Google Scholar] [CrossRef] [PubMed]
- de Huidobro, F.R.; Miguel, E.; Blazquez, B.; Onega, E. A comparison between two methods (Warner-Bratzler and texture profile analysis) for testing either raw meat or cooked meat. Meat Sci. 2005, 69, 527–536. [Google Scholar] [CrossRef] [PubMed]
- Ba, H.V.; Seo, H.W.; Seong, P.N.; Cho, S.-H.; Kang, S.-M.; Kim, Y.-S.; Moon, S.-S.; Choi, Y.-M.; Kim, J.-H. Live weights at slaughter significantly affect the meat quality and flavor components of pork meat. Anim. Sci. J. 2019, 90, 667–679. [Google Scholar] [CrossRef] [PubMed]
- Boschetti, E.; Bordoni, A.; Meluzzi, A.; Castellini, C.; Dal Bosco, A.; Sirri, F. Fatty acid composition of chicken breast meat is dependent on genotype-related variation of FADS1 and FADS2 gene expression and desaturating activity. Animal 2016, 10, 700–708. [Google Scholar] [CrossRef]
- Zak, G.; Pieszka, M. Improving Pork Quality through Genetics and Nutrition. Ann. Anim. Sci. 2009, 9, 327–339. [Google Scholar]
- Chlebicz-Wójcik, A.; Śliżewska, K. The effect of recently developed synbiotic preparations on dominant fecal microbiota and organic acids concentrations in feces of piglets from nursing to fattening. Animals 2020, 10, 1999. [Google Scholar] [CrossRef]
- Munezero, O.; Cho, S.; Kim, I.H. The effects of synbiotics-glyconutrients on growth performance, nutrient digestibility, gas emission, meat quality, and fatty acid profile of finishing pigs. J. Anim. Sci. Technol. 2023. [Google Scholar] [CrossRef]
- Liong, M.T.; Dunshea, F.R.; Shah, N.P. Effects of a synbiotic containing Lactobacillus acidophilus ATCC 4962 on plasma lipid profiles and morphology of erythrocytes in hypercholesterolaemic pigs on high-and low-fat diets. Br. J. Nutr. 2007, 98, 736–744. [Google Scholar] [CrossRef]
- Erdoğan, Z.; Erdoğan, S.; Aslantaş, Ö.; Çelik, S. Effects of dietary supplementation of synbiotics and phytobiotics on performance, caecal coliform population and some oxidant/antioxidant parameters of broilers. J. Anim. Physiol. Anim. Nutr. 2010, 94, e40–e48. [Google Scholar] [CrossRef]
- Cheng, Y.F.; Chen, Y.P.; Du, M.F.; Chao, W.E.; Zhou, Y.M. Evaluation of dietary synbiotic supplementation on growth performance, muscle antioxidant ability and mineral accumulations, and meat quality in late-finishing pigs. Kafkas Univ. Vet. Fak. Derg. 2018, 1, 24. [Google Scholar]
- Gagaoua, M.; Duffy, G.; Álvarez García, C.; Burgess, C.; Hamill, R.; Crofton, E.C.; Botinestean, C.; Ferragina, A.; Cafferky, J.; Mullen, A.M.; et al. Current Research and Emerging Tools to Improve Fresh Red Meat Quality; Compuscript: Clare, Ireland, 2022. [Google Scholar]
- Pieszka, M.; Szczurek, P.; Bederska-Łojewska, D.; Migdał, W.; Pieszka, M.; Gogol, P.; Jagusiak, W. The effect of dietary supplementation with dried fruit and vegetable pomaces on production parameters and meat quality in fattening pigs. Meat Sci. 2017, 126, 1–10. [Google Scholar] [CrossRef]
- Hoa, V.B.; Cho, S.H.; Seong, P.N.; Kang, S.M.; Kim, Y.S.; Moon, S.S.; Choi, Y.M.; Kim, J.H.; Seol, K.H. Quality characteristics, fatty acid profiles, flavor compounds and eating quality of cull sow meat in comparison with commercial pork. Asian-Australas. J. Anim. Sci. 2020, 33, 640. [Google Scholar] [CrossRef]
- Aaslying, M.D.; Bejerholm, C.; Ertbjerg, P.; Bertan, H.C.; Andersen, H.J. Cooking loss and juiciness of pork in relation to raw meat quality and cooking procedure. Food Qual. Prefer. 2003, 14, 277–288. [Google Scholar] [CrossRef]
- Liu, T.Y.; Su, B.C.; Wang, J.L.; Zhang, C.; Shan, A.S. Effects of probiotics on growth, pork quality and serum metabolites in growing-finishing pigs. J. Northeast. Agric. Univ. 2013, 20, 57–63. [Google Scholar] [CrossRef]
- Rybarczyk, A.; Romanowski, M.; Karamucki, T.; Ligocki, M. The effect of Bokashi probiotic on pig carcass characteristics and meat quality. FleischWirtschaft-Int. 2016, 1, 74–77. [Google Scholar]
- Kaić, A.; Kasap, A.; Širić, I.; Mioč, B. Drip loss assessment by EZ and bag methods and their relationship with pH value and color in mutton. Arch. Anim. Breed. 2020, 63, 277–281. [Google Scholar] [CrossRef]
- Wood, J.D.; Richardson, R.I.; Nute, G.R.; Fisher, A.V.; Campo, M.M.; Kasapidou, E.; Sheard, P.R.; Enser, M. Effects of fatty acids on meat quality: A review. Meat Sci. 2004, 66, 21–32. [Google Scholar] [CrossRef]
- Warriss, P.D. Meat Science: An Intoroductory Text, 2nd ed.; CABI: Wallingford, UK, 2010. [Google Scholar]
- Destefanis, G.; Brugiapaglia, A.; Barge, M.T.; Dal Molin, E. Relationship between beef consumer tenderness perception and Warner–Bratzler shear force. Meat Sci. 2008, 78, 153–156. [Google Scholar] [CrossRef]
- Hansen, S.; Hansen, T.; Aaslying, M.D.; Byrne, D.V. Sensory and instrumental analysis of longitudinal and transverse textural variation in pork longissimus dorsi. Meat Sci. 2004, 68, 611–629. [Google Scholar] [CrossRef]
- Grela, E.R.; Świątkiewicz, M.; Florek, M.; Bąkowski, M.; Skiba, G. Effect of inulin source and a probiotic supplement in pig diets on carcass traits, meat quality and fatty acid composition in finishing pigs. Animals 2021, 11, 2438. [Google Scholar] [CrossRef]
- Yuan, Z. The Influence of Raw Meat Attributes on Quality of Meat Products. Master’s Thesis, Henan Agricultural University, Zhengzhou, China, 2013. Available online: https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201401&filename=1014105488.nh (accessed on 1 June 2013).
- Kamani, M.H.; Meera, M.S.; Bhaskar, N.; Modi, V.K. Partial and total replacement of meat by plant-based proteins in chicken sausage: Evaluation of mechanical, physico-chemical and sensory characteristics. J. Food Sci. Technol. J. 2019, 56, 2660–2669. [Google Scholar] [CrossRef]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef]
- Chang, S.Y.; Belal, S.A.; Choi, Y.I.; Kim, Y.H.; Choe, H.S.; Heo, J.Y.; Shim, K.S. Influence of probiotics-friendly pig production on meat quality and physicochemical characteristics. Korean J. Food Sci. Anim. Resour. 2018, 38, 403. [Google Scholar] [CrossRef]
- Narayan, B.; Miyashita, K.; Hosakawa, M. Physiological effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)—A review. Food Rev. Int. 2006, 22, 291–307. [Google Scholar] [CrossRef]
- Ba, H.V.; Seol, K.H.; Seo, H.W.; Seong, P.N.; Kang, S.M.; Kim, Y.S.; Moon, S.S.; Kim, J.H.; Cho, S.H. Investigation of physiochemical and sensory quality differences in the pork belly and shoulder butt cuts with different quality grade. J. Food Sci. Anim. Resour. 2021, 41, 224–236. [Google Scholar]
- Ross, G.R.; Nieuwenhove, C.P.V.; González, S.N. Fatty acid profile of pig meat after probiotic administration. J. Agric. Food Chem. 2012, 60, 5974–5978. [Google Scholar] [CrossRef]
- Soladoye, O.P.; Uttarob, B.; Zawadski, S.; Dugan, M.E.R.; Gariépyc, C.; Aalhus, J.L.; Shand, P.; Juárez, M. Compositional and dimensional factors influencing pork belly firmness. Meat Sci. 2017, 129, 54–56. [Google Scholar] [CrossRef]
Phase 1 (Week 0–5) | Phase 2 (Week 6–10) | |
---|---|---|
Raw Material | % | % |
Corn | 63.7 | 68.9 |
Soybean meal | 19.8 | 11.9 |
Rapeseed meal | 3.00 | 4.00 |
Dried distillers’ grains soluble | 5.00 | 7.00 |
Tallow | 3.45 | 3.11 |
Molasses | 2.00 | 2.00 |
Limestone | 1.24 | 1.27 |
Mono-di-calcium phosphate | 0.53 | 0.37 |
Salt | 0.30 | 0.30 |
DL-Methonine | 0.04 | - |
L-Lysine H2SO4 | 0.41 | 0.45 |
L-Threonine | 0.06 | 0.07 |
L-Tryptophan (10%) | 0.17 | 0.33 |
Vit/Min premix 1 | 0.20 | 0.20 |
Phytase | 0.05 | 0.05 |
Carbohydrase | 0.05 | 0.05 |
Total | 100 | 100 |
Calculated values | ||
Moisture | 12.9 | 13.0 |
Crude protein | 16.7 | 14.4 |
Ether extract; | 5.71 | 5.64 |
Fiber | 2.95 | 2.89 |
Ash | 5.07 | 4.72 |
Non-starch polysaccharides | 120 | 116 |
Neutral detergent fiber | 10.2 | 10.8 |
Acid-detergent fiber | 2.98 | 3.09 |
Calcium | 0.69 | 0.66 |
Phosphorus | 0.42 | 0.38 |
Sodium | 0.15 | 0.16 |
Chlorine | 0.28 | 0.28 |
Potassium | 0.83 | 0.71 |
Lysine | 1.02 | 0.86 |
Methionine | 0.32 | 0.26 |
Threonine | 0.67 | 0.59 |
Tryptophan | 0.19 | 0.18 |
Methonine + cystine | 0.62 | 0.53 |
Traits | CON 1 | TRT 1 | TRT 2 | SEM 2 | p Value | |
---|---|---|---|---|---|---|
Linear | Quadratic | |||||
Body weight, kg | ||||||
Initial | 54.88 | 54.88 | 54.89 | 0.01 | 0.506 | 0.937 |
Week 5 | 81.14 b | 82.21 ab | 82.83 a | 0.47 | 0.045 | 0.705 |
Week 10 | 112.61 b | 115.99 ab | 117.02 a | 1.08 | 0.031 | 0.435 |
Week 5 | ||||||
Average daily Gain, g | 750 b | 781 ab | 798 a | 13.37 | 0.045 | 0.703 |
Average daily intake, g | 2105 b | 2161 ab | 2199 a | 28.42 | 0.056 | 0.799 |
Gain to feed ratio | 2.806 | 2.768 | 2.756 | 0.02 | 0.102 | 0.616 |
Week 10 | ||||||
Average daily Gain, g | 903 b | 965 ab | 977 a | 17.82 | 0.026 | 0.293 |
Average daily intake, g | 2838 | 2940 | 2943 | 36.15 | 0.086 | 0.306 |
Gain to feed ratio | 3.145 | 3.048 | 3.014 | 0.04 | 0.081 | 0.567 |
Overall | ||||||
Average daily Gain, g | 827 b | 873 ab | 888 a | 15.35 | 0.031 | 0.432 |
Average daily intake, g | 2471 b | 2551 ab | 2571 a | 28.94 | 0.051 | 0.438 |
Gain to feed ratio | 2.991 | 2.923 | 2.898 | 0.03 | 0.066 | 0.532 |
Traits | CON 1 | TRT 1 | TRT 2 | SEM 2 | p Value | |
---|---|---|---|---|---|---|
Linear | Quadratic | |||||
Week 10 | ||||||
Sensory Evaluation | ||||||
Color | 3.13 | 3.31 | 3.28 | 0.13 | 0.426 | 0.510 |
Firmness | 3.31 | 3.34 | 3.22 | 0.11 | 0.568 | 0.586 |
Marbling | 3.22 | 3.06 | 3.31 | 0.10 | 0.549 | 0.158 |
Meat Color | ||||||
Lightness (L*) | 51.97 | 51.95 | 51.82 | 0.39 | 0.791 | 0.906 |
Yellowness (a*) | 14.53 | 14.66 | 14.73 | 0.10 | 0.192 | 0.762 |
Redness (b*) | 5.89 | 6.05 | 5.90 | 0.13 | 0.979 | 0.361 |
LMA, mm2 | 7412.21 b | 7522.98 ab | 7557.57 a | 44.8 | 0.062 | 0.513 |
pH | 5.56 | 5.63 | 5.68 | 0.06 | 0.206 | 0.854 |
WHC% | 42.44 | 47.60 | 48.62 | 2.49 | 0.129 | 0.522 |
Drip loss, % | ||||||
d1 | 7.98 | 7.93 | 7.90 | 0.45 | 0.904 | 0.989 |
d3 | 13.28 | 13.08 | 12.99 | 0.29 | 0.504 | 0.882 |
d5 | 19.69 | 19.35 | 19.16 | 0.50 | 0.487 | 0.898 |
d7 | 24.83 | 24.19 | 23.68 | 0.42 | 0.101 | 0.906 |
Cooking loss, % | 33.18 a | 31.98 ab | 30.96 b | 0.63 | 0.049 | 0.913 |
Traits | CON 1 | TRT 1 | TRT 2 | SEM 2 | p Value | |
---|---|---|---|---|---|---|
Week 10 | Linear | Quadratic | ||||
Sensory traits | ||||||
Pork belly | ||||||
Tenderness | 3.19 ab | 3.81 b | 3.94 a | 0.26 | 0.068 | 0.460 |
Flavor | 3.25 | 3.63 | 4.00 | 0.31 | 0.114 | 0.241 |
Juicy | 3.38 b | 3.63 ab | 3.81 a | 0.29 | 0.053 | 0.497 |
Texture | 3.13 | 3.50 | 3.63 | 0.28 | 0.238 | 0.727 |
Preference | 3.25 | 3.56 | 3.75 | 0.32 | 0.284 | 0.874 |
Loin | ||||||
Tenderness | 2.38 | 3.00 | 3.19 | 0.33 | 0.111 | 0.605 |
Flavor | 2.63 b | 3.63 ab | 3.69 a | 0.29 | 0.027 | 0.213 |
Juicy | 2.75 | 3.06 | 3.06 | 0.34 | 0.532 | 0.716 |
Texture | 3.00 | 3.19 | 3.31 | 0.32 | 0.509 | 0.938 |
Preference | 2.81 | 3.13 | 3.19 | 0.29 | 0.378 | 0.732 |
Texture profile | ||||||
Pork belly | ||||||
Hardness 1, N | 136.67 b | 193.26 a | 201.98 a | 14.35 | 0.018 | 0.222 |
Hardness 2, N | 116.75 | 123.40 | 163.19 | 21.58 | 0.178 | 0.554 |
Cohesiveness | 0.59 b | 0.70 a | 0.73 a | 0.23 | 0.005 | 0.219 |
Adhesiveness, mm | 2.51 | 2.67 | 2.96 | 0.28 | 0.306 | 0.849 |
Gumminess, N | 80.09 b | 89.78 ab | 101.44 a | 7.12 | 0.078 | 0.914 |
Fracture, N | 62.54 | 64.34 | 81.80 | 10.37 | 0.237 | 0.560 |
Stringiness, mm | 6.29 | 10.38 | 11.27 | 2.12 | 0.149 | 0.561 |
Chewiness, N | 50.46 | 62.43 | 83.30 | 18.34 | 0.252 | 0.844 |
Springiness Index, mm | 0.83 | 0.87 | 0.90 | 0.06 | 0.424 | 0.865 |
Loin | ||||||
Hardness 1, N | 125.75 | 168.64 | 170.19 | 26.77 | 0.285 | 0.552 |
Hardness 2, N | 89.07 b | 103.68 ab | 140.75 a | 13.91 | 0.039 | 0.534 |
Cohesiveness | 0.37 | 0.48 | 0.54 | 0.07 | 0.168 | 0.799 |
Adhesiveness, mm | 1.08 | 1.87 | 1.95 | 0.38 | 0.157 | 0.484 |
Gumminess, N | 62.52 | 75.56 | 83.28 | 12.54 | 0.286 | 0.868 |
Fracture, N | 125.66 | 150.42 | 150.67 | 13.32 | 0.232 | 0.481 |
Stringiness, mm | 6.81 b | 9.31 a | 9.93 a | 0.65 | 0.014 | 0.284 |
Chewiness, N | 38.70 b | 67.17 ab | 79.63 a | 12.17 | 0.055 | 0.611 |
Springiness Index, mm | 0.71 | 0.79 | 0.80 | 0.04 | 0.178 | 0.471 |
Fatty Acids | CON 1 | TRT 1 | TRT 2 | SEM 2 | p Value | |
---|---|---|---|---|---|---|
Linear | Quadratic | |||||
C4:0 | 0.00 | 0.00 | 0.00 | |||
C6:0 | 0.06 b | 0.11 a | 0.12 a | 0.016 | 0.043 | 0.266 |
C8:0 | 0.00 b | 0.02 ab | 0.03 a | 0.009 | 0.077 | 0.844 |
C10:0 | 0.01 | 0.03 | 0.04 | 0.02 | 0.202 | 0.855 |
C11:0 | 0.00 | 0.00 | 0.00 | - | ||
C12:0 | 0.07 b | 0.13 ab | 0.16 a | 0.022 | 0.031 | 0.611 |
C13:0 | 0.00 | 0.00 | 0.00 | |||
C14:0 | 0.99 b | 1.47 ab | 1.60 a | 0.17 | 0.052 | 0.445 |
C14:1 | 0.08 b | 0.23 a | 0.21 a | 0.0455 | 0.081 | 0.178 |
C15:0 | 0.06 b | 0.22 ab | 0.20 a | 0.048 | 0.086 | 0.150 |
C15:1 | 0.00 | 0.01 | 0.02 | 0.01 | 0.110 | 0.882 |
C16:0 | 28.47 a | 16.72 ab | 12.97 a | 1.29 | 0.0001 | 0.045 |
C16:1 | 2.49 b | 2.75 ab | 2.80 a | 0.09 | 0.067 | 0.448 |
C17:0 | 0.38 b | 0.50 ab | 0.55 a | 0.05 | 0.086 | 0.665 |
C17:1 | 0.20 | 0.28 | 0.34 | 0.05 | 0.094 | 0.896 |
C18:0 | 8.53 b | 10.51 ab | 12.21 a | 1.23 | 0.079 | 0.926 |
C18:1,t | 3.54 | 3.55 | 3.64 | 0.33 | 0.833 | 0.926 |
C18:1,c | 42.19 b | 45.63 ab | 46.65 a | 0.624 | 0.002 | 0.163 |
C18:2n6t | 0.00 b | 0.02 ab | 0.04 a | 0.009 | 0.029 | 0.753 |
C18:2n6c, LA | 10.14 | 13.12 | 13.68 | 1.45 | 0.136 | 0.522 |
C18:3n6 | 0.00 | 0.03 | 0.02 | 0.01 | 0.153 | 0.207 |
C18:3n3, ALA | 0.40 b | 0.52 ab | 0.56 a | 0.052 | 0.073 | 0.603 |
C20:0 | 1.33 | 1.96 | 1.65 | 0.33 | 0.514 | 0.286 |
C20:1 | 0.01 | 0.00 | 0.01 | 0.01 | 0.745 | 0.218 |
C20:2 | 0.31 | 0.29 | 0.27 | 0.07 | 0.717 | 0.958 |
C20:3n6 | 0.04 | 0.05 | 0.06 | 0.01 | 0.236 | 0.884 |
C21:0 | 0.09 | 0.06 | 0.06 | 0.03 | 0.630 | 0.822 |
C20:3n3 | 0.00 | 0.00 | 0.02 | 0.01 | 0.266 | 0.506 |
C20:4n6 | 0.03 | 0.03 | 0.03 | 0.01 | 1.000 | 0.718 |
C20:5n3, EPA | 0.06 b | 0.13 a | 0.15 a | 0.011 | 0.001 | 0.131 |
C22:0 | 0.12 b | 0.37 a | 0.38 a | 0.038 | 0.003 | 0.044 |
C22:1n9 | 0.00 b | 0.04 ab | 0.06 a | 0.008 | 0.166 | 0.665 |
C22:2 | 0.01 | 0.04 | 0.04 | 0.01 | 0.121 | 0.418 |
C23:0 | 0.03 | 0.04 | 0.05 | 0.01 | 0.166 | 0.665 |
C24:0 | 0.00 | 0.01 | 0.00 | |||
C22:6n3, DHA | 0.10 b | 0.42 a | 0.55 a | 0.061 | 0.002 | 0.256 |
C24:1n9 | 0.30 b | 0.75 ab | 0.84 a | 0.16 | 0.055 | 0.403 |
ω-3 fatty acid | 0.56 b | 1.06 a | 1.26 a | 0.036 | <.0001 | 0.013 |
ω-6 fatty acid | 10.21 | 13.24 | 13.83 | 1.45 | 0.129 | 0.519 |
ω-6: ω-3 | 18.14 | 12.71 | 11.07 | 1.98 | 0.045 | 0.465 |
Σ Saturated FA | 40.12 | 32.14 | 30.00 | 1.91 | 0.009 | 0.259 |
Σ USFA | 59.88 | 67.86 | 70.00 | 1.91 | 0.009 | 0.259 |
Σ mono-USFA | 48.80 b | 53.24 ab | 54.58 a | 0.69 | 0.001 | 0.120 |
Σ Poly-USFA | 11.09 b | 14.63 ab | 15.42 a | 1.5 | 0.087 | 0.484 |
MUFA/SFA | 1.24 b | 1.68 ab | 1.82 a | 0.09 | 0.004 | 0.256 |
PUFA/SFA | 0.29 | 0.47 | 0.52 | 0.07 | 0.051 | 0.426 |
Total FA | 100.00 | 100.00 | 100.00 | - | - | - |
Fatty Acids | CON 1 | TRT 1 | TRT 2 | SEM 2 | p Value | |
---|---|---|---|---|---|---|
Linear | Quadratic | |||||
Crude fat, % | 42.22 b | 49.70 a | 52.64 a | 1.67 | 0.004 | 0.312 |
C4:0 | 0.00 | 0.00 | 0.00 | - | - | - |
C6:0 | 0.06 b | 0.15 a | 0.15 a | 0.015 | 0.005 | 0.083 |
C8:0 | 0.04 | 0.05 | 0.04 | 0.01 | 0.776 | 0.625 |
C10:0 | 0.04 | 0.05 | 0.05 | 0.01 | 0.490 | 0.686 |
C11:0 | 0.00 | 0.00 | 0.00 | - | - | - |
C12:0 | 0.07 b | 0.10 a | 0.11 a | 0.006 | 0.002 | 0.152 |
C13:0 | 0.00 | 0.02 | 0.02 | 0.01 | 0.188 | 0.544 |
C14:0 | 1.28 b | 1.63 a | 1.67 a | 0.08 | 0.017 | 0.166 |
C14:1 | 0.06 b | 0.20 a | 0.16 a | 0.01 | 0.003 | 0.003 |
C15:0 | 0.13 b | 0.34 ab | 0.40 a | 0.07 | 0.054 | 0.454 |
C15:1 | 0.00 b | 0.03 a | 0.04 a | 0.008 | 0.028 | 0.506 |
C16:0 | 25.53 a | 19.68 ab | 16.58 b | 0.71 | 0.0001 | 0.168 |
C16:1 | 2.67 | 2.49 | 2.68 | 0.13 | 0.947 | 0.293 |
C17:0 | 0.35 | 0.55 | 0.60 | 0.08 | 0.091 | 0.515 |
C17:1 | 0.17 b | 0.29 ab | 0.33 a | 0.04 | 0.049 | 0.498 |
C18:0 | 10.22 b | 11.75 ab | 12.39 a | 0.3 | 0.002 | 0.273 |
C18:1,t | 3.47 | 3.41 | 3.57 | 0.12 | 0.605 | 0.487 |
C18:1,c | 43.53 b | 44.64 ab | 46.16 a | 0.45 | 0.006 | 0.727 |
C18:2n6t | 0.01 | 0.02 | 0.03 | 0.01 | 0.307 | 0.837 |
C18:2n6c, LA | 8.69 b | 10.12 a | 10.38 a | 0.37 | 0.019 | 0.258 |
C18:3n6 | 0.03 | 0.04 | 0.04 | 0.02 | 0.583 | 0.749 |
C18:3n3, ALA | 0.50 | 0.59 | 0.61 | 0.04 | 0.142 | 0.489 |
C20:0 | 2.13 | 2.18 | 2.13 | 0.13 | 1.000 | 0.782 |
C20:1 | 0.01 | 0.00 | 0.00 | 0.01 | 0.266 | 0.506 |
C20:2 | 0.28 | 0.24 | 0.24 | 0.01 | 0.137 | 0.314 |
C20:3n6 | 0.05 | 0.05 | 0.05 | 0.01 | 0.323 | 0.557 |
C21:0 | 0.17 | 0.12 | 0.15 | 0.03 | 0.626 | 0.318 |
C20:3n3 | 0.00 | 0.00 | 0.00 | - | - | - |
C20:4n6 | 0.04 | 0.03 | 0.04 | 0.01 | 0.652 | 0.219 |
C20:5n3, EPA | 0.00 b | 0.12 a | 0.14 a | 0.01 | 0.0001 | 0.009 |
C22:0 | 0.03 b | 0.22 ab | 0.29 a | 0.055 | 0.016 | 0.395 |
C22:1n9 | 0.00 | 0.06 | 0.05 | 0.01 | 0.151 | 0.762 |
C22:2 | 0.03 | 0.05 | 0.03 | 0.01 | 1.000 | 0.135 |
C23:0 | 0.07 | 0.06 | 0.05 | 0.01 | 0.151 | 0.762 |
C24:0 | 0.02 | 0.01 | 0.01 | 0.01 | 0.567 | 0.582 |
C22:6n3, DHA | 0.10 b | 0.39 a | 0.49 a | 0.058 | 0.003 | 0.224 |
C24:1n9 | 0.25 b | 0.37 a | 0.38 a | 0.02 | 0.004 | 0.045 |
ω-3 fatty acid | 0.60 b | 1.10 a | 1.23 a | 0.029 | <.0001 | 0.002 |
ω-6 fatty acid | 8.82 b | 10.25 ab | 10.53 a | 0.39 | 0.021 | 0.277 |
ω-6: ω-3 | 14.67 | 9.40 | 8.61 | 0.70 | 0.001 | 0.041 |
Σ Saturated FA | 40.12 a | 36.89 ab | 34.63 b | 0.66 | 0.001 | 0.573 |
Σ Un-SFA | 59.89 | 63.11 | 65.37 | 0.66 | 0.001 | 0.575 |
Σ mono-USFA | 50.16 b | 51.48 ab | 53.35 a | 0.51 | 0.004 | 0.683 |
Σ Poly-USFA | 9.73 | 11.63 | 12.02 | 0.39 | 0.006 | 0.170 |
MUFA/SFA | 1.25 b | 1.40 ab | 1.54 a | 0.03 | 0.002 | 0.960 |
PUFA/SFA | 0.24 b | 0.32 a | 0.35 a | 0.02 | 0.003 | 0.348 |
Total FA | 100.00 | 100.00 | 100.00 | - | - | - |
Fatty Acids | CON 1 | TRT 1 | TRT 2 | SEM | p Value | |
---|---|---|---|---|---|---|
Linear | Quadratic | |||||
Crude fat, % | 5.73 b | 6.24 a | 6.66 a | 0.18 | 0.010 | 0.867 |
C4:0 | 0.00 | 0.00 | 0.00 | - | - | - |
C6:0 | 0.00 | 0.00 | 0.00 | - | - | - |
C8:0 | 0.00 | 0.00 | 0.00 | - | - | - |
C10:0 | 0.0 | 0.00 | 0.02 | 0.011 | 0.266 | 0.506 |
C11:0 | 0.00 | 0.00 | 0.00 | |||
C12:0 | 0.13 b | 0.17 a | 0.19 a | 0.011 | 0.008 | 0.360 |
C13:0 | 0.00 | 0.00 | 0.00 | |||
C14:0 | 1.09 b | 1.14 ab | 1.17 a | 0.013 | 0.009 | 0.523 |
C14:1 | 0.00 | 0.00 | 0.00 | - | - | - |
C15:0 | 0.00 | 0.00 | 0.00 | - | - | - |
C15:1 | 0.00 | 0.00 | 0.00 | - | - | - |
C16:0 | 30.16 a | 20.51 a | 13.77 b | 2.1 | 0.002 | 0.593 |
C16:1 | 2.90 b | 3.25 a | 3.39 a | 0.06 | 0.002 | 0.204 |
C17:0 | 0.29 b | 0.48 a | 0.50 a | 0.03 | 0.003 | 0.072 |
C17:1 | 0.10 | 0.24 | 0.27 | 0.058 | 0.090 | 0.524 |
C18:0 | 10.85 a | 14.46 a | 14.72 a | 1 | 0.034 | 0.221 |
C18:1, t | 0.00 | 0.00 | 0.01 | 0.002 | 0.266 | 0.506 |
C18:1, c | 44.35 b | 48.35 a | 54.22 a | 2.19 | 0.018 | 0.740 |
C18:2 n6 | 0.06 b | 0.08 ab | 0.09 a | 0.005 | 0.011 | 0.343 |
C18:2 n6c, LA | 7.37 | 7.90 | 8.07 | 0.65 | 0.479 | 0.825 |
C18:3 n6 | 0.00 | 0.00 | 0.00 | - | - | - |
C18:3 n3, ALA | 0.53 b | 0.91 ab | 0.97 a | 0.12 | 0.042 | 0.314 |
C20:0 | 0.24 | 0.28 | 0.29 | 0.048 | 0.561 | 0.826 |
C20:1 | 1.06 | 1.20 | 1.27 | 0.08 | 0.115 | 0.718 |
C20:2 | 0.30 | 0.31 | 0.32 | 0.054 | 0.804 | 0.914 |
C20:3n6 | 0.06 | 0.09 | 0.08 | 0.012 | 0.180 | 0.277 |
C21:0 | 0.00 | 0.00 | 0.00 | - | - | - |
C20:3n3 | 0.48 | 0.50 | 0.52 | 0.014 | 0.099 | 0.892 |
C20:4n6 | 0.00 | 0.00 | 0.00 | - | - | - |
C20:5n3, EPA | 0.00 b | 0.04 ab | 0.06 a | 0.012 | 0.012 | 0.813 |
C22:0 | 0.00 | 0.00 | 0.00 | - | - | - |
C22:1n9 | 0.01 | 0.03 | 0.04 | 0.013 | 0.210 | 0.312 |
C22:2 | 0.00 | 0.00 | 0.00 | - | - | - |
C23:0 | 0.05 | 0.08 | 0.08 | 0.013 | 0.210 | 0.312 |
C24:0 | 0.00 | 0.00 | 0.00 | - | - | - |
C22:6n3, DHA | 0.00 | 0.00 | 0.00 | - | - | - |
C24:1n9 | 0.00 | 0.00 | 0.00 | - | - | - |
ω-3 fatty acid | 0.53 b | 0.95 ab | 1.03 a | 0.12 | 0.025 | 0.303 |
ω-6 fatty acid | 7.48 | 8.07 | 8.24 | 0.66 | 0.448 | 0.803 |
ω-6: ω-3 | 15.94 a | 8.64 ab | 8.53 b | 2.35 | 0.067 | 0.258 |
Σ Saturated FA | 42.81 | 37.11 | 30.71 | 2.16 | 0.007 | 0.900 |
Σ Un-SFA | 57.19 b | 62.90 ab | 69.29 a | 2.16 | 0.006 | 0.900 |
Σ mono-USFA | 48.41 b | 53.07 ab | 59.19 a | 2.25 | 0.014 | 0.800 |
Σ Poly-USFA | 8.78 | 9.83 | 10.10 | 0.65 | 0.206 | 0.652 |
MUFA/SFA | 1.14 b | 1.48 ab | 1.94 a | 0.17 | 0.016 | 0.823 |
PUFA/SFA | 0.21 b | 0.27 ab | 0.33 a | 0.026 | 0.017 | 0.881 |
Total FA | 100.00 | 100.00 | 100.00 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sampath, V.; Park, J.H.; Kim, I.H. Synbiotic-Glyconutrient Additive Reveals a Conducive Effect on Growth Performance, Fatty Acid Profile, Sensory Characteristics, and Texture Profile Analysis in Finishing Pig. Foods 2024, 13, 105. https://doi.org/10.3390/foods13010105
Sampath V, Park JH, Kim IH. Synbiotic-Glyconutrient Additive Reveals a Conducive Effect on Growth Performance, Fatty Acid Profile, Sensory Characteristics, and Texture Profile Analysis in Finishing Pig. Foods. 2024; 13(1):105. https://doi.org/10.3390/foods13010105
Chicago/Turabian StyleSampath, Vetriselvi, Jae Hong Park, and In Ho Kim. 2024. "Synbiotic-Glyconutrient Additive Reveals a Conducive Effect on Growth Performance, Fatty Acid Profile, Sensory Characteristics, and Texture Profile Analysis in Finishing Pig" Foods 13, no. 1: 105. https://doi.org/10.3390/foods13010105
APA StyleSampath, V., Park, J. H., & Kim, I. H. (2024). Synbiotic-Glyconutrient Additive Reveals a Conducive Effect on Growth Performance, Fatty Acid Profile, Sensory Characteristics, and Texture Profile Analysis in Finishing Pig. Foods, 13(1), 105. https://doi.org/10.3390/foods13010105