Understanding How Chemical Pollutants Arise and Evolve in the Brewing Supply Chain: A Scoping Review
Abstract
:1. Introduction
2. Methodology
3. Behaviour and Fate of the Most Important Chemical Pollutants in the Course of the Beer Production Process
3.1. Biogenic Amines
3.2. Heavy Metals
3.3. Mycotoxins
3.4. Nitrosamines
3.5. Pesticides
3.6. Acrylamide
Pesticide | Log KOW | Sweet Wort | Spent Grains | Brewer Wort | Spent Hops | References |
---|---|---|---|---|---|---|
Atrazine | 2.5 | 45 | 55 | 42 | 20 | [115] |
α-BHC | 4.0 | 8 | 54 | 30 | 15 | [116] |
Captafol | 3.8 | BDL a | 3 | BDL | BDL | [116] |
Chlorpyrifos | 4.7 | 17 | 3 | 4 | 32 | [116] |
Cyproconazole | 3.1 | 10 | 40 | 9 | ND b | [117] |
Deltamethrin | 4.6 | BDL | 45 | 3 | 37 | [116] |
Dichlorvos | 1.9 | 8 | BDL | BDL | BDL | [116] |
Diclofuanid | 3.7 | 10 | 10 | BDL | BDL | [116] |
Dicofol | 4.3 | BDL | 70 | 18 | 60 | [116] |
Diniconazole | 4.3 | 4 | 49 | 3 | ND | [117] |
Epoxiconazole | 3.4 | 8 | 44 | 7 | ND | [117] |
Fenitrothion | 3.4 | 4 | 30 | 3 | ND | [118] |
Fenobucarb | 2.8 | 35 | 30 | 64 | 1 | [116] |
Fenvalerate | 5.0 | BDL | 50 | 3 | 7 | [116] |
Flucythrinate | 6.2 | BDL | 60 | BDL | 10 | [116] |
Flutriafol | 2.3 | 13 | 36 | 10 | ND | [114] |
Glyphosate | −3.2 | 97 | 3 | 95 | 2 | [116] |
Malathion | 2.7 | 20 7 | 35 40 | 15 4 | 5 ND | [116,118] |
Myclobutanil | 2.9 | 9 | 38 | 8 | ND | [117] |
Nuarimol | 3.2 | 6 | 26 | 6 | ND | [117] |
Oxamyl | 0.4 | 1 | BDL | 20 | BDL | [116] |
Parathion-methyl | 3.0 | 1 | BDL | 10 | 3 | [116] |
Pemdimethalin | 5.2 | 1 | 21 | 1 | ND | [118] |
Permethrin | 6.1 | BDL | 70 | BDL | 50 | [116] |
Pirimicarb | 1.7 | 84 | 14 | 50 | 3 | [116] |
Pirimiphos-methyl | 4.2 | 2 | 68 | 6 | 12 | [116] |
Propiconazole | 3.6 | 4 | 42 | 4 | ND | [117] |
Tebuconazole | 3.7 | 8 | 44 | 7 | ND | [114] |
Terbutylazine | 3.2 | 12 | 80 | 7 | 40 | [115] |
Triadimenol | 3.1 | 36 | ND | ND | ND | [131] |
Trifluralin | 5.3 | 1 | 17 | 1 | ND | [118] |
3.7. Micro- and Nanoplastics
Chemical Pollutants Related to Plastics (Phthalates and Bisphenols)
3.8. Other Minority Pollutants
3.8.1. Polychlorinated Biphenyls
3.8.2. Aliphatic and Aromatic Hydrocarbons
3.8.3. Carbonyl and Furan Compounds
3.8.4. Trihalomethanes
4. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zion Market Research. Beer Market-Size, Share, Trends by Product Type (Lager, Ale, Stout, Porter, Malt, and Others), by Packaging (Metal Can and Glass Bottles), by Category (Premium Beer and Regular Beer), by Distribution Channel (Off-Trade Channels and On-Trade Channels) and by Region–Global and Regional Industry Overview, Market Intelligence, Comprehensive Analysis, Historical Data, and Forecasts 2022–2028; Zion Market Research: Salt Lake City, UT, USA, 2023; Available online: https://www.zionmarketresearch.com/sample/beer-market-size (accessed on 23 November 2023).
- Goldammer, T. The Brewer’s Handbook. A Complete Book to Brewing Beer, 3rd ed.; Apex Publishers: Centreville, VI, USA, 2022. [Google Scholar]
- Mosher, M.; Trantham, K. Brewing Science: A Multidisciplinary Approach; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Poli, A.; Marangoni, F.; Avogaro, A.; Barba, G.; Bellentani, S.; Bucci, M.; Cambieri, R.; Catapano, A.L.; Costanzo, S.; Cricelli, C.; et al. Moderate alcohol use and health: A consensus document. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 487–504. [Google Scholar] [CrossRef] [PubMed]
- Wagner, E.M.; Thalguter, S.; Wagner, M.; Rychli, K. Presence of microbial contamination and biofilms at a beer can filling production line. J. Food Prot. 2021, 84, 896–902. [Google Scholar] [CrossRef] [PubMed]
- Matoulková, D.; Vontrobová, E.; Brožová, M.; Kubizniaková, P. Microbiology of brewery production–bacteria of the order Enterobacterales. Kvas. Prum. 2018, 64, 161–166. [Google Scholar] [CrossRef]
- Navarro, S.; Vela, N. Fate of pesticide residues during brewing. In Beer in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2009; pp. 415–428. [Google Scholar] [CrossRef]
- Grumezescu, A.M.; Holba, A.M. Quality Control in the Beverage Industry; Academic Press: New York, NY, USA, 2019. [Google Scholar] [CrossRef]
- Birkle, C.; Pendlebury, D.A.; Schnell, J.; Adams, J. Web of Science as a data source for research on scientific and scholarly activity. Quant. Sci. Stud. 2020, 1, 363–376. [Google Scholar] [CrossRef]
- Williams, A.J.; Grulke, C.M.; Edwards, J.; McEachran, A.D.; Mansouri, K.; Baker, N.C.; Richard, A.M. The CompTox Chemistry Dashboard: A community data resource for environmental chemistry. J. Cheminform. 2017, 9, 61. [Google Scholar] [CrossRef] [PubMed]
- Wójcik, W.; Łukasiewicz, M.; Puppel, K. Biogenic amines: Formation, action and toxicity—A review. J. Sci. Food Agric. 2021, 101, 2634–2640. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.S. Biogenic amines: Their importance in foods. Int. J. Food Microbiol. 1996, 29, 213–231. [Google Scholar] [CrossRef] [PubMed]
- Spano, G.; Russo, P.; Lonvaud-Funel, A.; Lucas, P.; Alexandre, H.; Grandvalet, C.; Coton, E.; Coton, M.; Barnavon, L.; Bach, B.; et al. Biogenic amines in fermented foods. Eur. J. Clin. Nutr. 2010, 64, S95–S100. [Google Scholar] [CrossRef] [PubMed]
- Kalac, P.; Krízek, M. A review of biogenic amines and polyamines in beer. J. Inst. Brew. 2003, 109, 123–128. [Google Scholar] [CrossRef]
- Romero, R.; Bagur, M.G.; Sánchez-Viñas, M.; Gázquez, D. The influence of the brewing process on the formation of biogenic amines in beers. Anal. Bioanal. Chem. 2003, 376, 162–167. [Google Scholar] [CrossRef]
- Kiss, J.; Korbász, M.; Sass-Kiss, A. Study of amine composition of botrytized grape berries. J. Agric. Food Chem. 2006, 54, 8909–8918. [Google Scholar] [CrossRef] [PubMed]
- Tiris, G.; Yanikoğlu, R.S.; Ceylan, B.; Egeli, D.; Tekkeli, E.K.; Önal, A. A review of the currently developed analytical methods for the determination of biogenic amines in food products. Food Chem. 2023, 398, e133919. [Google Scholar] [CrossRef]
- Koller, H.; Perkins, L.B. Brewing and the chemical composition of amine-containing compounds in beer: A review. Foods 2022, 11, 257. [Google Scholar] [CrossRef] [PubMed]
- Buňka, F.; Budinský, P.; Čechová, M.; Drienovský, V.; Pachlová, V.; Matoulková, D.; Buňková, L. Content of biogenic amines and polyamines in beers from the Czech Republic. J. Inst. Brew. 2012, 118, 213–216. [Google Scholar] [CrossRef]
- Nalazek-Rudnicka, K.; Wojnowski, W.; Wasik, A. Occurrence and levels of biogenic amines in beers produced by different methods. Foods 2021, 10, 2902. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.; Shi, T.; Qian, K.; Li, P.; Li, J.; Cao, Y. Determination of biogenic amines in beer with pre-column derivatization by high performance liquid chromatography. J. Chromatogr. B 2009, 877, 507–512. [Google Scholar] [CrossRef]
- Pereira, C.I.; Matos, D.; San Romão, M.V.; Barreto Crespo, M.T. Dual role for the tyrosine decarboxylation pathway in Enterococcus faecium E17: Response to an acid challenge and generation of a proton motive force. Appl. Environ. Microbiol. 2009, 75, 345–352. [Google Scholar] [CrossRef]
- Pérez, M.; Calles-Enríquez, M.; Nes, I.; Martin, M.C.; Fernandez, M.; Ladero, V.; Alvarez, M.A. Tyramine biosynthesis is transcriptionally induced at low pH and improves the fitness of Enterococcus faecalis in acidic environments. Appl. Microbiol. Biotechnol. 2015, 99, 3547–3558. [Google Scholar] [CrossRef] [PubMed]
- Steinkraus, K.H. Lactic acid fermentations. In Applications of Biotechnology to Traditional Fermented Foods; Ruskin, F.R., Ed.; The National Academies Press: Washington, DC, USA, 1992; pp. 43–51. [Google Scholar] [CrossRef]
- Duruibe, J.O.; Ogwuegbu, M.O.C.; Egwurugwu, J.N. Heavy metal pollution and human biotoxic effects. Int. J. Phys. Sci. 2007, 2, 112–118. [Google Scholar]
- Deka, A.K.; Kumar, K.J.; Basumatary, S. Monitoring Strategies for Heavy Metals in Foods and Beverages: Limitations for Human Health Risks. In Heavy Metals; Almayyahi, B.A., Ed.; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Čejka, P.; Horák, T.; Dvořák, J.; Čulík, J.; Jurkova, M.; Kellner, V.; Hašková, D. Monitoring of the distribution of some heavy metals during brewing process. Ecol. Chem. Eng. S 2011, 18, 67–74. [Google Scholar]
- Pohl, P. Determination and fractionation of metals in beer: A review. Food Addit. Contam. Part A 2008, 25, 693–703. [Google Scholar] [CrossRef] [PubMed]
- Iwegbue, C.M.; Overah, L.C.; Bassey, F.I.; Martincigh, B.S. Trace metal concentrations in distilled alcoholic beverages and liquors in Nigeria. J. Inst. Brew. 2014, 120, 521–528. [Google Scholar] [CrossRef]
- Passaghe, P.; Bertoli, S.; Tubaro, F.; Buiatti, S. Monitoring of some selected heavy metals throughout the brewing process of craft beers by inductively coupled plasma mass spectrometry. Eur. Food Res. Technol. 2015, 241, 199–215. [Google Scholar] [CrossRef]
- European Communities. Commission Regulation (EC) No 1881/2006. Off. J. Eur. Union 2006, L364, 5. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006R1881 (accessed on 10 January 2024).
- Eticha, T.; Hymete, A. Health risk assessment of heavy metals in locally produced beer to the population in Ethiopia. J. Bioanal. Biomed. 2014, 6, 65–68. [Google Scholar] [CrossRef]
- Filippini, T.; Tancredi, S.; Malagoli, C.; Cilloni, S.; Malavolti, M.; Violi, F.; Vinceti, M. Aluminum and tin: Food contamination and dietary intake in an Italian population. J. Trace Elem. Med. Biol. 2019, 52, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Han, R.; Li, H.; Li, Y.; Zhang, J.; Xiao, H.; Shi, J. Biosorption of copper and lead ions by waste beer yeast. J. Hazard. Mat. 2006, 137, 1569–1576. [Google Scholar] [CrossRef]
- Zufall, C.; Tyrell, T. The influence of heavy metal ions on beer flavour stability. J. Inst. Brew. 2008, 114, 134–142. [Google Scholar] [CrossRef]
- WHO. Mycotoxins; World Health Organisation: Geneva, Switzerland, 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/mycotoxins (accessed on 15 January 2024).
- Asao, T.; Buchi, G.; Abdel-Kader, M.M.; Chang, S.B.; Wick, E.L.; Wogan, G.N. Aflatoxins B and G. J. Am. Chem. Soc. 1963, 85, 1706–1707. [Google Scholar] [CrossRef]
- Rushing, B.R.; Selim, M.I. Aflatoxin B1: A review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods. Food Chem. Toxicol. 2019, 124, 81–100. [Google Scholar] [CrossRef]
- Creppy, E.E. Update of survey, regulation and toxic effects of mycotoxins in Europe. Toxicol. Lett. 2002, 127, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Benešová, K.; Čumová, M.; Běláková, S.; Mikulíková, R.; Svoboda, Z. The occurrence of “Emerging” mycotoxins in brewing raw materials. Kvas. Prum. 2015, 61, 114–119. [Google Scholar] [CrossRef]
- IARC. IARC Monograph on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 1993. [Google Scholar]
- Gupta, R. Reproductive and Developmental Toxicology, 2nd ed.; Academic Press: New York, NY, USA, 2017. [Google Scholar]
- Eskola, M.; Kos, G.; Elliott, C.T.; Hajšlová, J.; Mayar, S.; Krska, R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%. Crit. Rev. Food Sci. Nutr. 2020, 60, 2773–2789. [Google Scholar] [CrossRef] [PubMed]
- Şenyuva, H.Z.; Gilbert, J. Immunoaffinity column clean-up techniques in food analysis: A review. J. Chromatogr. B 2010, 878, 115–132. [Google Scholar] [CrossRef] [PubMed]
- Běláková, S.; Benešová, K.; Mikulíková, R.; Svoboda, Z. Determination of ochratoxin A in brewing materials and beer by ultra performance liquid chromatography with fluorescence detection. Food Chem. 2011, 126, 321–325. [Google Scholar] [CrossRef]
- Krstanovic, V.; Šarkanj, B.; Velic, N.; Mastanjevic, K.; Šantek, B.; Mastanjevic, K. Mycotoxins in malting and brewing by-products used for animal feed. J. Biotechnol. 2017, 256, S68–S69. Available online: https://www.sciencedirect.com/science/article/pii/S0168165617313299 (accessed on 22 January 2024). [CrossRef]
- European Communities. Commission Regulation (EC) No 915/2023. Off. J. Eur. Union 2023, L119, 103–157. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32023R0915 (accessed on 22 January 2024).
- European Communities. Commission Regulation (EC) No 123/2005. Off. J. Eur. Union 2005, L25, 3–5. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32005R0123 (accessed on 22 January 2024).
- Thellmann, A.; Weber, W. Determination of ochratoxin A in cereals, malt and beer after accumulation and separation on immunoaffinity columns and following high-pressure liquid chromatography with fluorescence detection. Dtsch. Lebensm.-Rundsch. 1997, 93, 1–3. [Google Scholar]
- Wolff, J. Ochratoxin A in cereals and cereal products. Arch. Leb. 2000, 51, 85–88. [Google Scholar]
- Gumus, T.; Arici, M.; Demirci, M. A survey of barley, malt and beer contamination with ochratoxin A in Turkey. J. Inst. Brew. 2004, 110, 146–149. [Google Scholar] [CrossRef]
- Anli, E.; Alkis, İ.M. Ochratoxin A and brewing technology: A review. J. Inst. Brew. 2010, 116, 23–32. [Google Scholar] [CrossRef]
- Lund, F.; Frisvad, J.C. Penicillium verrucosum in wheat and barley indicates presence of ochratoxin A. J. Appl. Microbiol. 2003, 95, 1117–1123. [Google Scholar] [CrossRef] [PubMed]
- Magan, N.; Hope, R.; Cairns, V.; Aldred, D. Post-harvest fungal ecology: Impact of fungal growth and mycotoxin accumulation in stored grain. In Epidemiology of Mycotoxin Producing Fungi; Xu, X., Bailey, J.A., Cooke, B.M., Eds.; Springer: Dordrecht, The Netherlands, 2003; pp. 723–730. [Google Scholar] [CrossRef]
- Malachová, A.; Cerkal, R.; Ehrenbergerova, J.; Hajslova, J. The fate of mycotoxins during malting and brewing. In Proceedings of the International Ph. D. Students Conference on MendelNet, Brno, Czech Republic, 24 November 2010; pp. 708–715. [Google Scholar]
- Simpson, D.R.; Weston, G.E.; Turner, J.A.; Jennings, P.; Nicholson, P. Differential control of head blight pathogens of wheat by fungicides and consequences for mycotoxin contamination of grain. Eur. J. Plant Pathol. 2001, 107, 421–431. [Google Scholar] [CrossRef]
- Heier, T.; Jain, S.K.; Kogel, K.H.; Pons-Kühnemann, J. Influence of N-fertilization and fungicide strategies on Fusarium head blight severity and mycotoxin content in winter wheat. J. Phytopathol. 2005, 153, 551–557. [Google Scholar] [CrossRef]
- Šafránková, I.; Marková, M.; Kmoch, M. Seed mycoflora of malting varieties and lines of spring barley in localities Kroměříž and Žabčice. Kvas. Prum. 2010, 56, 138–144. [Google Scholar] [CrossRef]
- Rodhouse, L.; Carbonero, F. Overview of craft brewing specificities and potentially associated microbiota. Crit. Rev. Food Sci. Nutr. 2019, 59, 462–473. [Google Scholar] [CrossRef]
- Hoff, S.; Lund, M.N.; Petersen, M.A.; Jespersen, B.M.; Andersen, M.L. Quality of pilsner malt and roasted malt during storage. J. Inst. Brew. 2014, 120, 331–340. [Google Scholar] [CrossRef]
- Kensler, T.W.; Roebuck, B.D.; Wogan, G.N.; Groopman, J.D. Aflatoxin: A 50-year odyssey of mechanistic and translational toxicology. Toxicol. Sci. 2011, 120, S28–S48. [Google Scholar] [CrossRef]
- Wolff-Hall, C.E.; Schwarz, P.B. Mycotoxins and Fermentation—Beer Production. In Mycotoxins and Food Safety; DeVries, J.W., Trucksess, M.W., Jackson, L.S., Eds.; Advances in Experimental Medicine and Biology; Springer: Berlin/Heidelberg, Germany, 2002; Volume 504, pp. 217–226. [Google Scholar] [CrossRef]
- Gumus, T.; ARICI, M.; Demirci, M. Okratoksin A’n in Bira Fermentasyonundaki Durumu ve Fermentasyona Etkisi. Trak. Üniv. Fen Bilim. Derg. 2003, 4, 181–186. [Google Scholar]
- Scott, P.M. Mycotoxins transmitted into beer from contaminated grains during brewing. J. AOAC Int. 1996, 79, 875–882. [Google Scholar] [CrossRef]
- Bullerman, L.B.; Bianchini, A. Stability of mycotoxins during food processing. Int. J. Food Microbiol. 2007, 119, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Krogh, P.; Hald, B.; Gjertsen, P.; Myken, F. Fate of ochratoxin A and citrinin during malting and brewing experiments. Appl. Microbiol. 1974, 28, 31–34. [Google Scholar] [CrossRef]
- Scott, P.M.; Kanhere, S.R. Determination of ochratoxin A in beer. Food Addit. Contam. 1995, 12, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Payen, J.; Girard, T.; Gaillardin, M.; Lafont, P. Sur la presence de mycotoxines dans des bieres. Microbiol. Aliment. Nutr. 1983, 1, 143–146. [Google Scholar]
- Mateo, R.; Medina, Á.; Mateo, E.M.; Mateo, F.; Jiménez, M. An overview of ochratoxin A in beer and wine. Int. J. Food Microbiol. 2007, 119, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Odhav, B.; Naicker, V. Mycotoxins in South African traditionally brewed beers. Food Addit. Contam. 2002, 19, 55–61. [Google Scholar] [CrossRef]
- Chu, F.S.; Chang, C.C.; Ashoor, S.H.; Prentice, N. Stability of aflatoxin B1 and ochratoxin A in brewing. Appl. Microbiol. 1975, 29, 313–316. [Google Scholar] [CrossRef]
- Scott, P.M.; Kanhere, S.R.; Lawrence, G.A.; Daley, E.F.; Farber, J.M. Fermentation of wort containing added ochratoxin A and fumonisins B1 and B2. Food Addit. Contam. 1995, 12, 31–40. [Google Scholar] [CrossRef]
- Legarda, T.; Burdaspal, P.A. Ocratoxina A en cervezas elaboradas en España y en otros países europeos. Alimentaria 1998, 291, 115–122. [Google Scholar]
- Deetae, P.; Perello, M.C.; De Revel, G. Occurrence of ochratoxin A and biogenic amines in Asian beers sold in French markets. J. Inst. Brew. 2013, 119, 57–63. [Google Scholar] [CrossRef]
- Medina, Á.; Valle-Algarra, F.M.; Gimeno-Adelantado, J.V.; Mateo, R.; Mateo, F.; Jiménez, M. New method for determination of ochratoxin A in beer using zinc acetate and solid-phase extraction silica cartridges. J. Chromatogr. A 2006, 1121, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Nip, W.K.; Chang, F.C.; Chu, F.S.; Prentice, N. Fate of ochratoxin A in brewing. Appl. Microbiol. 1975, 30, 1048–1049. [Google Scholar] [CrossRef] [PubMed]
- Guerra, M.C.; Galvano, F.; Bonsi, L.; Speroni, E.; Costa, S.; Renzulli, C.; Cervellati, R. Cyanidin-3-O-β-glucopyranoside, a natural free-radical scavenger against aflatoxin B1-and ochratoxin A-induced cell damage in a human hepatoma cell line (Hep G2) and a human colonic adenocarcinoma cell line (CaCo-2). Br. J. Nutr. 2005, 94, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Gjertsen, P.; Myken, F.; Krogh, P.; Hald, B. Malting and brewing experiments with ochratoxin and citrinin. In Proceedings of the European Brewery Convention Congress, Salzburg; Elsevier Scientific: Amsterdam, The Netherlands, 1973; pp. 373–380. [Google Scholar]
- Schothorst, R.C.; Jekel, A.A. Determination of trichothecenes in beer by capillary gas chromatography with flame ionisation detection. Food Chem. 2003, 82, 475–479. [Google Scholar] [CrossRef]
- Piacentini, K.C.; Savi, G.D.; Pereira, M.E.; Scussel, V.M. Fungi and the natural occurrence of deoxynivalenol and fumonisins in malting barley (Hordeum vulgare L.). Food Chem. 2015, 187, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Piacentini, K.C.; Rocha, L.O.; Fontes, L.C.; Carnielli, L.; Reis, T.A.; Corrêa, B. Mycotoxin analysis of industrial beers from Brazil: The influence of fumonisin B1 and deoxynivalenol in beer quality. Food Chem. 2017, 218, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Wall-Martínez, H.A.; Pascari, X.; Ramos, A.J.; Marin, S.; Sanchis, V. Frequency and levels of mycotoxins in beer from the Mexican market and exposure estimate for deoxynivalenol mycotoxins. Mycotoxin Res. 2019, 35, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.; van Dam, R.; van Doorn, R.; Katerere, D.; Berthiller, F.; Haasnoot, W.; Nielen, M.W. Mycotoxin profiling of 1000 beer samples with a special focus on craft beer. PLoS ONE 2017, 12, e0185887. [Google Scholar] [CrossRef] [PubMed]
- Djoulde, D.R. Deoxynivanol (DON) and fumonisins B1 (FB1) in artisanal sorghum opaque beer brewed in north Cameroon. Afr. J. Microbiol. Res. 2011, 5, 1565–1567. [Google Scholar] [CrossRef]
- Lulamba, T.E.; Stafford, R.A.; Njobeh, P.B. A sub-Saharan African perspective on mycotoxins in beer—A review. J. Inst. Brew. 2019, 125, 184–199. [Google Scholar] [CrossRef]
- Bertuzzi, T.; Rastelli, S.; Mulazzi, A.; Donadini, G.; Pietri, A. Known and emerging mycotoxins in small-and large-scale brewed beer. Beverages 2018, 4, 46. [Google Scholar] [CrossRef]
- Bogdanova, E.; Rozentale, I.; Pugajeva, I.; Emecheta, E.E.; Bartkevics, V. Occurrence and risk assessment of mycotoxins, acrylamide, and furan in Latvian beer. Food Addit. Contam. Part B 2018, 11, 126–137. [Google Scholar] [CrossRef]
- Olšovská, J.; Jandovská, V.; Běláková, S.; Kubizniaková, P.; Vrzal, T.; Štěrba, K. Monitoring of potential contaminants in beer from the Czech Republic. Kvas. Prum. 2019, 65, 84–96. [Google Scholar] [CrossRef]
- Inoue, T.; Nagatomi, Y.; Uyama, A.; Mochizuki, N. Fate of mycotoxins during beer brewing and fermentation. Biosci. Biotechnol. Biochem. 2013, 77, 1410–1415. [Google Scholar] [CrossRef] [PubMed]
- Pietri, A.; Bertuzzi, T.; Agosti, B.; Donadini, G. Transfer of aflatoxin B1 and fumonisin B1 from naturally contaminated raw materials to beer during an industrial brewing process. Food Addit. Contam. Part A 2010, 27, 1431–1439. [Google Scholar] [CrossRef] [PubMed]
- Gushgari, A.J.; Halden, R.U. Critical review of major sources of human exposure to N-nitrosamines. Chemosphere 2018, 210, 1124–1136. [Google Scholar] [CrossRef]
- Havery, D.C.; Hotchkiss, J.H.; Fazio, T. Nitrosamines in malt and malt beverages. J. Food Sci. 1981, 46, 501–505. [Google Scholar] [CrossRef]
- Wainwright, T. Nitrosamines in malt and beer. J. Inst. Brew. 1986, 92, 73–80. [Google Scholar] [CrossRef]
- Vrzal, T.; Olšovská, J. N-nitrosamines in 21th Century. Kvas. Prum. 2016, 62, 2–8. [Google Scholar] [CrossRef]
- Khorolskiy, M.; Ramenskaya, G.; Vlasov, A.; Perederyaev, O.; Maslennikova, N. Development and validation of four nitrosamine impurities determination method in medicines of valsartan, losartan, and irbesartan with HPLC-MS/MS (APCI). Iran. J. Pharm. Res. 2021, 20, 541–552. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.C.; Lin, T.F. N-nitrosamines in drinking water and beer: Detection and risk assessment. Chemosphere 2018, 200, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Baxter, E.D.; Slaiding, I.R.; Travers, V. Current incidence of N-nitrosodimethylamine in beers worldwide. Food Addit. Contam. 2007, 24, 807–811. [Google Scholar] [CrossRef] [PubMed]
- FAO and WHO. The International Code of Conduct on Pesticide Management; Food and Agriculture Organization (FAO) of the United Nations and World Health Organization (WHO): Rome, Italy, 2014. [Google Scholar]
- Hengel, M.J.; Shibamoto, T. Method development and fate determination of pesticide-treated hops and their subsequent usage in the production of beer. J. Agric. Food Chem. 2002, 50, 3412–3418. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.W.; Webster, M.G.; Bezabeh, D.Z.; Hengel, M.J.; Ngim, K.K.; Krynitsky, A.J.; Ebeler, S.E. Multiresidue determination of pesticides in malt beverages by capillary gas chromatography with mass spectrometry and selected ion monitoring. J. Agric. Food Chem. 2004, 52, 6361–6372. [Google Scholar] [CrossRef] [PubMed]
- Omote, M.; Harayama, K.; Sasaki, T.; Mochizuki, N.; Yamashita, H. Analysis of simultaneous screening for 277 pesticides in malt and beer by liquid chromatography with tandem mass spectrometry. J. Am. Soc. Brew. Chem. 2006, 64, 139–150. [Google Scholar] [CrossRef]
- Vela, N.; Pérez, G.; Navarro, G.; Navarro, S. Gas chromatographic determination of pesticide residues in malt, spent grains, wort, and beer with electron capture detection and mass spectrometry. J. AOAC Int. 2007, 90, 544–549. [Google Scholar] [CrossRef]
- Inoue, T.; Nagatomi, Y.; Suga, K.; Uyama, A.; Mochizuki, N. Fate of pesticides during beer brewing. J. Agric. Food Chem. 2011, 59, 3857–3868. [Google Scholar] [CrossRef]
- Hengel, M.J.; Miller, D.; Jordan, R. Development and validation of a method for the determination of pesticide residues in beer by liquid chromatography-mass spectrometry. J. Am. Soc. Brew. Chem. 2016, 74, 49–52. [Google Scholar] [CrossRef]
- Bedassa, T.; Megersa, N.; Gure, A. Salting-out assisted liquid-liquid extraction for the determination of multiresidue pesticides in alcoholic beverages by high performance liquid chromatography. Sci. J. Anal. Chem. 2017, 5, 38–45. [Google Scholar] [CrossRef]
- Dušek, M.; Jandovská, V.; Olšovská, J. Tracking, behavior and fate of 58 pesticides originated from hops during beer brewing. J. Agric. Food Chem. 2018, 66, 10113–10121. [Google Scholar] [CrossRef] [PubMed]
- He, N.X.; Bayen, S. An overview of chemical contaminants and other undesirable chemicals in alcoholic beverages and strategies for analysis. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3916–3950. [Google Scholar] [CrossRef] [PubMed]
- Pires, N.A.; Goncalves De Oliveira, M.L.; Goncalves, J.A.; Faria, A.F. Multiclass analytical method for pesticide and mycotoxin analysis in malt, brewers’ spent grain, and beer: Development, validation, and application. J. Agric. Food Chem. 2021, 69, 4533–4541. [Google Scholar] [CrossRef] [PubMed]
- Biendl, M. Systematic monitoring of residues. Brauwelt Int. 2017, 4, 257–260. [Google Scholar]
- Pérez-Lucas, G.; Navarro, G.; Navarro, S. Comprehensive review on monitoring, behavior, and impact of pesticide residues during beer-making. J. Agric. Food Chem. 2023, 71, 1820–1836. [Google Scholar] [CrossRef] [PubMed]
- Kunze, W. Technology of Brewing & Malting, 6th ed.; VLB: Berlin, Germany, 2019. [Google Scholar]
- Miyake, Y.; Hashimoto, K.; Matsuki, H.; Ono, M.; Tajima, R. Fate of insecticide and fungicide residues on barley during storage and malting. J. Am. Soc. Brew. Chem. 2002, 60, 110–115. [Google Scholar] [CrossRef]
- Navarro, S.; Perez, G.; Navarro, G.; Vela, N. Decline of pesticide residues from barley to malt. Food Addit. Contam. 2007, 24, 851–859. [Google Scholar] [CrossRef] [PubMed]
- Navarro, S.; Vela, N.; Navarro, G. Fate of triazole fungicide residues during malting, mashing and boiling stages of beermaking. Food Chem. 2011, 124, 278–284. [Google Scholar] [CrossRef]
- Hack, M.; Nitz, S.; Parlar, H. Behavior of [14C] atrazine, [14C] terbuthylazine, and their major metabolites in the brewing process. J. Agric. Food Chem. 1997, 45, 1375–1380. [Google Scholar] [CrossRef]
- Miyake, Y.; Koji, K.; Matsuki, H.; Tajima, R.; Ono, M.; Mine, T. Fate of agrochemical residues, associated with malt and hops, during brewing. J. Am. Soc. Brew. Chem. 1999, 57, 46–54. [Google Scholar] [CrossRef]
- Navarro, S.; Pérez, G.; Vela, N.; Mena, L.; Navarro, G. Behavior of myclobutanil, propiconazole, and nuarimol residues during lager beer brewing. J. Agric. Food Chem. 2005, 53, 8572–8579. [Google Scholar] [CrossRef] [PubMed]
- Navarro, S.; Pérez, G.; Navarro, G.; Mena, L.; Vela, N. Decay of dinitroaniline herbicides and organophosphorus insecticides during brewing of lager beer. J. Food Prot. 2006, 69, 1699–1706. [Google Scholar] [CrossRef] [PubMed]
- Kong, Z.; Li, M.; Chen, J.; Gui, Y.; Bao, Y.; Fan, B.; Dai, X. Behavior of field-applied triadimefon, malathion, dichlorvos, and their main metabolites during barley storage and beer processing. Food Chem. 2016, 211, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Hakme, E.; Nielsen, I.K.; Madsen, J.F.; Storkehave, L.M.; Pedersen, M.S.E.; Schulz, B.L.; Poulsen, M.E.; Hobley, T.J.; Duedahl-Olesen, L. Fate of pesticide residues in beer and its by-products. Food Addit. Contam. Part A 2023, 41, 45–59. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.D.; Kavanagh, T.E.; Clarke, B.J. Determination of carbaryl residues in malt and beer and their impact on beer quality. J. Am. Soc. Brew. Chem. 1988, 46, 43–50. [Google Scholar] [CrossRef]
- Navarro, S.; Pérez, G.; Navarro, G.; Mena, L.; Vela, N. Influence of fungicide residues on the primary fermentation of young lager beer. J. Agric. Food Chem. 2007, 55, 1295–1300. [Google Scholar] [CrossRef]
- Navarro, S.; Pérez, G.; Navarro, G.; Mena, L.; Vela, N. Variability in the fermentation rate and colour of young lager beer as influenced by insecticide and herbicide residues. Food Chem. 2007, 105, 1495–1503. [Google Scholar] [CrossRef]
- Regueiro, J.; López-Fernández, O.; Rial-Otero, R.; Cancho-Grande, B.; Simal-Gandara, J. A review on the fermentation of foods and the residues of pesticides-biotransformation of pesticides and effects on fermentation and food quality. Crit. Rev. Food Sci. Nutr. 2015, 55, 839–863. [Google Scholar] [CrossRef] [PubMed]
- Bartkiene, E.; Juodeikiene, G.; Zadeike, D.; Baliukoniene, V.; Bakutis, B.; Cizeikiene, D. Influence of microbial and chemical contaminants on the yield and quality of ethanol from wheat grains. J. Sci. Food Agric. 2019, 99, 2348–2355. [Google Scholar] [CrossRef]
- Wei, Q.; Zhong, B.; Zhu, J.; Hu, S.; He, J.; Hong, Q.; He, Q. Effect of pesticide residues on simulated beer brewing and its inhibition elimination by pesticide-degrading enzyme. J. Biosci. Bioeng. 2020, 130, 496–502. [Google Scholar] [CrossRef]
- Tareke, E.; Rydberg, P.; Karlsson, P.; Eriksson, S.; Törnqvist, M. Acrylamide: A cooking carcinogen? Chem. Res. Toxicol. 2000, 13, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Törnqvist, M. Acrylamide in Food: The Discovery and Its Implications. In Chemistry and Safety of Acrylamide in Food; Friedman, M., Mottram, D., Eds.; Advances in Experimental Medicine and Biology; Springer: Boston, MA, USA, 2005; Volume 561. [Google Scholar] [CrossRef]
- US FDA. Acrylamide: Questions and Answers. United States Food and Drug Administration. 2022. Available online: https://www.fda.gov/food/process-contaminants-food/acrylamide-questions-and-answers (accessed on 25 January 2024).
- Rice, J.M. The carcinogenicity of acrylamide. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2005, 5802, 3–20. [Google Scholar] [CrossRef]
- Miyake, Y.; Tajima, R.; Ono, M. Fate of pesticide metabolites on malt during brewing. J. Am. Soc. Brew. Chem. 2003, 61, 33–36. [Google Scholar] [CrossRef]
- EFSA. Acrylamide in Food. European Food Safety. 2015. Available online: https://www.efsa.europa.eu/sites/default/files/corporate_publications/files/acrylamide150604.pdf (accessed on 2 February 2024).
- European Communities. Commission Regulation (EU) 2017/2158. Off. J. Eur. Union 2017, L304, 24–44. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32017R2158 (accessed on 12 January 2024).
- Elbashir, A.A.; Omar, M.M.A.; Ibrahim, W.A.W.; Schmitz, O.J.; Aboul-Enein, H.Y. Acrylamide analysis in food by liquid chromatographic and gas chromatographic methods. Crit. Rev. Anal. Chem. 2014, 44, 107–141. [Google Scholar] [CrossRef] [PubMed]
- Mikuliková, R.; Svoboda, Z.; Belakova, S.; Macuchova, S. Monitoring of acrylamide in the course of malting and in beer. Kvas. Prum. 2008, 54, 181–185. [Google Scholar] [CrossRef]
- Mottram, D.S.; Wedzicha, B.L.; Dodson, A.T. Acrylamide is formed in the Maillard reaction. Nature 2002, 419, 448–449. [Google Scholar] [CrossRef] [PubMed]
- Arisseto, A.P.; Toledo, M.C.; Govaert, Y.; Loco, J.V.; Fraselle, S.; Weverbergh, E.; Degroodt, J.M. Determination of acrylamide levels in selected foods in Brazil. Food Addit. Contam. 2007, 24, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Van Boekel, M.; Fogliano, V.; Pellegrini, N.; Stanton, C.; Scholz, G.; Lalljie, S.; Eisenbrand, G. A review on the beneficial aspects of food processing. Mol. Nutr. Food Res. 2010, 54, 1215–1247. [Google Scholar] [CrossRef]
- Pflaum, T.; Hausler, T.; Baumung, C.; Ackermann, S.; Kuballa, T.; Rehm, J.; Lachenmeier, D.W. Carcinogenic compounds in alcoholic beverages: An update. Arch. Toxicol. 2016, 90, 2349–2367. [Google Scholar] [CrossRef]
- Dupire, S. Highlights symposium “mycotoxins and other contaminants in the malting and brewing industries. In Proceedings of the Congress-European Brewery Convention 29th, Dublin, Ireland, 17–22 May 2003; Volume 29, pp. 129–131. [Google Scholar]
- European Communities. Commission Recommendation (EU) No 2013/647. Off. J. Eur. Union 2013, L301, 15–17. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32013H0647 (accessed on 12 January 2024).
- Arthur, C.; Baker, J.E.; Bamford, H.A. Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris, Tacoma, WA, USA, 9–11 September 2008; NOAA Marine Debris Program; National Oceanic and Atmospheric Administration: Washington, DC, USA, 2009; pp. 7–179. Available online: https://repository.library.noaa.gov/view/noaa/2509 (accessed on 15 February 2024).
- ECHA. ECHA/RAC/RES-O–0000006790–71–01/F; European Chemical Agency: Helsinki, Finland, 2020; Available online: https://echa.europa.eu/documents/10162/2842450/rest_microplastics_opinion_rac_16339_en.pdf/b4d383cd-24fc-82e9-cccf-6d9f66ee9089 (accessed on 17 February 2024).
- Gigault, J.; Ter Halle, A.; Baudrimont, M.; Pascal, P.Y.; Gauffre, F.; Phi, T.L.; Reynaud, S. Current opinion: What is a nanoplastic? Environ. Pollut. 2018, 235, 1030–1034. [Google Scholar] [CrossRef] [PubMed]
- Barceló, D. Microplastics analysis. MethodsX 2020, 7, e100884. [Google Scholar] [CrossRef] [PubMed]
- Rainieri, S.; Barranco, A. Microplastics, a food safety issue? Trends Food Sci. Technol. 2019, 84, 55–57. [Google Scholar] [CrossRef]
- Bond, T.; Ferrandiz-Mas, V.; Felipe-Sotelo, M.; Van Sebille, E. The occurrence and degradation of aquatic plastic litter based on polymer physicochemical properties: A review. Crit. Rev. Environ. Sci. Technol. 2018, 48, 685–722. [Google Scholar] [CrossRef]
- Ivleva, N.P. Chemical analysis of microplastics and nanoplastics: Challenges, advanced methods, and perspectives. Chem. Rev. 2021, 121, 11886–11936. [Google Scholar] [CrossRef] [PubMed]
- Picó, Y.; Barceló, D. Analysis and prevention of microplastics pollution in water: Current perspectives and future directions. ACS Omega 2019, 4, 6709–6719. [Google Scholar] [CrossRef] [PubMed]
- Prata, J.C.; da Costa, J.P.; Duarte, A.C.; Rocha-Santos, T. Methods for sampling and detection of microplastics in water and sediment: A critical review. TrAC Trends Anal. Chem. 2019, 110, 150–159. [Google Scholar] [CrossRef]
- Rocha-Santos, T.; Duarte, A.C. A critical overview of the analytical approaches to the occurrence, the fate and the behavior of microplastics in the environment. TrAC Trends Anal. Chem. 2015, 65, 47–53. [Google Scholar] [CrossRef]
- Blair, R.M.; Waldron, S.; Phoenix, V.R.; Gauchotte-Lindsay, C. Microscopy and elemental analysis characterisation of microplastics in sediment of a freshwater urban river in Scotland, UK. Environ. Sci. Pollut. Res. 2019, 26, 12491–12504. [Google Scholar] [CrossRef]
- Peñalver, R.; Arroyo-Manzanares, N.; López-García, I.; Hernández-Córdoba, M. An overview of microplastics characterization by thermal analysis. Chemosphere 2020, 242, 125170. [Google Scholar] [CrossRef] [PubMed]
- Liebezeit, G.; Liebezeit, E. Synthetic particles as contaminants in German beers. Food Addit. Contam. Part A 2014, 31, 1574–1578. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Peng, L.; Fu, J.; Dai, X.; Wang, G. A microscopic survey on microplastics in beverages: The case of beer, mineral water and tea. Analyst 2022, 147, 1099–1105. [Google Scholar] [CrossRef] [PubMed]
- Kortenkamp, A.; Martin, O.; Faust, M.; Evans, R.; McKinlay, R.; Orton, F.; Rosivatz, E. State of the Art Assessment of Endocrine Disrupters; Final Report; European Commission: Brussel, Belgium, 2011; pp. 1–135. Available online: https://op.europa.eu/en/publication-detail/-/publication/cf507642-3862-11ec-8daf-01aa75ed71a1/language-en (accessed on 22 February 2024).
- Wams, T.J. Diethylhexylphthalate as an environmental contaminant—A review. Sci. Total Environ. 1987, 66, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Nkrumah, P.N.; Li, Y.; Appiah-Sefah, G. Chemical Behavior of Phthalates Under Abiotic Conditions in Landfills. In Reviews of Environmental Contamination and Toxicology; Whitacre, D., Ed.; Springer: New York, NY, USA, 2013; Volume 224. [Google Scholar] [CrossRef]
- Talsness, C.E.; Andrade, A.J.; Kuriyama, S.N.; Taylor, J.A.; Vom Saal, F.S. Components of plastic: Experimental studies in animals and relevance for human health. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2079–2096. [Google Scholar] [CrossRef] [PubMed]
- Mariana, M.; Feiteiro, J.; Verde, I.; Cairrao, E. The effects of phthalates in the cardiovascular and reproductive systems: A review. Environ. Int. 2016, 94, 758–776. [Google Scholar] [CrossRef] [PubMed]
- Meeker, J.D.; Calafat, A.M.; Hauser, R. Urinary phthalate metabolites and their biotransformation products: Predictors and temporal variability among men and women. J. Expo. Sci. Environ. Epidemiol. 2012, 22, 376–385. [Google Scholar] [CrossRef] [PubMed]
- Frederiksen, H.; Skakkebaek, N.E.; Andersson, A.M. Metabolism of phthalates in humans. Mol. Nutr. Food Res. 2007, 51, 899–911. [Google Scholar] [CrossRef] [PubMed]
- Zoeller, R.T.; Brown, T.R.; Doan, L.L.; Gore, A.C.; Skakkebaek, N.E.; Soto, A.M.; Vom Saal, F.S. Endocrine-disrupting chemicals and public health protection: A statement of principles from The Endocrine Society. Endocrinology 2012, 153, 4097–4110. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Colao, A. Phtalates: New cardiovascular health disruptors? Arch. Toxicol. 2017, 91, 1513–1517. [Google Scholar] [CrossRef]
- European Communities. Regulation (EC) No. 1907/2006. Off. J. Eur. Union 2006, L396, 1–520. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006R1907 (accessed on 25 February 2024).
- Leebowitz, J.N.; Sarmiento, R.; Dugar, S.M.; Ethridge, M.W. Determination of six common phthalate plasticizers in grain neutral spirits and vodka. J. AOAC Int. 1995, 78, 730–735. [Google Scholar] [CrossRef]
- Del Carlo, M.; Pepe, A.; Sacchetti, G.; Compagnone, D.; Mastrocola, D.; Cichelli, A. Determination of phthalate esters in wine using solid-phase extraction and gas chromatography-mass spectrometry. Food Chem. 2008, 111, 771–777. [Google Scholar] [CrossRef]
- Gao, J.; Yang, C.; Ye, C.; Li, X. Determination of trace phthalates in beer by gas chromatography coupled with solid-phase microextraction using a calix [6] arene fiber. Chin. J. Chrom. 2009, 27, 356–358. [Google Scholar]
- Russo, M.V.; Notardonato, I.; Avino, P.; Cinelli, G. Determination of phthalate esters at trace levels in light alcoholic drinks and soft drinks by XAD-2 adsorbent and gas chromatography coupled with ion trap-mass spectrometry detection. Anal. Met. 2014, 6, 7030–7037. [Google Scholar] [CrossRef]
- Gemenetzis, E.G.; Alygizakis, N.A. Development and Validation of an HPLC-UV Method for the Determination Bis (2-ethylhexyl) Phthalate Ester in Alcoholic Beverages. Appl. Sci. 2023, 13, 3194. [Google Scholar] [CrossRef]
- Horák, T.; Olšovská, J. Phthalates in beverages—A review. Kvas. Prum. 2020, 66, 264–269. [Google Scholar] [CrossRef]
- Sendón, R.; Sanches-Silva, A.; Bustos, J.; Martín, P.; Martínez, N.; Cirugeda, M.E. Detection of migration of phthalates from agglomerated cork stoppers using HPLC-MS/MS. J. Sep. Sci. 2012, 35, 1319–1326. [Google Scholar] [CrossRef] [PubMed]
- Fasano, E.; Bono-Blay, F.; Cirillo, T.; Montuori, P.; Lacorte, S. Migration of phthalates, alkylphenols, bisphenol A and di (2-ethylhexyl) adipate from food packaging. Food Control 2012, 27, 132–138. [Google Scholar] [CrossRef]
- Carnol, L.; Schummer, C.; Moris, G. Quantification of six phthalates and one adipate in Luxembourgish beer using HS-SPME-GC/MS. Food Anal. Met. 2017, 10, 298–309. [Google Scholar] [CrossRef]
- Ye, C.W.; Gao, J.; Yang, C.; Liu, X.J.; Li, X.J.; Pan, S.Y. Development and application of an SPME/GC method for the determination of trace phthalates in beer using a calix [6] arene fiber. Anal. Chim. Acta 2009, 641, 64–74. [Google Scholar] [CrossRef]
- Habschied, K.; Kartalović, B.; Lazić, D.; Krstanović, V.; Mastanjević, K. Survey on Phthalates in Beer Packaged in Aluminum Cans, PET and Glass Bottles. Fermentation 2023, 9, 125. [Google Scholar] [CrossRef]
- Pereira, C.; Cunha, S.C.; Fernandes, J.O. Commercial beers: A source of phthalates and di-ethylhexyl adipate. Food Chem. X 2023, 19, e100768. [Google Scholar] [CrossRef]
- Priovolos, I.; Samanidou, V. Βisphenol a and its analogues migrated from contact materials into food and beverages: An updated review in sample preparation approaches. J. Sep. Sci. 2023, 46, e2300081. [Google Scholar] [CrossRef] [PubMed]
- European Communities. Joint Research Centre. Institute for Health Consumer Protection. Updated European Union Risk Assessment Report: 4,4′-Isopropylidenediphenol (Bisphenol-A) Environment Addendum of February 2008; Publications Office of the European Union: Luxembourg, 2010; p. 6. [Google Scholar] [CrossRef]
- Cadogan, D.F.; Howick, C.J. Plasticizers. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley: Hoboken, NJ, USA, 2000. [Google Scholar] [CrossRef]
- Geens, T.; Aerts, D.; Berthot, C.; Bourguignon, J.P.; Goeyens, L.; Lecomte, P.; Covaci, A. A review of dietary and non-dietary exposure to bisphenol-A. Food Chem. Toxicol. 2012, 50, 3725–3740. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Kannan, K.; Tan, H.; Zheng, Z.; Feng, Y.L.; Wu, Y.; Widelka, M. Bisphenol analogues other than BPA: Environmental occurrence, human exposure, and toxicity—A review. Environ. Sci. Technol. 2016, 50, 5438–5453. [Google Scholar] [CrossRef]
- Taskeen, A.; Naeem, I. Analysis of bisphenol A in canned food: A mini review. Asian J. Chem. 2010, 22, 4133–4135. [Google Scholar]
- HCD. Survey of Bisphenol A in Soft Drink and Beer Products from Canadian Markets. Bureau of Chemical Safety Food Directorate Health Products and Food Branch; Health Canada Department: Vancouver, BC, Canada, 2010; Available online: http://www.hc-sc.gc.ca/fn-an/securit/packag-emball/bpa/bpa_survey-summ-enquete-soft-drink-boisson-gazeuse-eng.php (accessed on 1 March 2024).
- Erickson, M.D.; Kaley, R.G. Applications of polychlorinated biphenyls. Environ. Sci. Pollut. Res. 2011, 18, 135–151. [Google Scholar] [CrossRef] [PubMed]
- UN. The 12 Initial POPs under the Stockholm Convention. United Nations Environment Program. 2023. Available online: https://chm.pops.int/TheConvention/ThePOPs/%20The12InitialPOPs/tabid/296/%20Default.aspx (accessed on 1 March 2024).
- Djordjevic, A.B.; Antonijevic, E.; Curcic, M.; Milovanovic, V.; Antonijevic, B. Endocrine-disrupting mechanisms of polychlorinated biphenyls. Curr. Opin. Toxicol. 2020, 19, 42–49. [Google Scholar] [CrossRef]
- Zabelina, O.N.; Saloutin, V.I.; Chupakhin, O.N. Analysis of polychlorinated biphenyl mixtures by gas chromatography. J. Anal. Chem. 2010, 65, 1098–1108. [Google Scholar] [CrossRef]
- Reddy, A.V.B.; Moniruzzaman, M.; Madhavi, G.; Aminabhavi, T.M. Modern approaches in separation, identification and quantification of polychlorinated biphenyls. Curr. Opin. Environ. Sci. Health 2020, 18, 26–39. [Google Scholar] [CrossRef]
- Thabit, T.M.; El-Hefny, D.E.; Elgeddawy, D.I.; El-Naggar, M.A.; Serageldin, F.M. Monitoring of Some Chemical Contaminants Residue in Imported Wheat and Barley Grains Using QuEChERS Method and GC-MS/MS. J. AOAC Int. 2022, 105, 115–128. [Google Scholar] [CrossRef] [PubMed]
- Witczak, A.; Abdel-Gawad, H. Comparison of organochlorine pesticides and polychlorinated biphenyls residues in vegetables, grain and soil from organic and conventional farming in Poland. J. Environ. Sci. Health Part B 2012, 47, 343–354. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhao, T.; Xing, Z.; Yang, X.; Wang, E. Advances in biotic and abiotic mutual promoting mechanism for chlorinated aliphatic hydrocarbons degradation. Chin. J. Biotechnol. 2018, 34, 510–524. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, B.M.; Ravi Kumar, B.V.; Banik, B.K.; Borah, P. Polyaromatic hydrocarbons (PAHs): Structures, synthesis and their biological profile. Curr. Org. Synth. 2020, 17, 625–640. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.B.; Shaikh, S.; Jain, K.R.; Desai, C.; Madamwar, D. Polycyclic aromatic hydrocarbons: Sources, toxicity, and remediation approaches. Front. Microbiol. 2020, 11, e562813. [Google Scholar] [CrossRef]
- Mojiri, A.; Zhou, J.L.; Ohashi, A.; Ozaki, N.; Kindaichi, T. Comprehensive review of polycyclic aromatic hydrocarbons in water sources, their effects and treatments. Sci. Total Environ. 2019, 696, e133971. [Google Scholar] [CrossRef] [PubMed]
- Bolden, A.L.; Rochester, J.R.; Schultz, K.; Kwiatkowski, C.F. Polycyclic aromatic hydrocarbons and female reproductive health: A scoping review. Reprod Toxicol. 2017, 73, 61–74. [Google Scholar] [CrossRef] [PubMed]
- Horák, T.; Čulík, J.; Jurková, M.; Kellner, V. The determination of aliphatic chlorocarbons in beer. Kvas. Prum. 1999, 45, 317–320. [Google Scholar] [CrossRef]
- Hernandes, K.C.; Souza-Silva, É.A.; Assumpção, C.F.; Zini, C.A.; Welke, J.E. Validation of an analytical method using HS-SPME-GC/MS-SIM to assess the exposure risk to carbonyl compounds and furan derivatives through beer consumption. Food Addit. Contam. Part A 2019, 36, 1808–1821. [Google Scholar] [CrossRef]
- Hernandes, K.C.; Souza-Silva, É.A.; Assumpção, C.F.; Zini, C.A.; Welke, J.E. Carbonyl compounds and furan derivatives with toxic potential evaluated in the brewing stages of craft beer. Food Addit. Contam. Part A 2020, 37, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; He, Y.; Ning, Y.; Xue, Z.; Wang, H.; Zhang, Y.; Ma, J.; Chen, X.; Chai, F. Pollution characteristics and sources of carbonyl compounds in a typical city of Fenwei Plain, Linfen, in summer. Environ. Pollut. 2023, 320, e120913. [Google Scholar] [CrossRef] [PubMed]
- Knutsen, H.K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Edler, L.; Grasl-Kraupp, B.; et al. Risks for public health related to the presence of furan and methylfurans in food. EFSA J. 2017, 15, e05005. [Google Scholar] [CrossRef] [PubMed]
- WHO. IARC Monographs on the Identification of Carcinogenic Hazards to Humans; World Health Organisation: Geneva, Switzerland, 2019. Available online: https://monographs.iarc.fr/monographs-and-supplements-available-online (accessed on 3 March 2024).
- Vanderhaegen, B.; Neven, H.; Verstrepen, K.J.; Delvaux, F.R.; Verachtert, H.; Derdelinckx, G. Influence of the brewing process on furfuryl ethyl ether formation during beer aging. J. Agric. Food Chem. 2004, 52, 6755–6764. [Google Scholar] [CrossRef] [PubMed]
- Webersinke, F.; Klein, H.; Flieher, M.; Urban, A.; Jäger, H.; Forster, C.H. Control of fermentation by-products and aroma features of beer produced with scottish ale yeast by variation of fermentation temperature and wort aeration rate. J. Am. Soc. Brew. Chem. 2018, 76, 147–155. [Google Scholar] [CrossRef]
- Burcham, P.C. Acrolein and human disease: Untangling the knotty exposure scenarios accompanying several diverse disorders. Chem. Res. Toxicol. 2017, 30, 145–161. [Google Scholar] [CrossRef] [PubMed]
- Sheridan, M.K.; Elias, R.J. Reaction of acetaldehyde with wine flavonoids in the presence of sulfur dioxide. J. Agric. Food Chem. 2016, 64, 8615–8624. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Update on furan levels in food from monitoring years 2004–2010 and exposure assessment. EFSA J. 2011, 9, 2347–2380. [Google Scholar] [CrossRef]
- Nie, S.; Huang, J.; Hu, J.; Zhang, Y.; Wang, S.; Li, C.; Xie, M. Effect of pH, temperature and heating time on the formation of furan in sugar–glycine model systems. Food Sci. Hum. Wellness 2013, 2, 87–92. [Google Scholar] [CrossRef]
- Eumann, M.; Schildbach, S. 125th Anniversary Review: Water sources and treatment in brewing. J. Inst. Brew. 2012, 118, 12–21. [Google Scholar] [CrossRef]
- Montesinos, I.; Gallego, M. How the inclusion of treated water in beverages influences the appearance of halogenated volatile organic compounds. J. Agric. Food Chem. 2014, 62, 10240–10247. [Google Scholar] [CrossRef] [PubMed]
- Caon, A.; Conte, G.; Skoronski, E. Use of tannin-based coagulant and chlorine dioxide in treating brewing water: Reduction of trihalomethanes and impact on physicochemical and sensory quality. J. Environ. Sci. Health Part A 2022, 57, 858–868. [Google Scholar] [CrossRef] [PubMed]
- Sfynia, C.; Bond, T.; Kanda, R.; Templeton, M.R. Simultaneous prediction of trihalomethanes, haloacetic acids, haloacetonitriles and haloacetamides using simulated distribution system tests. Environ. Sci. Water Res. Technol. 2022, 8, 742–756. [Google Scholar] [CrossRef]
- Sinha, R.; Gupta, A.K.; Ghosal, P.S. A review on Trihalomethanes and Haloacetic acids in drinking water: Global status, health impact, insights of control and removal technologies. J. Environ. Chem. Eng. 2021, 9, 106511. [Google Scholar] [CrossRef]
- Valdivia-García, M.; Weir, P.; Graham, D.W.; Werner, D. Predicted impact of climate change on trihalomethanes formation in drinking water treatment. Sci. Rep. 2019, 9, 9967. [Google Scholar] [CrossRef] [PubMed]
- Sadiq, R.; Rodriguez, M.J. Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: A review. Sci. Total Environ. 2004, 321, 21–46. [Google Scholar] [CrossRef] [PubMed]
- Padhi, R.K.; Subramanian, S.; Mohanty, A.K.; Satpathy, K.K. Comparative assessment of chlorine reactivity and trihalomethanes formation potential of three different water sources. J. Water Proc. Eng. 2019, 29, e100769. [Google Scholar] [CrossRef]
- Richardson, S.D.; Plewa, M.J.; Wagner, E.D.; Schoeny, R.; DeMarini, D.M. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research. Mutat. Res.—Rev. Mutat. Res. 2007, 636, 178–242. [Google Scholar] [CrossRef]
- US EPA. National primary drinking water regulations: Disinfectants and disinfection byproducts; final rule. Fed. Regist. 1998, 63, 69390–69476. Available online: https://www.govinfo.gov/content/pkg/FR-1998-12-16/pdf/98-32887.pdf (accessed on 5 March 2024).
- de Castro Medeiros, L.; de Alencar, F.L.S.; Navoni, J.A.; de Araujo, A.L.C.; do Amaral, V.S. Toxicological aspects of trihalomethanes: A systematic review. Environ. Sci. Pollut. Res. 2019, 26, 5316–5332. [Google Scholar] [CrossRef]
- European Communities. The European parliament and the council of the European union. Directive (EU) 2020/2184 of the European parliament and of the council of 16 December 2020 on the quality of water intended for human consumption. Off. J. Eur. Union 2020, L435, 1–62. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32020L2184 (accessed on 12 January 2024).
- Pérez-Pavón, J.L.; Herrero-Marín, S.; García-Pinto, C.; Moreno-Cordero, B. Determination of trihalomethanes in water samples: A review. Anal. Chim. Acta 2008, 629, 6–23. [Google Scholar] [CrossRef] [PubMed]
- Thurnau, R.C.; Clark, R.M. Determination of volatilisation rate constants of trihalomethanes from heated distilled and finished tap water. Water Environ. J. 2017, 31, 252–261. [Google Scholar] [CrossRef]
- Pérez-Lucas, G.; Martínez-Menchón, M.; Vela, N.; Navarro, S. Removal assessment of disinfection by-products (DBPs) from drinking water supplies by solar heterogeneous photocatalysis: A case study of trihalomethanes (THMs). J. Environ. Manag. 2022, 321, 115936. [Google Scholar] [CrossRef] [PubMed]
- Gati, L.; Gordon, A.; Asiedu, G. Investigation into trihalomethanes in lager beers brewed in Ghana. Chem. Mat. Res. 2017, 9, 54–59. [Google Scholar]
- Wu, Q.J.; Lin, H.; Fan, W.; Dong, J.J.; Chen, H.L. Investigation into benzene, trihalomethanes and formaldehyde in Chinese lager beers. J. Inst. Brew. 2006, 112, 291–294. [Google Scholar] [CrossRef]
Pollutant | Pollution Source | Toxicological Remarks * |
---|---|---|
Acrylamide (α, β-unsaturated (conjugated) reactive molecule (C3H5NO)). | Thermal processing. | A range of adverse health effects, including mutagenicity, genotoxicity, carcinogenicity, neurotoxicity, and reproductive toxicity. |
Aliphatic chlorinated hydrocarbons (Chlorinated derivatives of non-cyclic hydrocarbons). | Ground or surface water. Technological treatment of drinking water in breweries. | They are dangerous because of their persistence, toxicity, and ability to accumulate in biological systems. They are stored in fat tissue in the human body and cause carcinogenic diseases with prolonged exposure. |
Biogenic amines (Organic nitrogen compounds formed by decarboxylation of free amino acids). | Microbial contamination in the brewery. Decarboxylation of free amino acids. | They have a toxic effect on the human body above-limit concentrations. |
Bisphenols (Group of chemical compounds related to diphenylmethane based on two hydroxyphenyl functional groups linked by a methylene bridge, with the exception of bisphenol S, P, and M). | Migration from plastic contact materials to raw material and beer. | Bisphenol A is a xenoestrogen, which has hormone-like properties that mimic the effects of oestrogen in the body. |
Carbonyls (Carbonyl compounds (carbonyls), mainly including aldehydes and ketones, are a crucial class of oxygen-containing volatile organic compounds (VOCs) in the troposphere). | Atmospheric carbonyls come from both primary emissions (vehicle exhaust, solvent volatilization, industry, and plants) and secondary production (carbonyls generated by the photooxidation of VOCs) from anthropogenic and natural sources. | Some carbonyls harm human health due to their potential mutagenic and carcinogenic properties. |
Furans and derivatives (Furan is a 5-membered heterocyclic, oxygen-containing, unsaturated ring compound. Compounds containing the furan ring (as well as the tetrahydrofuran ring) are usually referred to as furans). | They are low-molecular-weight compounds with high volatility found in heat-treated commercial foods and produced through thermal degradation of natural food precursors such as ascorbic acid, amino acids, carbohydrates, unsaturated fatty acids, and carotenoids. | Several of these compounds cause necrosis of target cells within certain organs, including the liver, the kidneys, and the lungs. |
Heavy metals (Metal of relatively high densit, or of high relative atomic weight). | Barley, hop, and water. Brewing equipment (pipes, tanks, containers, and filtration equipment) or containers for transporting or storing the final product. | As, Pb, Cd, Cr, Hg, and others. Possibly carcinogenic and accumulates in the human body. Cancer of the skin, lungs, liver, prostate, bones, and bladder. Kidney and liver dysfunction, high blood pressure, liver damage, and bone fragility. Neurotoxicity, respiratory and digestive effects, and neurodegenerative diseases such as Alzheimer’s disease. |
Microplastics (Extremely small pieces (<5 mm) of plastic debris), | Disposal and breakdown of consumer products and industrial waste. | The nature of the human health effects and the ultimate damage cannot be predicted at this time. |
Mycotoxins (Toxins of natural origin produced as secondary metabolites by microscopic filamentous fungi). | Cultivation of cereals in the field, as well as during storage. | Chemically and thermally very stable compounds. The adverse health effects of mycotoxins range from acute poisoning to long-term effects such as weakening of the immune system and cancer. |
Nitrosamines and ATNC (sum of all N-nitroso compounds) (Substances belonging to a group of N-nitroso compounds, i.e., substances that have a covalently bonded nitroso group (NO) to a nitrogen atom in their molecule). | Bacterial contamination. Product of reaction of amines naturally found in barley with nitrogen oxides from drying air, or they can also be transformed from pesticides. | N-nitrosamines are highly toxic, including carcinogenic, mutagenic, embryopathic, and teratogenic effects. |
Pesticides (Crop protection products for a wide range of diseases, pests, and weeds, as well as plant growth regulators, including insecticides, fungicides, and others.) | Barley, hops, water, and soil. | They can cause many acute and chronic diseases, such as endocrine disruption, infertility, and abnormal foetal development. Pesticides can also affect the development of the nervous system, leading to problems with coordination, behavioural problems, or delayed physical development. Some pesticides have a negative effect on the immune system and cause allergies. Others are proven carcinogens and teratogens. |
Phthalates (Esters of phthalic acids and plasticizers). | Raw materials, but they can also be released from plastic materials that are in a direct contact with beer or intermediates. | They have been shown to be carcinogenic, affect the endocrine system, and can cause premature birth or asthma. |
Polychlorinated biphenyls (PCBs) (A mixture of biphenyl molecules substituted with chlorine atoms). | Soil, air, and water. Used widely in electrical equipment like capacitors and transformers. | High chemical, thermal, and biological stability PCBs are very harmful substances that cause liver damage, affect endocrine function, and cognitive function, are carcinogenic and immunotoxic, and cause reproductive and developmental problems. |
Polycyclic aromatic hydrocarbons PAHs) (Compounds composed of two or more condensed benzene rings in different configurations with different substituents). | Soil, air, and water. Volcanic eruptions and forest fires. | Smoking, grilling, and roasting increase the levels of PAHs in drinks. PAHs have been shown to have mutagenic and carcinogenic effects, but these effects and their severity depend on the chemical structure. |
Trihalomethanes (Compounds with single-carbon substituted halogens (CHX3), where X can be fluorine, chlorine, bromine, or iodine, or a group of these). | Source of water (municipal, surface or groundwater used in breweries) and system used for water sterilisation. | Exposure to higher amounts of trihalomethanes may cause reproductive problems and birth defects with DNA damage. |
Year | MTs | Samples (No) | +Samples (No) | +Samples (%) | Levels * | Below Limit ** |
---|---|---|---|---|---|---|
2014 | AFs | 35 | 0 | 0 | - | |
DON | 43 | 28 | 65 | 2.33–22.5 | √ | |
ZEA | 27 | 0 | 0 | - | ||
T-2 and HT-2 | 24 | 8 | 33 | 0.17–0.71 | √ | |
OTA | 47 | 33 | 70 | 1.4–141 | √ | |
2015 | AFs | 37 | 0 | 0 | - | |
DON | 47 | 14 | 30 | 2.01–29.3 | √ | |
ZEA | 35 | 0 | 0 | - | ||
T-2 and HT-2 | 35 | 18 | 51 | 0.04–0.9 | √ | |
OTA | 50 | 35 | 70 | 1.8–28.8 | √ | |
2016 | AFs | 38 | 0 | 0 | - | |
DON | 73 | 24 | 33 | 2.12–10.7 | √ | |
ZEA | 25 | 1 | 4 | 0.41 | ||
T-2 and HT-2 | 25 | 4 | 16 | 0.04–0.82 | √ | |
OTA | 78 | 62 | 80 | 1.0–134 | √ | |
2017 | AFs | 35 | 0 | 0 | - | |
DON | 50 | 29 | 58 | 2.09–13.9 | √ | |
ZEA | 3 | 0 | 0 | - | ||
T-2 and HT-2 | 29 | 7 | 24 | 0.3–0.85 | √ | |
OTA | 4955 | 45 | 92 | 1.3–77.3 | √ | |
2018 | AFs | 57 | 0 | 0 | - | |
DON | 40 | 44 | 77 | 2.03–17.0 | √ | |
ZEA | 43 | 0 | 0 | - | ||
T-2 and HT-2 | 67 | 38 | 88 | 0.05–1.8 | √ | |
OTA | 51 | 76 | 1.4–56.1 |
Pesticides | Log KOW | Stage | References | ||
---|---|---|---|---|---|
Steeping | Germination | Kilning | |||
Cyproconazole | 3.1 | 47 | 38 | 31 | [114] |
Diniconazole | 4.3 | 70 | 61 | 39 | [114] |
Epoxiconazole | 3.4 | 62 | 53 | 38 | [114] |
Ethiofencarb | 2.0 | 3 | 1 | 5 | [112] |
Fenitrothion | 3.4 | 52 | 31 | 13 | [113] |
Flutriafol | 2.3 | 43 | 35 | 30 | [113] |
Malathion | 2.8 | 45 | 20 | 14 | [113] |
Mepronil | 3.8 | 24 | 6 | 30 | [112] |
Myclobutanil | 2.9 | 59 | 42 | 36 | [113] |
Nuarimol | 3.2 | 64 | 57 | 51 | [113] |
Pendimethalin | 5.2 | 85 | 67 | 49 | [113] |
Phentoate | 3.7 | 27 | 4 | 18 | [112] |
Propiconazole | 3.6 | 50 55 | 10 43 | 55 30 | [112,113] |
Tebuconazole | 3.7 | 56 | 45 | 37 | [114] |
Triadimefon | 3.1 | 24 | 5 | 30 | [112] |
Triadimenol | 3.1 | 36 | 13 | 47 | [112] |
Triflumizole | 4.4 | 38 | 11 | 9 | [112] |
Trifluralin | 5.3 | 80 | 65 | 50 | [113] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Lucas, G.; Navarro, G.; Navarro, S. Understanding How Chemical Pollutants Arise and Evolve in the Brewing Supply Chain: A Scoping Review. Foods 2024, 13, 1709. https://doi.org/10.3390/foods13111709
Pérez-Lucas G, Navarro G, Navarro S. Understanding How Chemical Pollutants Arise and Evolve in the Brewing Supply Chain: A Scoping Review. Foods. 2024; 13(11):1709. https://doi.org/10.3390/foods13111709
Chicago/Turabian StylePérez-Lucas, Gabriel, Ginés Navarro, and Simón Navarro. 2024. "Understanding How Chemical Pollutants Arise and Evolve in the Brewing Supply Chain: A Scoping Review" Foods 13, no. 11: 1709. https://doi.org/10.3390/foods13111709
APA StylePérez-Lucas, G., Navarro, G., & Navarro, S. (2024). Understanding How Chemical Pollutants Arise and Evolve in the Brewing Supply Chain: A Scoping Review. Foods, 13(11), 1709. https://doi.org/10.3390/foods13111709