Effect of Alkyl Peroxyl Radical Oxidation on the Oxidative Stability of Walnut Protein Emulsions and Their Adsorbed Proteins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Walnut Protein
2.3. Preparation of Oxidized Walnut Protein
2.4. Secondary Structure
2.5. Contact Angle
2.6. Preparation of Emulsion
2.7. Determination of Emulsion Carbonyl Content
2.8. Measurement of Emulsion Sulfhydryl Content
2.9. Determination of Emulsion Surface Hydrophobicity
2.10. Emulsion Tryptophan Fluorescence Measurement
2.11. Determination of the Hydroperoxide Value of Emulsions
2.12. Measurement of Emulsion Malondialdehyde Products
2.13. Potentiometric Determination of Emulsion
2.14. Emulsion Stability Determination
2.15. Measurement of Emulsification Activity and Emulsion Stability
2.16. Measurement of the Centrifugal Stability Constant
2.17. Determination of Physical Stability of Emulsions
2.18. Laser Confocal Measurement
2.19. Isolation and Extraction of Adsorbed Proteins
2.20. Determination of Protein Adsorption Rate of Adsorbed Proteins in Walnut Protein Emulsions
2.21. SDS-PAGE of Adsorbed Proteins in Walnut Protein Emulsion
2.22. Determination of Particle Size of Adsorbed Proteins in Walnut Protein Emulsions
2.23. Determination of Zeta Potential of Adsorbed Proteins in Walnut Protein Emulsions
2.24. Statistical Analysis
3. Results and Discussion
3.1. Effect of AAPH Oxidation on the Secondary Structure of Walnut Proteins
3.2. Effect of AAPH Oxidation on the Contact Angle of Walnut Protein
3.3. Effect of AAPH Oxidation on the Carbonyl and Free Sulfhydryl Content of Walnut Protein Emulsions
3.4. The Impact of AAPH Oxidation on the Concentration of Free Sulfhydryl Groups in Walnut Protein Emulsion
3.5. Effect of AAPH Oxidation on the Surface Hydrophobicity of Walnut Protein Emulsion
3.6. Effect of AAPH Oxidation on Tryptophan Fluorescence in Walnut Protein Emulsion
3.7. Lipid Oxidation in Walnut Protein Emulsion
3.8. Measurement of Emulsion Potential
3.9. Determination of Emulsion Stability
3.10. Determination of Emulsifying Activity and Stability
3.11. Determination of Emulsification Rate and Centrifugal Stability Constant
3.12. Laser Confocal Measurement
3.13. Determination of Adsorption Rate of Adsorbed Proteins
3.14. SDS-PAGE of Adsorbed Proteins
3.15. Determination of Adsorbed Protein Particle Size
3.16. Determination of Adsorbent Protein Potential
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Caballero, B.; Trugo, L.; Finglas, P. Encyclopedia of Food Sciences and Nutrition: Volumes 1–10; Elsevier Science BV: Amsterdam, The Netherlands, 2003; Available online: https://www.sciencedirect.com/referencework/9780122270550/encyclopedia-of-food-sciences-and-nutrition (accessed on 4 April 2024).
- Martinez, M.L.; Mattea, M.A.; Maestri, D.M. Pressing and supercritical carbon dioxide extraction of walnut oil. J. Food Eng. 2008, 88, 399–404. [Google Scholar] [CrossRef]
- Zhu, K.; Ma, J.; Cong, J.; Zhang, T.; Lei, H.; Xu, H.; Luo, Z.; Li, M. The road to reuse of walnut by-products: A comprehensive review of bioactive compounds, extraction and identification methods, biomedical and industrial applications. Trends Food Sci. Technol. 2024, 143, 104264. [Google Scholar] [CrossRef]
- Masoodi, L.; Gull, A.; Masoodi, F.A.; Gani, A.; Nissar, J.; Ahad, T.; Nayik, G.A.; Mukarram, S.A.; Kovács, B.; Prokisch, J.; et al. An Overview on Traditional vs. Green Technology of Extraction Methods for Producing High Quality Walnut Oil. Agronomy 2022, 12, 2258. [Google Scholar] [CrossRef]
- Chen, Y.H.; Li, J.; Dong, N.G.; Zhang, Y.Q.; Lu, X.D.; Hao, Y.B.; Qi, J.X. Separation and identification of ACE inhibitory peptides from defatted walnut meal. Eur. Food Res. Technol. 2020, 246, 2029–2038. [Google Scholar] [CrossRef]
- Panyam, D.; Kilara, A. Enhancing the functionality of food proteins by enzymatic modification. Trends Food Sci. Technol. 1996, 7, 120–125. [Google Scholar] [CrossRef]
- Niki, E.; Kawakami, A.; Saito, M.; Yamamoto, Y.; Kamiya, Y. Effect of phytyl side chain of vitamin E on its antioxidant activity. J. Biol. Chem. 1985, 260, 2191–2196. [Google Scholar] [CrossRef] [PubMed]
- Hiramoto, K.; Johkoh, H.; Sako, K.; Kikugawa, K. DNA breaking activity of the carbon-centered radical generated from 2,2’-azobis(2-amidinopropane) hydrochloride (AAPH). Free Radic. Res. Commun. 1993, 19, 323–332. [Google Scholar] [CrossRef]
- Gaschler, M.; Stockwell, B. Lipid peroxidation in cell death. Biochem. Biophys. Res. Commun. 2017, 482, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Hua, Y.; Lin, Q.; Xiao, H. Effects of oxidative modification on thermal aggregation and gel properties of soy protein by peroxyl radicals. Int. J. Food Sci. Technol. 2011, 46, 1891–1897. [Google Scholar] [CrossRef]
- Ye, L.; Liao, Y.; Zhao, M.; Sun, W. Effect of Protein Oxidation on the Conformational Properties of Peanut Protein Isolate. J. Chem. 2013, 2013, 423254. [Google Scholar] [CrossRef]
- Zhou, F.; Zhao, M.; Zhao, H.; Sun, W.; Cui, C. Effects of oxidative modification on gel properties of isolated porcine myofibrillar protein by peroxyl radicals. Meat Sci. 2014, 96, 1432–1439. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Mao, X.; Wu, Q.; Zhang, J.; Deng, X. Effects of oxidative modification of peroxyl radicals on the structure and foamability of chickpea protein isolates. J. Food Sci. 2021, 86, 824–833. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Yan, C.; Xu, Y.; Ling, M.; He, C.; Zhou, Z. High internal phase emulsions stabilized by alkaline-extracted walnut protein isolates and their application in food 3D printing. Food Res. Int. 2023, 169, 112858. [Google Scholar] [CrossRef]
- Yan, C.; Zhou, Z. Walnut pellicle phenolics greatly influence the extraction and structural properties of walnut protein isolates. Food Res. Int. 2021, 141, 110163. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhu, W.; Yi, J.; Liu, N.; Cao, Y.; Lu, J.; Decker, E.A.; McClements, D.J. Effects of sonication on the physicochemical and functional properties of walnut protein isolate. Food Res. Int. 2018, 106, 853–861. [Google Scholar] [CrossRef]
- Chen, N.; Yang, H.; Sun, Y.; Niu, J.; Liu, S. Purification and identification of antioxidant peptides from walnut (Juglans regia L.) protein hydrolysates. Peptides 2012, 38, 344–349. [Google Scholar] [CrossRef]
- Mao, X.Y.; Hua, Y.F.; Chen, G.G. Amino Acid Composition, Molecular Weight Distribution and Gel Electrophoresis of Walnut (Juglans regia L.) Proteins and Protein Fractionations. Int. J. Mol. Sci. 2014, 15, 2003–2014. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Deng, X.; Liu, T.; Zhao, M.; Zhao, Q.; Chen, S. Effect of xanthan gum on walnut protein/xanthan gum mixtures, interfacial adsorption, and emulsion properties. Food Hydrocoll. 2018, 79, 391–398. [Google Scholar] [CrossRef]
- Sze-Tao, K.W.C.; Sathe, S.K. Walnuts (Juglans regia L): Proximate composition, protein solubility, protein amino acid composition and protein in vitro digestibility. J. Sci. Food Agric. 2000, 80, 1393–1401. [Google Scholar] [CrossRef]
- Zhao, J.; Han, M.; Wu, Q.; Mao, X.; Zhang, J.; Lu, Z. Effect of Oxidative Modification by Peroxyl Radical on the Characterization and Identification of Oxidative Aggregates and In Vitro Digestion Products of Walnut (Juglans regia L.) Protein Isolates. Foods 2022, 11, 4104. [Google Scholar] [CrossRef]
- Yan, S.; Yao, Y.; Xie, X.; Zhang, S.; Huang, Y.; Zhu, H.; Li, Y.; Qi, B. Comparison of the physical stabilities and oxidation of lipids and proteins in natural and polyphenol-modified soybean protein isolate-stabilized emulsions. Food Res. Int. 2022, 162, 112066. [Google Scholar] [CrossRef]
- Li, S.; Li, C.; Yang, Y.; He, X.; Zhang, B.; Fu, X.; Tan, C.P.; Huang, Q. Starch granules as Pickering emulsifiers: Role of octenylsuccinylation and particle size. Food Chem. 2019, 283, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, F.; Wu, X.; Wu, W. Effect of rice bran rancidity on the emulsion stability of rice bran protein and structural characteristics of interface protein. Food Hydrocoll. 2021, 121, 107006. [Google Scholar] [CrossRef]
- Levine, R.L.; Garland, D.; Oliver, C.N.; Amici, A.; Stadtman, E.R. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990, 186, 464–478. [Google Scholar] [CrossRef] [PubMed]
- Berton, C.; Ropers, M.-H.; Guibert, D.; Solé, V.; Genot, C. Modifications of Interfacial Proteins in Oil-in-Water Emulsions Prior to and During Lipid Oxidation. J. Agric. Food Chem. 2012, 60, 8659. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Bi, X.; Wang, R.; Yin, Z.; Zheng, Y.; Peng, X.; Jia, N.; Liu, D. Effects of catechin on the stability of myofibrillar protein-soybean oil emulsion and the adsorbed properties of myosin at the oil–water interface. Food Chem. 2024, 442, 138478. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.Z.; Xu, J.W.; Liu, G.N.; Du, X.Q.; Hu, M.; Zhang, S.; Jiang, L.Z.; Zhu, H.P.; Qi, B.K.; Li, Y. Emulsions co-stabilized by soy protein nanoparticles and tea saponin: Physical stability, rheological properties, oxidative stability, and lipid digestion. Food Chem. 2022, 387, 132891. [Google Scholar] [CrossRef] [PubMed]
- Shantha, N.C.; Decker, E.A. Rapid, sensitive, iron-based spectrophotometric methods for determination of peroxide values of food lipids. J. AOAC Int. 1994, 77, 421–424. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.X.; Fan, Q.; Li, D.; Chen, X.; Liang, L. Impact of gum Arabic on the partition and stability of resveratrol in sunflower oil emulsions stabilized by whey protein isolate. Colloids Surf. B—Biointerfaces 2019, 181, 749–755. [Google Scholar] [CrossRef]
- Shi, L.S.; Yang, X.Y.; Gong, T.; Hu, C.Y.; Shen, Y.H.; Meng, Y.H. Ultrasonic treatment improves physical and oxidative stabilities of walnut protein isolate-based emulsion by changing protein structure. LWT 2023, 173, 114269. [Google Scholar] [CrossRef]
- Bilbao-Sainz, C.; Chiou, B.-S.; Du, W.-X.; Gregorsky, K.S.; Orts, W.J. Influence of Disperse Phase Characteristics on Stability, Physical and Antimicrobial Properties of Emulsions Containing Cinnamaldehyde. J. Am. Oil Chem. Soc. 2012, 90, 233–241. [Google Scholar] [CrossRef]
- Wang, N.; Wang, D.; Xing, K.; Han, X.; Gao, S.; Wang, T.; Yu, D.; Elfalleh, W. Ultrasonic treatment of rice bran protein-tannic acid stabilized oil-in-water emulsions: Focus on microstructure, rheological properties and emulsion stability. Ultrason. Sonochem. 2023, 99, 106577. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, C.; Zhang, S.; Li, J.; Xu, J. Comparison of Different Protein Emulsifiers on Physicochemical Properties of β-Carotene-Loaded Nanoemulsion: Effect on Formation, Stability, and In Vitro Digestion. Nanomaterials 2021, 11, 167. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Feng, Y.; Kong, B.; Xia, X.; Liu, Q. An eco-friendly extraction method for adsorbed proteins from emulsions stabilized by whey protein isolate by using Tween 20. Colloids Surf. A Physicochem. Eng. Asp. 2020, 604, 125332. [Google Scholar] [CrossRef]
- Liang, H.-N.; Tang, C.-h. Pea protein exhibits a novel Pickering stabilization for oil-in-water emulsions at pH 3.0. LWT—Food Sci. Technol. 2014, 58, 463–469. [Google Scholar] [CrossRef]
- Han, M.; Zhao, J.; Wu, Q.; Mao, X.; Zhang, J. Effects of Packaging Materials on Structural and Simulated Digestive Characteristics of Walnut Protein during Accelerated Storage. Foods 2023, 12, 620. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Chen, W.; Pan, F.; Zhao, P.; He, Y.; Yu, R.; Fu, R.; Munkh-Amgalan, G.; Jiang, Z. Characterization of the binding behavior, structure and foaming properties of bovine α-lactalbumin combined with saponin by the multi-spectroscopic and silico approaches. Food Hydrocoll. 2022, 124, 107259. [Google Scholar] [CrossRef]
- Zhao, Q.; Lin, J.; Wang, C.; Yousaf, L.; Xue, Y.; Shen, Q. Protein structural properties and proteomic analysis of rice during storage at different temperatures. Food Chem. 2021, 361, 130028. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Hua, X.; Zhao, Q.; Dong, Z.; Li, Z.; Zhang, W.; Yang, R. Characteristics of alkali-extracted peanut polysaccharide-protein complexes and their ability as Pickering emulsifiers. Int. J. Biol. Macromol. 2020, 162, 1178–1186. [Google Scholar] [CrossRef]
- Zhang, S.; Jiang, W.; Zhang, Z.; Zhu, Y.; Wang, L.; Fu, J. A nanoparticle/oil double epigallocatechin gallate-loaded Pickering emulsion: Stable and delivery characteristics. LWT 2020, 130, 109369. [Google Scholar] [CrossRef]
- Soladoye, O.P.; Juárez, M.L.; Aalhus, J.L.; Shand, P.; Estévez, M. Protein Oxidation in Processed Meat: Mechanisms and Potential Implications on Human Health. Compr. Rev. Food Sci. Food Saf. 2015, 14, 106–122. [Google Scholar] [CrossRef]
- Feng, X.; Li, C.; Ullah, N.; Cao, J.; Lan, Y.; Ge, W.; Hackman, R.M.; Li, Z.; Chen, L. Susceptibility of whey protein isolate to oxidation and changes in physicochemical, structural, and digestibility characteristics. J. Dairy Sci. 2015, 98, 7602–7613. [Google Scholar] [CrossRef] [PubMed]
- Butterfield, D.A.; Stadtman, E.R. Chapter 7 Protein Oxidation Processes in Aging Brain. Adv. Cell Aging Gerontol. 1997, 2, 161–191. [Google Scholar] [CrossRef]
- Tong, L.M.; Sasaki, S.; Mcclements, D.J.; Decker, E.A. Mechanisms of the antioxidant activity of a high molecular weight fraction of whey. J. Agric. Food Chem. 2000, 48, 1473–1478. [Google Scholar] [CrossRef]
- Eaton, P. Protein thiol oxidation in health and disease: Techniques for measuring disulfides and related modifications in complex protein mixtures. Free Radic. Biol. Med. 2006, 40, 1889–1899. [Google Scholar] [CrossRef]
- Wu, W.; Lin, Q.; Hua, Y.; Wu, Y.; Liang, Y.; Fu, X.; Xiao, H. Study on Mechanism of Soy Protein Oxidation Induced by Lipid Peroxidation Products. Adv. J. Food Sci. Technol. 2013, 5, 46–53. [Google Scholar] [CrossRef]
- Visschers, R.W.; Jongh, H.H.J. Disulphide bond formation in food protein aggregation and gelation. Biotechnol. Adv. 2005, 23, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.; Headlam, H. Markers of protein oxidation: Different oxidants give variable yields of bound and released carbonyl products. Free Radic. Biol. Med. 2003, 35, S103. [Google Scholar] [CrossRef]
- Gardner, H.W.; Kleiman, R.; Weisleder, D.; Inglett, G.E. Cysteine adds to lipid hydroperoxide. Lipids 1977, 12, 655–660. [Google Scholar] [CrossRef]
- Chelh, I.; Gatellier, P.; Sante-Lhoutellier, V. Technical note: A simplified procedure for myofibril hydrophobicity determination. Meat Sci. 2006, 74, 681–683. [Google Scholar] [CrossRef]
- Mohan, M.; Dhanya Ramachandran, T.V. Sankar. Functional properties of Rohu (Labeo rohita) proteins during iced storage. Food Res. Int. 2006, 39, 847–854. [Google Scholar] [CrossRef]
- Omana, D.A.; Xu, Y.; Moayedi, V.; Betti, M. Alkali-aided protein extraction from chicken dark meat: Chemical and functional properties of recovered proteins. Process Biochem. 2010, 45, 375–381. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, C.; Kong, X.; Hua, Y. Oxidative modification of soy protein by peroxyl radicals. Food Chem. 2009, 116, 295–301. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, J.; Hu, H.; Yang, C. Effect of oxidative modification by reactive oxygen species (ROS) on the aggregation of whey protein concentrate (WPC). Food Hydrocoll. 2022, 123, 107444. [Google Scholar] [CrossRef]
- Foettinger, A.; Melmer, M.; Leitner, A.; Lindner, W. Reaction of the indole group with malondialdehyde: Application for the derivatization of tryptophan residues in peptides. Bioconjugate Chem. 2007, 18, 1678. [Google Scholar] [CrossRef] [PubMed]
- McClements, D.J.; Decker, E. Interfacial Antioxidants: A Review of Natural and Synthetic Emulsifiers and Coemulsifiers That Can Inhibit Lipid Oxidation. J. Agric. Food Chem. 2018, 66, 20–35. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.R.; Li, X.Q.; Yan, X.J.; McClements, D.J.; Ma, C.C.; Liu, X.B.; Liu, F.G. Ultrasound-assisted preparation of lactoferrin-EGCG conjugates and their application in forming and stabilizing algae oil emulsions. Ultrason. Sonochem. 2022, 89, 9. [Google Scholar] [CrossRef]
- Ding, J.; Xu, Z.J.; Qi, B.K.; Jiang, L.Z.; Sui, X.N. Physicochemical and oxidative stability of a soybean oleosome-based emulsion and its in vitro digestive fate as affected by (-)-epigallocatechin-3-gallate. Food Funct. 2018, 9, 6147–6155. [Google Scholar] [CrossRef] [PubMed]
- Meroni, E.; Raikos, V. Physicochemical stability, antioxidant properties and bioaccessibility of beta-carotene in orange oil-in-water beverage emulsions: Influence of carrier oil types. Food Funct. 2018, 9, 320–330. [Google Scholar] [CrossRef]
- Tong, X.; Cao, J.; Sun, M.; Liao, P.; Dai, S.; Cui, W.; Cheng, X.; Li, Y.; Jiang, L.; Wang, H. Physical and oxidative stability of oil-in-water (O/W) emulsions in the presence of protein (peptide): Characteristics analysis and bioinformatics prediction. LWT 2021, 149, 111782. [Google Scholar] [CrossRef]
- Shao, Y.; Tang, C.H. Characteristics and oxidative stability of soy protein-stabilized oil-in-water emulsions: Influence of ionic strength and heat pretreatment. Food Hydrocoll. 2014, 37, 149–158. [Google Scholar] [CrossRef]
- Zhao, Q.; Selomulya, C.; Wang, S.; Xiong, H.; Chen, X.D.; Li, W.; Peng, H.; Xie, J.; Sun, W.; Zhou, Q. Enhancing the oxidative stability of food emulsions with rice dreg protein hydrolysate. Food Res. Int. 2012, 48, 876–884. [Google Scholar] [CrossRef]
- He, X.Y.; Mao, L.J.; Gao, Y.X.; Yuan, F. Effects of high pressure processing on the structural and functional properties of bovine lactoferrin. Innov. Food Sci. Emerg. Technol. 2016, 38, 221–230. [Google Scholar] [CrossRef]
- Lam, R.S.H.; Nickerson, M.T. Food proteins: A review on their emulsifying properties using a structure-function approach. Food Chem. 2013, 141, 975–984. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Wu, X.; Wu, W. Effects of protein oxidation induced by rice bran rancidity on the structure and functionality of rice bran glutelin. LWT 2021, 149, 111874. [Google Scholar] [CrossRef]
- Berton-Carabin, C.C.; Schröder, A.; Rovalino-Cordova, A.; Schroën, K.; Sagis, L. Protein and lipid oxidation affect the viscoelasticity of whey protein layers at the oil–water interface. Eur. J. Lipid Sci. Technol. 2016, 118, 1630–1643. [Google Scholar] [CrossRef]
- Srinivasan, S.; Hultin, H.O. Chemical, Physical, and Functional Properties of Cod Proteins Modified by a Nonenzymic Free-Radical-Generating System. J. Agric. Food Chem. 1997, 45, 310–320. [Google Scholar] [CrossRef]
- Chen, N.; Zhao, M.; Sun, W.; Ren, J.; Cui, C. Effect of oxidation on the emulsifying properties of soy protein isolate. Food Res. Int. 2013, 52, 26–32. [Google Scholar] [CrossRef]
- Long, Z.; Zhao, Q.; Liu, T.; Kuang, W.; Xu, J.; Zhao, M. Role and properties of guar gum in sodium caseinate solution and sodium caseinate stabilized emulsion. Food Res. Int. 2012, 49, 545–552. [Google Scholar] [CrossRef]
- Fan, H.; Zhu, P.; Hui, G.; Shen, Y.; Yong, Z.; Xie, Q.; Wang, M. Mechanism of synergistic stabilization of emulsions by amorphous taro starch and protein and emulsion stability. Food Chem. 2023, 424, 136342. [Google Scholar] [CrossRef]
- Chen, J.; Li, X.; Kong, B.; Chen, Q.; Liu, Q. Comparative study of protein-lipid co-oxidation in whey protein isolate-stabilised oil-in-water emulsions prepared by different homogenisation methods. Colloids Surf. A Physicochem. Eng. Asp. 2022, 633, 127916. [Google Scholar] [CrossRef]
- Tang, C.-H.; Shen, L. Role of Conformational Flexibility in the Emulsifying Properties of Bovine Serum Albumin. J. Agric. Food Chem. 2013, 61, 3097–3110. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Wu, X.; Wu, W. Effects of oxidative modification by malondialdehyde on the in vitro digestion properties of rice bran protein. J. Cereal Sci. 2021, 97, 103158. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, J.; Xu, Z.; Kong, B.; Wang, H.; Tang, J.; Liu, Q.; Li, X. Resveratrol promotes interfacial adsorption behaviour and retards protein-lipid co-oxidation of whey protein isolate stabilised O/W emulsions. Food Hydrocoll. 2023, 144, 109010. [Google Scholar] [CrossRef]
AAPH (mmol/L) | Carbonyl (nmol/mg) | Free Sulfhydryl (nmol/mg) |
---|---|---|
0 | 13.45 ± 0.04 a | 72.36 ± 0.01 d |
0.04 | 14.48 ± 0.01 ab | 69.92 ± 0.05 cd |
0.2 | 15.10 ± 0.01 ab | 68.82 ± 0.00 c |
1 | 15.21 ± 0.01 b | 65.40 ± 0.01 b |
5 | 15.38 ± 0.01 b | 64.54 ± 0.00 b |
25 | 18.83 ± 0.01 c | 61.69 ± 0.01 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wu, Q.; Mao, X.; Zhang, J. Effect of Alkyl Peroxyl Radical Oxidation on the Oxidative Stability of Walnut Protein Emulsions and Their Adsorbed Proteins. Foods 2024, 13, 1513. https://doi.org/10.3390/foods13101513
Wang X, Wu Q, Mao X, Zhang J. Effect of Alkyl Peroxyl Radical Oxidation on the Oxidative Stability of Walnut Protein Emulsions and Their Adsorbed Proteins. Foods. 2024; 13(10):1513. https://doi.org/10.3390/foods13101513
Chicago/Turabian StyleWang, Xue, Qingzhi Wu, Xiaoying Mao, and Jian Zhang. 2024. "Effect of Alkyl Peroxyl Radical Oxidation on the Oxidative Stability of Walnut Protein Emulsions and Their Adsorbed Proteins" Foods 13, no. 10: 1513. https://doi.org/10.3390/foods13101513
APA StyleWang, X., Wu, Q., Mao, X., & Zhang, J. (2024). Effect of Alkyl Peroxyl Radical Oxidation on the Oxidative Stability of Walnut Protein Emulsions and Their Adsorbed Proteins. Foods, 13(10), 1513. https://doi.org/10.3390/foods13101513