Extraction, Characterisation and Evaluation of Antioxidant and Probiotic Growth Potential of Water-Soluble Polysaccharides from Ulva rigida Macroalgae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Macroalgae Preparation
2.2. Proximate Composition
2.3. Polysaccharide Extraction Experiments
2.4. Analysis
2.4.1. Determination of Polysaccharides
2.4.2. Determination of Reducing Sugar
2.4.3. Total Phenolic Content
2.4.4. Total Flavonoid Content
2.4.5. Antioxidant Activity via DPPH Assay
2.4.6. Antioxidant Activity via ABTS Assay
2.4.7. Antioxidant Activity via FRAP Assay
2.5. Monosaccharide Determination
2.6. Effect of Probiotic
2.7. Statistical Analysis
3. Results
3.1. Proximate Composition
3.2. Water-Soluble Polysaccharide Extraction
3.3. Reducing Sugar, Total Phenolic and Flavonoid Contents
3.4. Antioxidant
3.5. Monosaccharide Composition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Donn, P.; Prieto, M.A.; Mejuto, J.C.; Cao, H.; Simal-Gandara, J. Functional foods based on the recovery of bioactive ingredients from food and algae by-products by emerging extraction technologies and 3D printing. Food Biosci. 2022, 49, 101853. [Google Scholar] [CrossRef]
- Lordan, S.; Ross, R.P.; Stanton, C. Marine bioactives as functional food ingredients: Potential to reduce the incidence of chronic diseases. Mar. Drugs 2011, 9, 1056–1100. [Google Scholar] [CrossRef] [PubMed]
- Biesalski, H.-K.; Dragsted, L.O.; Elmadfa, I.; Grossklaus, R.; Müller, M.; Schrenk, D.; Walter, P.; Weber, P. Bioactive compounds: Safety and efficacy. Nutrition 2009, 25, 1206–1211. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Liao, W.; Liu, Y.; Guo, Y.; Jiang, S.; Zhao, C. An overview on the nutritional and bioactive components of green seaweeds. Food Prod. Process. Nutr. 2023, 5, 18. [Google Scholar] [CrossRef]
- Lafeuille, B.; Tamigneaux, É.; Berger, K.; Provencher, V.; Beaulieu, L. Impact of Harvest Month and Drying Process on the Nutritional and Bioactive Properties of Wild Palmaria palmata from Atlantic Canada. Mar. Drugs 2023, 21, 392. [Google Scholar] [CrossRef] [PubMed]
- Biris-Dorhoi, E.S.; Michiu, D.; Pop, C.R.; Rotar, A.M.; Tofana, M.; Pop, O.L.; Socaci, S.A.; Farcas, A.C. Macroalgae—A Sustainable Source of Chemical Compounds with Biological Activities. Nutrients 2020, 12, 3085. [Google Scholar] [CrossRef] [PubMed]
- Jönsson, M.; Allahgholi, L.; Sardari, R.R.R.; Hreggviðsson, G.O.; Nordberg Karlsson, E. Extraction and Modification of Macroalgal Polysaccharides for Current and Next-Generation Applications. Molecules 2020, 25, 930. [Google Scholar] [CrossRef] [PubMed]
- Ning, L.; Yao, Z.; Zhu, B. Ulva (Enteromorpha) Polysaccharides and Oligosaccharides: A Potential Functional Food Source from Green-Tide-Forming Macroalgae. Mar. Drugs 2022, 20, 202. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Dai, L.; Chen, Z.; Li, T.; Wu, J.; Wu, H.; Wu, H.; Xiang, W. Extraction optimization, physicochemical characterization, and antioxidant activity of polysaccharides from Rhodosorus sp. SCSIO-45730. J. Appl. Phycol. 2022, 34, 285–299. [Google Scholar] [CrossRef]
- Liu, F.; Chen, H.; Qin, L.; Al-Haimi, A.A.N.M.; Xu, J.; Zhou, W.; Zhu, S.; Wang, Z. Effect and characterization of polysaccharides extracted from Chlorella sp. by hot-water and alkali extraction methods. Algal Res. 2023, 70, 102970. [Google Scholar] [CrossRef]
- Tang, Z.; Gao, H.; Wang, S.; Wen, S.; Qin, S. Hypolipidemic and antioxidant properties of a polysaccharide fraction from Enteromorpha prolifera. Int. J. Biol. Macromol. 2013, 58, 186–189. [Google Scholar] [CrossRef]
- Zhong, Q.; Wei, B.; Wang, S.; Ke, S.; Chen, J.; Zhang, H.; Wang, H. The Antioxidant Activity of Polysaccharides Derived from Marine Organisms: An Overview. Mar. Drugs 2019, 17, 674. [Google Scholar] [CrossRef]
- Jiang, F.; Chi, Z.; Ding, Y.; Quan, M.; Tian, Y.; Shi, J.; Song, F.; Liu, C. Wound dressing hydrogel of enteromorpha prolifera polysaccharide–polyacrylamide composite: A facile transformation of marine blooming into biomedical material. ACS Appl. Mater. Interfaces 2021, 13, 14530–14542. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, B.; Chang, X.; Zhao, H.; Zhang, H.; Zhao, T.; Qi, H. Potential use of seaweed polysaccharides as prebiotics for management of metabolic syndrome: A review. Crit. Rev. Food Sci. Nutr. 2023, 1–21. [Google Scholar] [CrossRef]
- Patel, A.K.; Singhania, R.R.; Awasthi, M.K.; Varjani, S.; Bhatia, S.K.; Tsai, M.-L.; Hsieh, S.-L.; Chen, C.-W.; Dong, C.-D. Emerging prospects of macro- and microalgae as prebiotic. Microb. Cell Factories 2021, 20, 112. [Google Scholar] [CrossRef]
- Paopun, Y.; Thanomchat, P.; Roopkham, C.; Umroong, P.; Pan-utai, W.; Satmalee, P.; Kosawatpat, P.; Thongdang, B.; Tamtin, M. Structural Development of Marine Green Alga (Ulva rigida C. Agardh, 1823) during Cultivation. Trends Sci. 2023, 20, 6747. [Google Scholar] [CrossRef]
- Pan-utai, W.; Pantoa, T.; Roytrakul, S.; Praiboon, J.; Kosawatpat, P.; Tamtin, M.; Thongdang, B. Ultrasonic-Assisted Extraction and Antioxidant Potential of Valuable Protein from Ulva rigida Macroalgae. Life 2023, 13, 86. [Google Scholar] [CrossRef]
- Horwitz, W.; Latimer, G.W. Official Methods of Analysis of AOAC International; AOAC International Gaithersburg: Rockville, MD, USA, 2000; Volume 1. [Google Scholar]
- Wang, C.; Li, J.; Cao, Y.; Huang, J.; Lin, H.; Zhao, T.; Liu, L.; Shen, P.; Julian McClements, D.; Chen, J.; et al. Extraction and characterization of pectic polysaccharides from Choerospondias axillaris peels: Comparison of hot water and ultrasound-assisted extraction methods. Food Chem. 2023, 401, 134156. [Google Scholar] [CrossRef]
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Liu, X.-m.; Liu, Y.; Shan, C.-h.; Yang, X.-q.; Zhang, Q.; Xu, N.; Xu, L.-y.; Song, W. Effects of five extraction methods on total content, composition, and stability of flavonoids in jujube. Food Chem. X 2022, 14, 100287. [Google Scholar] [CrossRef]
- Hung, Y.-H.R.; Chen, G.-W.; Pan, C.-L.; Lin, H.-T.V. Production of Ulvan Oligosaccharides with Antioxidant and Angiotensin-Converting Enzyme-Inhibitory Activities by Microbial Enzymatic Hydrolysis. Fermentation 2021, 7, 160. [Google Scholar] [CrossRef]
- Weitzhandler, M.; Barreto, V.; Pohl, C.; Jandik, P.; Cheng, J.; Avdalovic, N. CarboPac™ PA20: A new monosaccharide separator column with electrochemical detection with disposable gold electrodes. J. Biochem. Biophys. Methods 2004, 60, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Li, M.; Du, J.; Zhang, K. Effects of non-starch polysaccharides from pure wheat malt beer on beer quality, in vitro antioxidant, prebiotics, hypoglycemic and hypolipidemic properties. Food Biosci. 2022, 47, 101780. [Google Scholar] [CrossRef]
- Silva, A.; Silva, S.A.; Carpena, M.; Garcia-Oliveira, P.; Gullón, P.; Barroso, M.F.; Prieto, M.; Simal-Gandara, J. Macroalgae as a source of valuable antimicrobial compounds: Extraction and applications. Antibiotics 2020, 9, 642. [Google Scholar] [CrossRef] [PubMed]
- Berri, M.; Olivier, M.; Holbert, S.; Dupont, J.; Demais, H.; Le Goff, M.; Collen, P.N. Ulvan from Ulva armoricana (Chlorophyta) activates the PI3K/Akt signalling pathway via TLR4 to induce intestinal cytokine production. Algal Res. 2017, 28, 39–47. [Google Scholar] [CrossRef]
- Anisha, G.S.; Augustianath, T.; Padmakumari, S.; Singhania, R.R.; Pandey, A.; Patel, A.K. Ulvan from green macroalgae: Bioactive properties advancing tissue engineering, drug delivery systems, food industry, agriculture and water treatment. Bioresour. Technol. Rep. 2023, 22, 101457. [Google Scholar] [CrossRef]
- Balar, N.; Sharnagat, P.; Kumari, P.; Mantri, V.A. Variation in the proximate composition of edible marine macroalga Ulva rigida collected from different coastal zones of India. J. Food Sci. Technol. 2019, 56, 4749–4755. [Google Scholar] [CrossRef]
- Olsson, J.; Toth, G.B.; Oerbekke, A.; Cvijetinovic, S.; Wahlström, N.; Harrysson, H.; Steinhagen, S.; Kinnby, A.; White, J.; Edlund, U.; et al. Cultivation conditions affect the monosaccharide composition in Ulva fenestrata. J. Appl. Phycol. 2020, 32, 3255–3263. [Google Scholar] [CrossRef]
- Sarker, M.Y.; Bartsch, I.; Olischläger, M.; Gutow, L.; Wiencke, C. Combined effects of CO2, temperature, irradiance and time on the physiological performance of Chondrus crispus (Rhodophyta). Bot. Mar. 2013, 56, 63–74. [Google Scholar] [CrossRef]
- Queirós, A.S.; Circuncisão, A.R.; Pereira, E.; Válega, M.; Abreu, M.H.; Silva, A.M.S.; Cardoso, S.M. Valuable Nutrients from Ulva rigida: Modulation by Seasonal and Cultivation Factors. Appl. Sci. 2021, 11, 6137. [Google Scholar] [CrossRef]
- Fu, Y.; Jiao, H.; Sun, J.; Okoye, C.O.; Zhang, H.; Li, Y.; Lu, X.; Wang, Q.; Liu, J. Structure-activity relationships of bioactive polysaccharides extracted from macroalgae towards biomedical application: A review. Carbohydr. Polym. 2024, 324, 121533. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Sharifi-Rad, J.; Seca, A.M.; Pinto, D.C.; Michalak, I.; Trincone, A.; Mishra, A.P.; Nigam, M.; Zam, W.; Martins, N. Current trends on seaweeds: Looking at chemical composition, phytopharmacology, and cosmetic applications. Molecules 2019, 24, 4182. [Google Scholar] [CrossRef] [PubMed]
- Kronusová, O.; Kaštánek, P.; Koyun, G.; Kaštánek, F.; Brányik, T. Factors Influencing the Production of Extracellular Polysaccharides by the Green Algae Dictyosphaerium chlorelloides and Their Isolation, Purification, and Composition. Microorganisms 2022, 10, 1473. [Google Scholar] [CrossRef]
- Domínguez, R.; Zhang, L.; Rocchetti, G.; Lucini, L.; Pateiro, M.; Munekata, P.E.S.; Lorenzo, J.M. Elderberry (Sambucus nigra L.) as potential source of antioxidants. Characterization, optimization of extraction parameters and bioactive properties. Food Chem. 2020, 330, 127266. [Google Scholar] [CrossRef]
- Pappou, S.; Dardavila, M.M.; Savvidou, M.G.; Louli, V.; Magoulas, K.; Voutsas, E. Extraction of Bioactive Compounds from Ulva lactuca. Appl. Sci. 2022, 12, 2117. [Google Scholar] [CrossRef]
- Flores-Contreras, E.A.; Araújo, R.G.; Rodríguez-Aguayo, A.A.; Guzmán-Román, M.; García-Venegas, J.C.; Nájera-Martínez, E.F.; Sosa-Hernández, J.E.; Iqbal, H.M.N.; Melchor-Martínez, E.M.; Parra-Saldivar, R. Polysaccharides from the Sargassum and Brown Algae Genus: Extraction, Purification, and Their Potential Therapeutic Applications. Plants 2023, 12, 2445. [Google Scholar] [CrossRef]
- Xue, J.; Su, J.; Wang, X.; Zhang, R.; Li, X.; Li, Y.; Ding, Y.; Chu, X. Eco-Friendly and Efficient Extraction of Polysaccharides from Acanthopanax senticosus by Ultrasound-Assisted Deep Eutectic Solvent. Molecules 2024, 29, 942. [Google Scholar] [CrossRef] [PubMed]
- Digala, P.; Saravanan, M.; Dhanraj, M.; Pamarthi, J.; Muralidharan, S.; Narikimelli, A.; Dinakaran, K.P.; Arokiyaraj, S.; Vincent, S. Optimized extraction of sulfated polysaccharide from brown seaweed Sargassum polycystum and its evaluation for anti-cancer and wound healing potential. S. Afr. J. Bot. 2022, 151, 345–359. [Google Scholar] [CrossRef]
- Song, H.; He, M.; Gu, C.; Wei, D.; Liang, Y.; Yan, J.; Wang, C. Extraction Optimization, Purification, Antioxidant Activity, and Preliminary Structural Characterization of Crude Polysaccharide from an Arctic Chlorella sp. Polymers 2018, 10, 292. [Google Scholar] [CrossRef]
- Yuan, X.; Zeng, Y.; Nie, K.; Luo, D.; Wang, Z. Extraction Optimization, Characterization and Bioactivities of a Major Polysaccharide from Sargassum thunbergii. PLoS ONE 2015, 10, e0144773. [Google Scholar] [CrossRef]
- Yang, L.; Qu, H.; Mao, G.; Zhao, T.; Li, F.; Zhu, B.; Zhang, B.; Wu, X. Optimization of subcritical water extraction of polysaccharides from Grifola frondosa using response surface methodology. Pharmacogn. Mag. 2013, 9, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, M.; Fathi, M.; Jahanbin, K.; Taghdir, M.; Abbaszadeh, S. Optimization of ultrasonic-assisted hot acidic solvent extraction of ulvan from Ulva intestinalis of the Persian Gulf: Evaluation of structural, techno-functional, and bioactivity properties. Food Hydrocoll. 2023, 142, 108837. [Google Scholar] [CrossRef]
- Akbal, A.; Şahin, S.; Güroy, B. Optimization of ultrasonic-assisted extraction of polysaccharides from Ulva rigida and evaluation of their antioxidant activity. Algal Res. 2024, 77, 103356. [Google Scholar] [CrossRef]
- Le, B.; Golokhvast, K.S.; Yang, S.H.; Sun, S. Optimization of Microwave-Assisted Extraction of Polysaccharides from Ulva pertusa and Evaluation of Their Antioxidant Activity. Antioxidants 2019, 8, 129. [Google Scholar] [CrossRef] [PubMed]
- Dave, N.; Varadavenkatesan, T.; Singh, R.S.; Giri, B.S.; Selvaraj, R.; Vinayagam, R. Evaluation of seasonal variation and the optimization of reducing sugar extraction from Ulva prolifera biomass using thermochemical method. Environ. Sci. Pollut. Res. 2021, 28, 58857–58871. [Google Scholar] [CrossRef]
- Ami, J.; Mensah, M.; Asiedu, N.Y.; Thygesen, A. Optimization of Reducing Sugar Concentration from Ulva fasciata Using Cellulase via Response Surface Methodology Techniques. Ind. Biotechnol. 2023, 19, 23–32. [Google Scholar] [CrossRef]
- Park, M.-R.; Jeong, G.-T. Production of reducing sugar in Gracilaria verrucosa using physio-chemical pretreatment and subsequent enzymatic hydrolysis. Algal Res. 2021, 60, 102531. [Google Scholar] [CrossRef]
- Prabakaran, G.; Moovendhan, M.; Arumugam, A.; Matharasi, A.; Dineshkumar, R.; Sampathkumar, P. Quantitative analysis of phytochemical profile in marine microalgae Chlorella vulgaris. Int. J. Pharm. Biol. Sci. 2018, 8, 562–565. [Google Scholar]
- Putra, N.R.; Fajriah, S.; Qomariyah, L.; Dewi, A.S.; Rizkiyah, D.N.; Irianto, I.; Rusmin, D.; Melati, M.; Trisnawati, N.W.; Darwati, I.; et al. Exploring the potential of Ulva lactuca: Emerging extraction methods, bioactive compounds, and health applications—A perspective review. S. Afr. J. Chem. Eng. 2024, 47, 233–245. [Google Scholar] [CrossRef]
- Topuz, O.K.; Gokoglu, N.; Yerlikaya, P.; Ucak, I.; Gumus, B. Optimization of Antioxidant Activity and Phenolic Compound Extraction Conditions from Red Seaweed (Laurencia obtuse). J. Aquat. Food Prod. Technol. 2016, 25, 414–422. [Google Scholar] [CrossRef]
- Farasat, M.; Khavari-Nejad, R.A.; Nabavi, S.M.; Namjooyan, F. Antioxidant Activity, Total Phenolics and Flavonoid Contents of some Edible Green Seaweeds from Northern Coasts of the Persian Gulf. Iran. J. Pharm. Res. 2014, 13, 163–170. [Google Scholar] [PubMed]
- Bayu, A.; Warsito, M.F.; Putra, M.Y.; Karnjanakom, S.; Guan, G. Macroalgae-derived rare sugars: Applications and catalytic synthesis. Carbon Resour. Convers. 2021, 4, 150–163. [Google Scholar] [CrossRef]
- Cho, M.; Yang, C.; Kim, S.M.; You, S. Molecular characterization and biological activities of watersoluble sulfated polysaccharides from Enteromorpha prolifera. Food Sci. Biotechnol. 2010, 19, 525–533. [Google Scholar] [CrossRef]
- Qi, X.; Mao, W.; Gao, Y.; Chen, Y.; Chen, Y.; Zhao, C.; Li, N.; Wang, C.; Yan, M.; Lin, C.; et al. Chemical characteristic of an anticoagulant-active sulfated polysaccharide from Enteromorpha clathrata. Carbohydr. Polym. 2012, 90, 1804–1810. [Google Scholar] [CrossRef] [PubMed]
- Samarasinghe, M.B.; van der Heide, M.E.; Weisbjerg, M.R.; Sehested, J.; Sloth, J.J.; Bruhn, A.; Vestergaard, M.; Nørgaard, J.V.; Hernández-Castellano, L.E. A descriptive chemical analysis of seaweeds, Ulva sp., Saccharina latissima and Ascophyllum nodosum harvested from Danish and Icelandic waters. Anim. Feed Sci. Technol. 2021, 278, 115005. [Google Scholar] [CrossRef]
- Kidgell, J.T.; Carnachan, S.M.; Magnusson, M.; Lawton, R.J.; Sims, I.M.; Hinkley, S.F.R.; de Nys, R.; Glasson, C.R.K. Are all ulvans equal? A comparative assessment of the chemical and gelling properties of ulvan from blade and filamentous Ulva. Carbohydr. Polym. 2021, 264, 118010. [Google Scholar] [CrossRef] [PubMed]
- Magdugo, R.P.; Terme, N.; Lang, M.; Pliego-Cortés, H.; Marty, C.; Hurtado, A.Q.; Bedoux, G.; Bourgougnon, N. An Analysis of the Nutritional and Health Values of Caulerpa racemosa (Forsskål) and Ulva fasciata (Delile)—Two Chlorophyta Collected from the Philippines. Molecules 2020, 25, 2901. [Google Scholar] [CrossRef] [PubMed]
- Pezoa-Conte, R.; Leyton, A.; Anugwom, I.; von Schoultz, S.; Paranko, J.; Mäki-Arvela, P.; Willför, S.; Muszyński, M.; Nowicki, J.; Lienqueo, M.E.; et al. Deconstruction of the green alga Ulva rigida in ionic liquids: Closing the mass balance. Algal Res. 2015, 12, 262–273. [Google Scholar] [CrossRef]
- Tsubaki, S.; Oono, K.; Hiraoka, M.; Ueda, T.; Onda, A.; Yanagisawa, K.; Azuma, J.-i. Hydrolysis of green-tide forming Ulva spp. by microwave irradiation with polyoxometalate clusters. Green Chem. 2014, 16, 2227–2233. [Google Scholar] [CrossRef]
- Chen, R.; Xu, J.; Wu, W.; Wen, Y.; Lu, S.; El-Seedi, H.R.; Zhao, C. Structure–immunomodulatory activity relationships of dietary polysaccharides. Curr. Res. Food Sci. 2022, 5, 1330–1341. [Google Scholar] [CrossRef]
- Qi, H.; Zhao, T.; Zhang, Q.; Li, Z.; Zhao, Z.; Xing, R. Antioxidant activity of different molecular weight sulfated polysaccharides from Ulva pertusa Kjellm (Chlorophyta). J. Appl. Phycol. 2005, 17, 527–534. [Google Scholar] [CrossRef]
- Gupta, V.K.; Hariharan, M.; Wheatley, T.A.; Price, J.C. Controlled-release tablets from carrageenans: Effect of formulation, storage and dissolution factors. Eur. J. Pharm. Biopharm. 2001, 51, 241–248. [Google Scholar] [CrossRef]
- Tziveleka, L.-A.; Ioannou, E.; Roussis, V. Ulvan, a bioactive marine sulphated polysaccharide as a key constituent of hybrid biomaterials: A review. Carbohydr. Polym. 2019, 218, 355–370. [Google Scholar] [CrossRef]
- Kidgell, J.T.; Glasson, C.R.K.; Magnusson, M.; Sims, I.M.; Hinkley, S.F.R.; de Nys, R.; Carnachan, S.M. Ulvans are not equal—Linkage and substitution patterns in ulvan polysaccharides differ with Ulva morphology. Carbohydr. Polym. 2024, 333, 121962. [Google Scholar] [CrossRef]
- Chen, J.; Zeng, W.; Gan, J.; Li, Y.; Pan, Y.; Li, J.; Chen, H. Physicochemical properties and anti-oxidation activities of ulvan from Ulva pertusa Kjellm. Algal Res. 2021, 55, 102269. [Google Scholar] [CrossRef]
- Lin, Q.; Si, Y.; Zhou, F.; Hao, W.; Zhang, P.; Jiang, P.; Cha, R. Advances in polysaccharides for probiotic delivery: Properties, methods, and applications. Carbohydr. Polym. 2024, 323, 121414. [Google Scholar] [CrossRef]
- Guo, Q.; Li, Y.; Dai, X.; Wang, B.; Zhang, J.; Cao, H. Polysaccharides: The Potential Prebiotics for Metabolic Associated Fatty Liver Disease (MAFLD). Nutrients 2023, 15, 3722. [Google Scholar] [CrossRef]
- Peredo-Lovillo, A.; Romero-Luna, H.E.; Jiménez-Fernández, M. Health promoting microbial metabolites produced by gut microbiota after prebiotics metabolism. Food Res. Int. 2020, 136, 109473. [Google Scholar] [CrossRef]
- Shalaby, S.; Amin, H. Potential Using of Ulvan Polysaccharide from Ulva lactuca as a Prebiotic in Synbiotic Yogurt Production. J. Probiotics Health 2019, 7, 208. [Google Scholar] [CrossRef]
- Seong, H.; Bae, J.-H.; Seo, J.S.; Kim, S.-A.; Kim, T.-J.; Han, N.S. Comparative analysis of prebiotic effects of seaweed polysaccharides laminaran, porphyran, and ulvan using in vitro human fecal fermentation. J. Funct. Foods 2019, 57, 408–416. [Google Scholar] [CrossRef]
- Xu, J.; Bjursell, M.K.; Himrod, J.; Deng, S.; Carmichael, L.K.; Chiang, H.C.; Hooper, L.V.; Gordon, J.I. A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 2003, 299, 2074–2076. [Google Scholar] [CrossRef] [PubMed]
- Vidhya Hindu, S.; Chandrasekaran, N.; Mukherjee, A.; Thomas, J. A review on the impact of seaweed polysaccharide on the growth of probiotic bacteria and its application in aquaculture. Aquac. Int. 2019, 27, 227–238. [Google Scholar] [CrossRef]
Factor | Levels | |
---|---|---|
Biomass-solvent ratio (w/v) | 1:20 | 1:40 |
Extraction temperature (°C) | 70 | 90 |
Extraction time (h) | 1 | 2 |
Number of extraction cycles | 1 | 2 |
Composition | % Dry Weight |
---|---|
Crude protein | 24.29 ± 0.29 |
Crude lipid | 0.62 ± 0.09 |
Crude fibre | 6.12 ± 0.01 |
Ash | 20.84 ± 0.26 |
Carbohydrate | 48.14 ± 0.48 |
Factor | Dependent Variable | SS | df | MS | F-Value | p-Value |
---|---|---|---|---|---|---|
Ratio | CPS | 53.464 | 1 | 53.464 | 1385.158 | 0.000 a |
Yield | 68.032 | 1 | 68.032 | 2.064 | 0.157 | |
Temp | CPS | 19.465 | 1 | 19.465 | 504.299 | 0.000 a |
Yield | 15,363.200 | 1 | 15,363.200 | 466.001 | 0.000 a | |
Time | CPS | 5.706 | 1 | 5.706 | 147.822 | 0.000 a |
Yield | 3357.666 | 1 | 3357.666 | 101.846 | 0.000 a | |
Cycle | CPS | 174.699 | 1 | 174.699 | 4526.183 | 0.000 a |
Yield | 134,727.813 | 1 | 134,727.813 | 4086.606 | 0.000 a | |
Ratio × Temp | CPS | 0.707 | 1 | 0.707 | 18.319 | 0.000 a |
Yield | 356.780 | 1 | 356.780 | 10.822 | 0.002 a | |
Ratio × Time | CPS | 1.881 | 1 | 1.881 | 48.743 | 0.000 a |
Yield | 297.472 | 1 | 297.472 | 9.023 | 0.004 a | |
Ratio × Cycle | CPS | 8.690 | 1 | 8.690 | 225.144 | 0.000 a |
Yield | 1912.674 | 1 | 1912.674 | 58.016 | 0.000 a | |
Temp × Time | CPS | 0.108 | 1 | 0.108 | 2.806 | 0.100 |
Yield | 91.530 | 1 | 91.530 | 2.776 | 0.102 | |
Temp × Cycle | CPS | 7.273 | 1 | 7.273 | 188.436 | 0.000 a |
Yield | 5805.468 | 1 | 5805.468 | 176.093 | 0.000 a | |
Time × Cycle | CPS | 0.092 | 1 | 0.092 | 2.373 | 0.130 |
Yield | 87.173 | 1 | 87.173 | 2.644 | 0.110 | |
Ratio × Temp × Time | CPS | 0.001 | 1 | 0.001 | 0.024 | 0.877 |
Yield | 5.664 | 1 | 5.664 | 0.172 | 0.680 | |
Ratio × Temp × Cycle | CPS | 0.223 | 1 | 0.223 | 5.769 | 0.020 a |
Yield | 164.259 | 1 | 164.259 | 4.982 | 0.030 a | |
Ratio × Time × Cycle | CPS | 0.001 | 1 | 0.001 | 0.017 | 0.898 |
Yield | 14.367 | 1 | 14.367 | 0.436 | 0.512 | |
Temp × Time × Cycle | CPS | 0.333 | 1 | 0.333 | 8.629 | 0.005 a |
Yield | 222.513 | 1 | 222.513 | 6.749 | 0.012 a | |
Ratio × Temp × Time × Cycle | CPS | 0.057 | 1 | 0.057 | 1.475 | 0.230 |
Yield | 1.946 | 1 | 1.946 | 0.059 | 0.809 |
Ratio (w/v) | Temperature (°C) | Time (h) | Cycle | CPS (mg/mL) | Yield (mg/g) |
---|---|---|---|---|---|
1:20 | 70 | 1 | 1 | 4.16 ± 0.38 d | 83.26 ± 7.58 f |
2 | 0.78 ± 0.17 i | 15.58 ± 3.39 jk | |||
2 | 1 | 4.88 ± 0.16 c | 97.57 ± 3.11 d | ||
2 | 1.76 ± 0.21 g | 35.28 ± 4.13 gh | |||
90 | 1 | 1 | 5.98 ± 0.11 b | 119.49 ± 2.11 c | |
2 | 1.41 ± 0.21 h | 28.29 ± 4.13 hi | |||
2 | 1 | 7.28 ± 0.27 a | 145.56 ± 5.29 b | ||
2 | 2.17 ± 0.15 f | 43.42 ± 2.89 g | |||
1:40 | 70 | 1 | 1 | 2.20 ± 0.20 f | 87.82 ± 8.10 ef |
2 | 0.18 ± 0.03 k | 7.27 ± 1.30 k | |||
2 | 1 | 2.37 ± 0.19 f | 94.91 ± 7.39 de | ||
2 | 0.36 ± 0.07 jk | 14.56 ± 2.79 jk | |||
90 | 1 | 1 | 3.49 ± 0.32 e | 139.41 ± 12.89 b | |
2 | 0.53 ± 0.08 ij | 21.12 ± 3.30 ij | |||
2 | 1 | 3.98 ± 0.05 d | 159.23 ± 1.85 a | ||
2 | 0.69 ± 0.20 i | 27.62 ± 7.98 hi |
Ratio (w/v) | Temperature (°C) | Time (h) | CPS (mg/mL) | Yield (mg/g) |
---|---|---|---|---|
1:20 | 70 | 1 | 4.942 ± 0.46 d | 98.843 ± 9.12 f |
2 | 6.643 ± 0.11 c | 132.846 ± 2.12 d | ||
90 | 1 | 7.389 ± 0.16 b | 147.780 ± 3.18 c | |
2 | 9.449 ± 0.36 a | 188.970 ± 7.20 a | ||
1:40 | 70 | 1 | 2.377 ± 0.18 g | 95.089 ± 7.16 f |
2 | 2.737 ± 0.18 f | 109.464 ± 7.21 e | ||
90 | 1 | 4.014 ± 0.40 e | 160.534 ± 16.16 b | |
2 | 4.671 ± 0.17 d | 186.856 ± 6.63 a |
Ratio (w/v) | Temperature °C | Time (h) | Cycle | Reducing Sugar (mg/g) | TPC (mg GAE/g) | TFC (mg QE/g) |
---|---|---|---|---|---|---|
1:20 | 70 | 1 | 1 | 8.02 ± 3.32 a | 0.54 ± 0.10 bc | 0.22 ± 0.04 fgh |
2 | 0.24 ± 0.15 bc | ND | 0.11 ± 0.05 hijk | |||
2 | 1 | 6.50 ± 2.11 a | 0.60 ± 0.06 b | 0.21 ± 0.03 fghi | ||
2 | 0.63 ± 0.30 bc | ND | 0.15 ± 0.03 ghij | |||
90 | 1 | 1 | 5.76 ± 4.36 a | 0.52 ± 0.03 c | 0.34 ± 0.09 e | |
2 | 0.13 ± 0.13 bc | ND | 0.23 ± 0.04 fg | |||
2 | 1 | 7.95 ± 2.36 a | 0.69 ± 0.02 a | 1.42 ± 0.16 a | ||
2 | 0.37 ± 0.41 bc | ND | 0.28 ± 0.05 ef | |||
1:40 | 70 | 1 | 1 | 0.54 ± 0.26 bc | 0.18 ± 0.04 e | 0.64 ± 0.16 d |
2 | ND | ND | 0.02 ± 0.01 k | |||
2 | 1 | 0.82 ± 2.24 bc | 0.42 ± 0.03 d | 0.53 ± 0.03 d | ||
2 | ND | ND | 0.03 ± 0.03 k | |||
90 | 1 | 1 | 1.89 ± 2.24 b | 0.40 ± 0.12 d | 0.83 ± 0.12 c | |
2 | ND | ND | 0.08 ± 0.03 jk | |||
2 | 1 | 6.58 ± 1.06 a | 0.60 ± 0.03 b | 0.99 ± 0.06 b | ||
2 | ND | ND | 0.10 ± 0.03 ijk |
Ratio (w/v) | Temperature °C | Time (h) | Cycle | DPPH (mg AAE/g) | ABTS (mg AAE/g) | FRAP (mg AAE/g) |
---|---|---|---|---|---|---|
1:20 | 70 | 1 | 1 | 6.47 ± 2.49 abcd | 0.87 ± 0.07 a | 0.26 ± 0.01 c |
2 | 6.60 ± 2.42 abcd | 0.29 ± 0.04 c | 0.08 ± 0.01 e | |||
2 | 1 | 8.76 ± 2.62 ab | 0.94 ± 0.13 a | 0.27 ± 0.00 c | ||
2 | 6.84 ± 2.29 abcd | 0.27 ± 0.10 c | 0.17 ± 0.01 d | |||
90 | 1 | 1 | 7.84 ± 1.86 abc | 0.78 ± 0.03 a | 0.24 ± 0.02 c | |
2 | 5.27 ± 2.86 bcde | 0.27 ± 0.08 c | 0.17 ± 0.01 d | |||
2 | 1 | 4.10 ± 2.01 cdef | 0.79 ± 0.05 a | 0.27 ± 0.02 c | ||
2 | 5.17 ± 0.86 bcde | 0.22 ± 0.09 c | 0.18 ± 0.01 d | |||
1:40 | 70 | 1 | 1 | 10.49 ± 3.56 a | 0.57 ± 0.19 b | 0.40 ± 0.04 b |
2 | 0.05 ± 0.04 fg | 0.27 ± 0.09 c | 0.25 ± 0.01 c | |||
2 | 1 | 1.37 ± 0.72 efg | 0.78 ± 0.13 a | 0.48 ± 0.03 a | ||
2 | 0.02 ± 0.02 fg | 0.11 ± 0.08 c | 0.25 ± 0.01 c | |||
90 | 1 | 1 | ND | 0.56 ± 0.13 b | 0.51 ± 0.10 a | |
2 | 0.03 ± 0.02 fg | 0.11 ± 0.22 c | 0.26 ± 0.01 c | |||
2 | 1 | 2.39 ± 7.21 defg | 0.60 ± 0.10 b | 0.52 ± 0.02 a | ||
2 | 0.09 ± 0.02 fg | 0.29 ± 0.16 c | 0.29 ± 0.01 c |
Composition | Polysaccharide | Acid Hydrolysis of Polysaccharide |
---|---|---|
Rhamnose | ND | 78.97 ± 2.71 |
Arabinose | ND | 0.33 ± 0.02 |
Galactose | ND | 2.81 ± 0.40 |
Glucose | 0.11 ± 0.10 | 5.24 ± 0.28 |
Xylose | ND | 12.11 ± 0.07 |
Fructose | ND | ND |
Macroalgae | Condition | Yield (%) | Reference |
---|---|---|---|
Sargassum polycystum | Acidic water, 60 °C, 1 h | 59.80 | [39] |
Chlorella sp. | Water, 80 °C, 3 h | 9.62 | [40] |
Rhodosorus sp. | Water, 84 °C, 2 h | 9.29 | [9] |
Sargassum thunbergii | Water, 97 °C, 3.50 h | 7.53 | [41] |
Grifolafrondosa | Water, 210 °C, 43.65 min | 25.10 | [42] |
U. intestinalis | Acidic solvent, Ultrasonic-assisted 200 W, 86 °C | 26.77 | [43] |
U. rigida | 80% ethanol, 73 °C, 2 h 6 min | 13.22 | [44] |
U. pertusa | 80% ethanol, Ultrasonic-assisted 600 W, 43.63 min | 41.91 | [45] |
U. rigida C. Agardh | Water, 90 °C, 2 h | 18.90 | This study |
Ulva Species | Source | Ara | Fuc | Fru | Gal | Glc | Man | Rha | Xyl | Ref |
---|---|---|---|---|---|---|---|---|---|---|
U. australis | New Zealand | ND | ND | ND | 3.00 | ND | ND | 251.00 | 99.00 | [57] |
U. fasciata | Philippines | ND | ND | ND | 0.42 | 16.59 | ND. | 33.62 | 4.89 | [58] |
U. meridionalis | Japan | ND | ND | ND | 28.27 | 144.43 | 5.40 | 66.56 | 12.34 | [60] |
U. ohnoi | Japan | ND | ND | ND | 1.20 | 89.43 | 0.17 | 58.48 | 21.72 | [60] |
U. pertusa Kjellm | China | ND | ND | ND | 2.20 | 3.60 | ND | 10.90 | 4.40 | [66] |
U. rigida | Chile | 0.7 | 0.1 | 1.4 | 11.70 | 183.10 | ND | 81.20 | 38.50 | [59] |
U. rigida | New Zealand | ND | ND | ND | <1.00 | ND | ND | 257.00 | 27.00 | [57] |
Ulva spp. | New Zealand | ND | ND | ND | 8.00 | ND | ND | 201.00 | 73.00 | [57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phomkaivon, N.; Pongponpai, P.; Kosawatpat, P.; Thongdang, B.; Pan-utai, W. Extraction, Characterisation and Evaluation of Antioxidant and Probiotic Growth Potential of Water-Soluble Polysaccharides from Ulva rigida Macroalgae. Foods 2024, 13, 1630. https://doi.org/10.3390/foods13111630
Phomkaivon N, Pongponpai P, Kosawatpat P, Thongdang B, Pan-utai W. Extraction, Characterisation and Evaluation of Antioxidant and Probiotic Growth Potential of Water-Soluble Polysaccharides from Ulva rigida Macroalgae. Foods. 2024; 13(11):1630. https://doi.org/10.3390/foods13111630
Chicago/Turabian StylePhomkaivon, Naraporn, Preeyanut Pongponpai, Prapat Kosawatpat, Bussaba Thongdang, and Wanida Pan-utai. 2024. "Extraction, Characterisation and Evaluation of Antioxidant and Probiotic Growth Potential of Water-Soluble Polysaccharides from Ulva rigida Macroalgae" Foods 13, no. 11: 1630. https://doi.org/10.3390/foods13111630
APA StylePhomkaivon, N., Pongponpai, P., Kosawatpat, P., Thongdang, B., & Pan-utai, W. (2024). Extraction, Characterisation and Evaluation of Antioxidant and Probiotic Growth Potential of Water-Soluble Polysaccharides from Ulva rigida Macroalgae. Foods, 13(11), 1630. https://doi.org/10.3390/foods13111630