Exploring the Antimicrobial Efficacy of Low-Cost Commercial Disinfectants Utilized in the Agro-Food Industry Wash Tanks: Towards Enhanced Hygiene Practices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the E. coli O157:H7 Cocktail
2.2. Preparation of Process Water on a Laboratory Scale
- Temperature (°C);
- Electrical conductivity (μS/cm);
- Oxidation–reduction potential (ORP) in millivolts (mV);
- Hydrogen potential (pH);
- These parameters were measured using a multi-parameter probe (pH and redox multimeter).
2.3. Experimental Design
2.4. Quantification of Culturable E. coli O157:H7
2.5. Quantification of Total and Viable E. coli O157:H7 Counts (Thidium Monoazide (EMA) and Ropidium Monoazide (PMA) Treatment)
2.6. DNA Extraction from Process Water
2.7. qPCR Amplification
2.8. VBNC Resuscitation of E. coli O157:H7
2.9. Statistical Analysis
3. Results
3.1. Physical–Chemical Parameters of the Process Water
3.2. Levels of E. coli O157:H7 in the Process Water after Disinfection Treatments
3.2.1. Sodium Hypochlorite
3.2.2. Chlorine Dioxide
3.2.3. Peroxyacetic Acid
3.2.4. Antimicrobial Activity of Disinfection Treatments Recommended for the Agri-Food Industry
3.2.5. Resuscitation Capacity of Viable Non-Culturable Bacteria Present in the Process Water
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Sanitizer | Wash Water | COD | Sanitizer | pH | EC | ORP | Temperature |
---|---|---|---|---|---|---|---|
Matrix | (mg L−1) | (mg L−1) | (µS cm−1) | (mV) | (°C) | ||
NaClO | |||||||
Lettuce | 1068 | 21.4 | 6.50 | 2590 | 819 | 4.1 | |
Cabbage | 1042 | 19.8 | 6.84 | 2310 | 804 | 4.1 | |
Onion | 1030 | 20.2 | 6.68 | 2570 | 845 | 4.2 | |
Spinach | 332 | 21.5 | 6.73 | 2170 | 793 | 4.1 | |
ClO2 | |||||||
Lettuce | 960 | 1.8 | 5.88 | 1866 | 636 | 3.9 | |
Cabbage | 1014 | 2.68 | 6.99 | 1523 | 717 | 5.0 | |
Onion | 1106 | 1.78 | 5.85 | 1842 | 685 | 4.0 | |
Spinach | 278 | 1.93 | 6.39 | 1816 | 689 | 4.3 | |
PAA | |||||||
Lettuce | 1080 | 82 | 6.42 | 1828 | 381 | 4.2 | |
Cabbage | 996 | 79.7 | 6.13 | 1282 | 409 | 4.2 | |
Onion | 1066 | 85.6 | 6.0 | 1605 | 362 | 4.0 | |
Spinach | 340 | 79 | 6.31 | 1787 | 362 | 5.3 |
Sanitizer | Wash Water | COD | Sanitizer | pH | EC | ORP | Temperature |
---|---|---|---|---|---|---|---|
Matrix | (mg L−1) | (mg L−1) | (µS cm−1) | (mV) | (°C) | ||
NaClO | |||||||
Lettuce | 1018 | 19.9 | 6.62 | 2500 | 792 | 4.1 | |
Cabbage | 1000 | 19.1 | 6.73 | 2613 | 829 | 4.2 | |
Onion | 948 | 18.8 | 6.81 | 2795 | 829 | 4.3 | |
Spinach | 308 | 22.9 | 6.79 | 1969 | 786 | 4.6 | |
ClO2 | |||||||
Lettuce | 1000 | 2.3 | 6.99 | 1611 | 703 | 4.2 | |
Cabbage | 944 | 2.2 | 6.73 | 1621 | 705 | 4.1 | |
Onion | 968 | 2.2 | 6.82 | 1526 | 698 | 4.3 | |
Spinach | 328 | 2.2 | 6.49 | 1930 | 661 | 4.3 | |
PAA | |||||||
Lettuce | 954 | 84 | 6.18 | 1404 | 444 | 5.7 | |
Cabbage | 1180 | 81.0 | 6.3 | 1411 | 467 | 6.3 | |
Onion | 1088 | 85 | 6.07 | 1362 | 450 | 4.6 | |
Spinach | 362 | 80 | 6.34 | 1514 | 454 | 6.8 |
Acronym | Terminology Clarification |
---|---|
EMA | Ethidium of monoazide |
PMA | Propidium of monoazide |
qPR | Quantitative polymerase chain reaction |
PAA | Peroxyacetic acid |
DQO | Chemical oxygen demand |
PWW | Process wash water |
VBNC | Viable noncultivable bacteria |
FDA | Food and Drug Administration |
ClO2 | Chlorine Dioxide |
NaClO | Sodium hypochlorite |
pH | Hydrogen potential |
ORP | Potential oxidation reduction |
ppm | Parts per million |
BHI | Brain heart infusion |
DNA | Deoxyribonucleic acid |
PBS | Phosphate Buffer Saline |
TSB | Typtic Soy Broth |
μL | Micro liter |
μS | Microsiemens |
Nm | Nanometer |
mV | Milli Volt |
μm | Micrometer |
mm | Millimeter |
°C | Degree Celsius |
kg | Kilogram |
rpm | Revolutions per minute |
log | Logarithm |
UV | Ultraviolet radiation |
L | Liter |
mL | Milli liter |
gr | Gram |
mg | Milligram |
References
- Boeing, H.; Bechthold, A.; Bub, A.; Ellinger, S.; Haller, D.; Kroke, A.; Leschik-Bonnet, E.; Müller, M.J.; Oberritter, H.; Schulze, M.; et al. Critical review: Vegetables and fruit in the prevention of chronic diseases. Eur. J. Nutr. 2012, 51, 637–663. [Google Scholar] [CrossRef]
- Fulton, S.L.; McKinley, M.C.; Young, I.S.; Cardwell, C.R.; Woodside, J.V. The Effect of Increasing Fruit and Vegetable Consumption on Overall Diet: A Systematic Review and Meta-analysis. Crit. Rev. Food Sci. Nutr. 2016, 56, 802–816. [Google Scholar] [CrossRef]
- Liu, R.H. Health-promoting components of fruits and vegetables in the diet. Adv. Nutr. 2013, 4, 384S–392S. [Google Scholar] [CrossRef]
- Agudo, A.; Cabrera, L.; Amiano, P.; Ardanaz, E.; Barricarte, A.; Berenguer, T.; Chirlaque, M.D.; Miren, D.; Paula, J.; Nerea, L.; et al. Fruit and vegetable intakes, dietary antioxidant nutrients, and total mortality in Spanish adults: Findings from the Spanish cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC-Spain). Am. J. Clin. Nutr. 2007, 85, 1634–1642. [Google Scholar] [CrossRef] [PubMed]
- Rissanen, T.H.; Voutilainen, S.; Virtanen, J.K.; Venho, B.; Vanharanta, M.; Mursu, J.; Salonen, J.T. Nutritional Epidemiology Low Intake of Fruits, Berries and Vegetables Is Associated with Excess Mortality in Men: The Kuopio Ischaemic Heart Disease Risk Factor (KIHD) Study. J. Nutr. 2003, 133, 199–204. [Google Scholar] [CrossRef]
- Cao, G.; Booth, S.L.; Sadowski, J.A.; Prior, R.L. Increases in human plasma antioxidant capacity after consumption of controlled diets high in fruit and vegetables. Am. J. Clin. Nutr. 1998, 68, 1081–1087. [Google Scholar] [CrossRef] [PubMed]
- Ministerio de Agricultura Pesca y Alimentacion. Informe del consumo alimentario en España. 2022. Available online: https://www.mapa.gob.es/es/alimentacion/temas/consumo-tendencias/informe-consumo-2022-baja-res_tcm30-655390.pdf (accessed on 28 April 2024).
- Olaimat, A.N.; Holley, R.A. Factors influencing the microbial safety of fresh produce: A review. Food Microbiol. 2012, 32, 1–19. [Google Scholar] [CrossRef]
- Sharapov, U.M.; Wendel, A.M.; Davis, J.P.; Keene, W.E.; Farrar, J.; Sodha, S.; Hyytia-Trees, E.; Leeper, M.; Gerner-Smidt, P.; Griffin, P.M.; et al. Multistate outbreak of Escherichia coli O157:H7 infections associated with consumption of fresh spinach: United States, 2006. J. Food Prot. 2016, 79, 2024–2030. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Guidance for Industry Guide to Minimize Microbial Food Safety Hazards for Fresh Fruits and Vegetables. 2008. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-guide-minimize-microbial-food-safety-hazards-fresh-fruits-and-vegetables (accessed on 28 April 2024).
- Gombas, D.; Luo, Y.; Brennan, J.; Shergill, G.; Petran, R.; Walsh, R.; Hau, H.; Khurana, K.; Zomorodi, B.; Rosen, J.; et al. Guidelines to validate control of cross-contamination during washing of fresh-cut leafy vegetables. J. Food Prot. 2017, 80, 312–330. [Google Scholar] [CrossRef]
- Leneveu-Jenvrin, C.; Charles, F.; Barba, F.J.; Remize, F. Role of biological control agents and physical treatments in maintaining the quality of fresh and minimally-processed fruit and vegetables. Crit. Rev. Food Sci. Nutr. 2020, 60, 2837–2855. [Google Scholar] [CrossRef]
- Gil, M.I.; Selma, M.V.; López-Gálvez, F.; Allende, A. Fresh-cut product sanitation and wash water disinfection: Problems and solutions. Int. J. Food Microbiol. 2009, 134, 37–45. [Google Scholar] [CrossRef]
- Holvoet, K.; De Keuckelaere, A.; Sampers, I.; Van Haute, S.; Stals, A.; Uyttendaele, M. Quantitative study of cross-contamination with Escherichia coli, E. coli O157, MS2 phage and murine norovirus in a simulated fresh-cut lettuce wash process. Food Control 2009, 37, 218–227. [Google Scholar] [CrossRef]
- Van Haute, S.; López-Gálvez, F.; Gómez-López, V.; Eriksson, M.; Devlieghere, F.; Allende, A.; Sampers, I. Methodology for modeling the disinfection efficiency of fresh-cut leafy vegetables wash water applied on peracetic acid combined with lactic acid. Int. J. Food Microbiol. 2015, 208, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Gil, M.I.; Selma, M.V.; Suslow, T.; Jacxsens, L.; Uyttendaele, M.; Allende, A. Pre- and Postharvest Preventive Measures and Intervention Strategies to Control Microbial Food Safety Hazards of Fresh Leafy Vegetables. Crit. Rev. Food Sci. Nutr. 2015, 55, 453–468. [Google Scholar] [CrossRef] [PubMed]
- Mota, J.D.O.; Kooh, P.; Jaffrès, E.; Prévost, H.; Maignien, T.; Arnich, N.; Sanaa, M.; Boué, G.; Federighi, M. First Survey about Current Practices of Environmental Monitoring Programs within French Agri-Food Industries. Biology 2022, 11, 89. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Ning, J.; Ahmed, S.; Huang, J.; Ullah, R.; An, B.; Hao, H.; Dai, M.; Huang, L.; Wang, X.; et al. Selection and dissemination of antimicrobial resistance in Agri-food production. Antimicrob. Resist. Infect. Control 2019, 8, 158. [Google Scholar] [CrossRef] [PubMed]
- Reisman, E. Sanitizing agri-food tech: COVID-19 and the politics of expectation. J. Peasant. Stud. 2021, 48, 910–933. [Google Scholar] [CrossRef]
- Wicaksono, T.; Hossain, M.B.; Illés, C.B. Prioritizing business quality improvement of fresh agri-food SMEs through open innovation to survive the pandemic: A QFD-based model. J. Open Innov. Technol. Mark. Complex. 2021, 7, 156. [Google Scholar] [CrossRef]
- Viles, E.; Santos, J.; Muñoz-Villamizar, A.; Grau, P.; Fernández-Arévalo, T. Lean–green improvement opportunities for sustainable manufacturing using water telemetry in agri-food industry. Sustainability 2021, 13, 2240. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Samanta, I. Antimicrobial resistance in agri-food chain and companion animals as a re-emerging menace in post-COVID epoch: Low-and middle-income countries perspective and mitigation strategies. Front. Vet. Sci. 2020, 7, 620. [Google Scholar] [CrossRef]
- Trivedi, R.; Upadhyay, T.K.; Khan, F.; Pandey, P.; Kaushal, R.S.; Sonkar, M.; Kumar, D.; Saeed, M.; Khandaker, M.U.; Emran, T.B.; et al. Innovative strategies to manage polluted aquatic ecosystem and agri-food waste for circular economy. Environ. Nanotechnol. Monit. Manag. 2024, 21, 100928. [Google Scholar] [CrossRef]
- Zhu, X.; Das, R.S.; Bhavya, M.L.; Garcia-Vaquero, M.; Tiwari, B.K. Acoustic cavitation for agri-food applications: Mechanism of action, design of new systems, challenges and strategies for scale-up. Ultrason. Sonochem. 2024, 105, 106850. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Vazquez-Noguerol, M.; Liu, S.; Prado-Prado, J.C. Agri-food supply chain resilience strategies for preparing, responding, recovering, and adapting in relation to unexpected crisis: A cross-country comparative analysis from the COVID-19 pandemic. J. Bus. Logist. 2024, 45, e12361. [Google Scholar] [CrossRef]
- Tudela, J.A.; López-Gálvez, F.; Allende, A.; Gil, M.I. Chlorination management in commercial fresh produce processing lines. Food Control 2019, 106, 106760. [Google Scholar] [CrossRef]
- López-Gálvez, F.; Gil, M.I. La importancia del agua en la industria de alimentos vegetales. Arbor 2020, 196, e547. [Google Scholar] [CrossRef]
- Banach, J.L.; Sampers, I.; Van Haute, S.; van der Fels-Klerx, H.J. Effect of Disinfectants on Preventing the Cross-Contamination of Pathogens in Fresh Produce Washing Water. Int. J. Environ. Res. Public Health 2015, 12, 8658–8677. [Google Scholar] [CrossRef] [PubMed]
- Joshi, K.; Mahendran, R.; Alagusundaram, K.; Norton, T.; Tiwari, B.K. Novel disinfectants for fresh produce. Trends Food Sci. Technol. 2013, 34, 54–61. [Google Scholar] [CrossRef]
- Garrido, Y.; Marín, A.; Tudela, J.A.; Allende, A.; Gil, M.I. Chlorate uptake during washing is influenced by product type and cut piece size, as well as washing time and wash water content. Postharvest Biol. Technol. 2019, 151, 45–52. [Google Scholar] [CrossRef]
- Manzocco, L.; Ignat, A.; Anese, M.; Bot, F.; Calligaris, S.; Valoppi, F.; Nicoli, M.C. Efficient management of the water resource in the fresh-cut industry: Current status and perspectives. Trends Food Sci. Technol. 2015, 46, 286–294. [Google Scholar] [CrossRef]
- Kettlitz, B.; Kemendi, G.; Thorgrimsson, N.; Cattoor, N.; Verzegnassi, L.; Le Bail-Collet, Y.; Maphosa, F.; Perrichet, A.; Christall, B.; Stadler, R.H. Why chlorate occurs in potable water and processed foods: A critical assessment and challenges faced by the food industry. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2016, 33, 968–982. [Google Scholar] [CrossRef]
- Tomás-Callejas, A.; López-Gálvez, F.; Sbodio, A.; Artés, F.; Artés-Hernández, F.; Suslow, T.V. Chlorine dioxide and chlorine effectiveness to prevent Escherichia coli O157:H7 and Salmonella cross-contamination on fresh-cut Red Chard. Food Control 2012, 23, 325–332. [Google Scholar] [CrossRef]
- Gómez-López, V.M.; Lannoo, A.S.; Gil, M.I.; Allende, A. Minimum free chlorine residual level required for the inactivation of Escherichia coli O157:H7 and trihalomethane generation during dynamic washing of fresh-cut spinach. Food Control 2014, 42, 132–138. [Google Scholar] [CrossRef]
- Luo, Y.; Zhou, B.; Van Haute, S.; Nou, X.; Zhang, B.; Teng, Z.; Turner, E.R.; Wang, Q.; Millner, P.D. Association between bacterial survival and free chlorine concentration during commercial fresh-cut produce wash operation. Food Microbiol. 2018, 70, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, B.S.M.; Vaidya, N.A.; Corvalan, C.M.; Linton, R.H. Inactivation kinetics of inoculated Escherichia coli O157:H7, Listeria monocytogenes and Salmonella Poona on whole cantaloupe by chlorine dioxide gas. Food Microbiol. 2008, 25, 857–865. [Google Scholar] [CrossRef] [PubMed]
- Ridenour, G.M.; Ingols, R.S. Bactericidal Properties of Chlorine Dioxide. Available online: https://www.jstor.org/stable/23349269 (accessed on 5 April 2024).
- Gu, G.; Bolten, S.; Mowery, J.; Luo, Y.; Gulbronson, C.; Nou, X. Susceptibility of foodborne pathogens to sanitizers in produce rinse water and potential induction of viable but non-culturable state. Food Control 2020, 112, 107138. [Google Scholar] [CrossRef]
- Banach, J.L.; van Overbeek, L.S.; Groot, M.N.N.; van der Zouwen, P.S.; van der Fels-Klerx, H.J. Efficacy of chlorine dioxide on Escherichia coli inactivation during pilot-scale fresh-cut lettuce processing. Int. J. Food Microbiol. 2018, 269, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Artés, F.; Gómez, P.; Aguayo, E.; Escalona, V.; Artés-Hernández, F. Sustainable sanitation techniques for keeping quality and safety of fresh-cut plant commodities. Postharvest Biol. Technol. 2009, 51, 287–296. [Google Scholar] [CrossRef]
- Parish, M.E.; Beuchat, L.R.; Suslow, T.V.; Harris, L.J.; Garrett, E.H.; Farber, J.N.; Busta, F.F. Methods to Reduce/Eliminate Pathogens from Fresh and Fresh-Cut Produce. Compr. Rev. Food Sci. Food Saf. 2003, 2 (Suppl. S1), 161–173. [Google Scholar] [CrossRef]
- van Haute, S.; Sampers, I.; Jacxsens, L.; Uyttendaele, M. Selection criteria for water disinfection techniques in agricultural practices. Crit. Rev. Food Sci. Nutr. 2015, 55, 1529–1551. [Google Scholar] [CrossRef]
- Dong, K.; Pan, H.; Yang, D.; Rao, L.; Zhao, L.; Wang, Y.; Liao, X. Induction, detection, formation, and resuscitation of viable but non-culturable state microorganisms. Compr. Rev. Food Sci. Food Saf. 2020, 19, 149–183. [Google Scholar] [CrossRef]
- Baffone, W.; Citterio, B.; Vittoria, E.; Casaroli, A.; Campana, R.; Falzano, L.; Donelli, G. Retention of virulence in viable but non-culturable halophilic Vibrio spp. Int. J. Food Microbiol. 2003, 89, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Wang, Y.; An, H.; Hao, Y.; Hu, X.; Liao, X. New Insights into the Formation of Viable but Nonculturable Escherichia coli O157:H7 Induced by High-Pressure CO2. mBio 2016, 7, e00961-16. [Google Scholar] [CrossRef] [PubMed]
- Oliver, J.D. Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol. Rev. 2010, 34, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Truchado, P.; Gil, M.I.; Kostic, T.; Allende, A. Optimization and validation of a PMA qPCR method for Escherichia coli quantification in primary production. Food Control 2016, 62, 150–156. [Google Scholar] [CrossRef]
- Gensberger, E.T.; Polt, M.; Konrad-Köszler, M.; Kinner, P.; Sessitsch, A.; Kostić, T. Evaluation of quantitative PCR combined with PMA treatment for molecular assessment of microbial water quality. Water Res. 2014, 67, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Nocker, A.; Camper, A.K. Novel approaches toward preferential detection of viable cells using nucleic acid amplification techniques. FEMS Microbiol. Lett. 2009, 291, 137–142. [Google Scholar] [CrossRef]
- Truchado, P.; Gil, M.I.; Larrosa, M.; Allende, A. Detection and Quantification Methods for Viable but Non-culturable (VBNC) Cells in Process Wash Water of Fresh-Cut Produce: Industrial Validation. Front. Microbiol. 2020, 11, 527470. [Google Scholar] [CrossRef]
- Van Haute, S.; Tryland, I.; Escudero, C.; Vanneste, M.; Sampers, I. Chlorine dioxide as water disinfectant during fresh-cut iceberg lettuce washing: Disinfectant demand, disinfection efficiency, and chlorite formation. LWT 2017, 75, 301–304. [Google Scholar] [CrossRef]
- Helbling, D.E.; VanBriesen, J.M. Free Chlorine Demand and Cell Survival of Microbial Suspensions. Water Res. 2007, 41, 4424–4434. [Google Scholar] [CrossRef]
- Lin, H.; Ye, C.; Chen, S.; Zhang, S.; Yu, X. Viable but non-culturable E. coli induced by low level chlorination have higher persistence to antibiotics than their culturable counterparts. Environ. Pollut. 2017, 230, 242–249. [Google Scholar] [CrossRef]
- Bommer, A.; Böhler, O.; Johannsen, E.; Dobrindt, U.; Kuczius, T. Effect of chlorine on cultivability of Shiga toxin producing Escherichia coli (STEC) and β-lactamase genes carrying E. coli and Pseudomonas aeruginosa. Int. J. Med. Microbiol. 2018, 308, 1105–1112. [Google Scholar] [CrossRef] [PubMed]
- Truchado, P.; Gil, M.I.; Allende, A. Peroxyacetic acid and chlorine dioxide unlike chlorine induce viable but non-culturable (VBNC) stage of Listeria monocytogenes and Escherichia coli O157:H7 in wash water. Food Microbiol. 2021, 100, 103866. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, C.; Tyrrell, G.; Hrudey, S.E.; Li, X.F. Induction of Escherichia coli O157:H7 into the viable but non-culturable state by chloraminated water and river water, and subsequent resuscitation. Environ. Microbiol. Rep. 2009, 1, 155–161. [Google Scholar] [CrossRef] [PubMed]
- JTaylor, H.; Rogers, S.J.; Holah, J.T. A comparison of the bactericidal efficacy of 18 disinfectants used in the food industry against Escherichia coli O157:H7 and Pseudomonas aeruginosa at 10 and 20 °C. J. Appl. Microbiol. 1999, 87, 718–725. [Google Scholar] [CrossRef] [PubMed]
- Bang, J.; Hong, A.; Kim, H.; Beuchat, L.R.; Rhee, M.S.; Kim, Y.; Ryu, J.-H. Inactivation of Escherichia coli O157:H7 in biofilm on food-contact surfaces by sequential treatments of aqueous chlorine dioxide and drying. Int. J. Food Microbiol. 2014, 191, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Afari, G.K.; Hung, Y.C. Detection and Verification of the Viable but Nonculturable (VBNC) State of Escherichia coli O157:H7 and Listeria monocytogenes Using Flow Cytometry and Standard Plating. J. Food Sci. 2018, 83, 1913–1920. [Google Scholar] [CrossRef] [PubMed]
- Bridges, D.F.; Lacombe, A.; Wu, V.C.H. Integrity of the Escherichia coli O157:H7 Cell Wall and Membranes After Chlorine Dioxide Treatment. Front. Microbiol. 2020, 11, 532441. [Google Scholar] [CrossRef] [PubMed]
- Visvalingam, J.; Holley, R.A. Evaluation of chlorine dioxide, acidified sodium chlorite and peroxyacetic acid for control of Escherichia coli O157:H7 in beef patties from treated beef trim. Food Res. Int. 2018, 103, 295–300. [Google Scholar] [CrossRef]
- Bridges, D.F.; Lacombe, A.; Wu, V.C.H. Fundamental Differences in Inactivation Mechanisms of Escherichia coli O157:H7 Between Chlorine Dioxide and Sodium Hypochlorite. Front. Microbiol. 2022, 13, 923964. [Google Scholar] [CrossRef]
- Highmore, C.J.; Warner, J.C.; Rothwell, S.D.; Wilks, S.A.; Keevil, C.W. Viable-but-Nonculturable Listeria monocytogenes and Salmonella enterica Serovar Thompson Induced by Chlorine Stress Remain Infectious. mBio 2018, 9, e00540-18. [Google Scholar] [CrossRef]
- Cappelier, J.M.; Besnard, V.; Roche, S.M.; Velge, P.; Federighi, M. Avirulent viable but non culturable cells of Listeria monocytogenes need the presence of an embryo to be recovered in egg yolk and regain virulence after recovery. Vet. Res. 2007, 38, 573–583. [Google Scholar] [CrossRef]
- Dinu, L.D.; Bach, S. Induction of viable but nonculturable Escherichia coli O157:H7 in the phyllosphere of lettuce: A food safety risk factor. Appl. Environ. Microbiol. 2011, 77, 8295–8302. [Google Scholar] [CrossRef]
- Decol, L.T.; López-Gálvez, F.; Truchado, P.; Tondo, E.C.; Gil, M.I.; Allende, A. Suitability of chlorine dioxide as a tertiary treatment for municipal wastewater and use of reclaimed water for overhead irrigation of baby lettuce. Food Control 2019, 96, 186–193. [Google Scholar] [CrossRef]
- Banach, J.L.; van Bokhorst-van de Veen, H.; van Overbeek, L.S.; van der Zouwen, P.S.; Zwietering, M.H.; van der Fels-Klerx, H.J. Effectiveness of a peracetic acid solution on Escherichia coli reduction during fresh-cut lettuce processing at the laboratory and industrial scales. Int. J. Food Microbiol. 2020, 321, 108537. [Google Scholar] [CrossRef] [PubMed]
- Hilgren, J.; Swanson, K.M.J.; Diez-Gonzalez, F.; Cords, B. Inactivation of Bacillus anthracis Spores by Liquid Biocides in the Presence of Food Residue. Appl. Environ. Microbiol. 2007, 73, 6370. [Google Scholar] [CrossRef]
- Fatemi, P.; Frank, J.F. Inactivation of Listeria monocytogenes/Pseudomonas biofilms by peracid sanitizers. J. Food Prot. 1999, 62, 761–765. [Google Scholar] [CrossRef] [PubMed]
- Keskinen, L.A.; Todd, E.C.D.; Ryser, E.T. Impact of bacterial stress and biofilm-forming ability on transfer of surface-dried Listeria monocytogenes during slicing of delicatessen meats. Int. J. Food Microbiol. 2008, 127, 298–304. [Google Scholar] [CrossRef]
- Oliver, J.D.; Dagher, M.; Linden, K. Induction of Escherichia coli and Salmonella typhimurium into the viable but nonculturable state following chlorination of wastewater. J. Water Health 2005, 3, 249–257. [Google Scholar] [CrossRef]
- Zhang, S.; Ye, C.; Lin, H.; Lv, L.; Yu, X. UV Disinfection Induces a Vbnc State in Escherichia coli and Pseudomonas Aeruginosa. Environ. Sci. Technol. 2015, 49, 1721–1728. [Google Scholar] [CrossRef]
- Chen, S.; Li, X.; Wang, Y.; Zeng, J.; Ye, C.; Li, X.; Guo, L.; Zhang, S.; Yu, X. Induction of Escherichia coli into a VBNC state through chlorination/chloramination and differences in characteristics of the bacterium between states. Water Res. 2018, 142, 279–288. [Google Scholar] [CrossRef]
- Pinto, D.; Santos, M.A.; Chambel, L. Thirty years of viable but nonculturable state research: Unsolved molecular mechanisms. Crit. Rev. Microbiol. 2015, 41, 61–76. [Google Scholar] [CrossRef] [PubMed]
- Ordax, M.; Biosca, E.G.; Wimalajeewa, S.C.; López, M.M.; Marco-Noales, E. Survival of Erwinia amylovora in mature apple fruit calyces through the viable but nonculturable (VBNC) state. J. Appl. Microbiol. 2009, 107, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Guo, L.; Yang, K.; Zhang, Y.; Ye, C.; Chen, S.; Yu, X.; Huang, W.E.; Cui, L. Induction of Escherichia Coli into a VBNC State by Continuous-Flow UVC and Subsequent Changes in Metabolic Activity at the Single-Cell Level. Front. Microbiol. 2018, 9, 390353. [Google Scholar] [CrossRef]
- Zhu, L.; Shuai, X.; Xu, L.; Sun, Y.; Lin, Z.; Zhou, Z.; Meng, L.; Chen, H. Mechanisms Underlying the Effect of Chlorination and UV Disinfection on VBNC State Escherichia Coli Isolated from Hospital Wastewater. J. Hazard. Mater. 2022, 423, 127228. [Google Scholar] [CrossRef] [PubMed]
- Pinto, D.; Almeida, V.; Santos, M.A.; Chambel, L.M.M. Resuscitation of Escherichia coli VBNC cells depends on a variety of environmental or chemical stimuli. J. Appl. Microbiol. 2011, 110, 1601–1611. [Google Scholar] [CrossRef] [PubMed]
- Senoh, M.; Ghosh-Banerjee, J.; Ramamurthy, T.; Hamabata, T.; Kurakawa, T.; Takeda, M.; Colwell, R.R.; Nair, G.B.; Takeda, Y. Conversion of viable but nonculturable Vibrio cholerae to the culturable state by co-culture with eukaryotic cells. Microbiol. Immunol. 2010, 54, 502–507. [Google Scholar] [CrossRef]
- Said, M.B.; Saad, M.B.; Achouri, F.; Bousselmi, L.; Ghrabi, A. The application of phage reactivation capacity to sens bacterial viability and activity after photocatalytic treatment. Environ. Technol. 2021, 42, 2836–2844. [Google Scholar] [CrossRef]
Process Water Matrix | COD mg/L |
---|---|
Lettuce | 3835.0 |
Cabbage | 6412.5 |
Onion | 5972.5 |
Spinach | 1002.5 |
PWW | Disinfectant (Log Cells/100 mL) | ||||||||
---|---|---|---|---|---|---|---|---|---|
NaClO | s | σ | ClO2 | s | σ | PAA | s | σ | |
Lettuce | −6.94 ± 0.80 | a | 0.80 | −0.48 ± 0.75 | b | 0.75 | −0.42 ± 0.45 | a | 0.45 |
Cabbage | −6.99 ± 0.52 | a | 0.74 | −1.00 ± 0.02 | a | 1.11 | −0.97 ± 0.02 | a | 0.25 |
Onion | −6.74 ± 0.74 | a | 0.52 | −0.73 ± 1.11 | a | 0.02 | −1.36 ± 0.25 | a | 0.02 |
Spinach | −6.83 ± 0.67 | a | 0.67 | −0.36 ± 0.38 | b | 0.38 | −1.00 ± 0.23 | a | 0.23 |
Source | df | sum_sq | mean_sq | F | PR (>F) |
---|---|---|---|---|---|
Treatment | 2.0 | 15.5274 | 7.7637 | 10.8842 | 0.000046 |
Residual | 119 | 84.8828 | 0.7133 |
Treatment 1 | Treatment 2 | Mean Difference | p-Value | Confidence Interval (Lower) | Confidence Interval (Higher) | Reject H0 |
---|---|---|---|---|---|---|
ClO2 | NaClO | −0.3556 | 0.0021 | −0.5869 | −0.1242 | * |
ClO2 | PAA | −0.2588 | 0.0354 | −0.5006 | −0.0169 | * |
NaClO | PAA | 0.0968 | 0.6549 | −0.1455 | 0.3391 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chalen-Moreano, F.; Saeteros-Hernández, A.; Abdo-Peralta, P.; Frey, C.; Peralta-Saa, L.O.; Hernández-Allauca, A.D.; Rosero-Erazo, C.R.; Toulkeridis, T. Exploring the Antimicrobial Efficacy of Low-Cost Commercial Disinfectants Utilized in the Agro-Food Industry Wash Tanks: Towards Enhanced Hygiene Practices. Foods 2024, 13, 1915. https://doi.org/10.3390/foods13121915
Chalen-Moreano F, Saeteros-Hernández A, Abdo-Peralta P, Frey C, Peralta-Saa LO, Hernández-Allauca AD, Rosero-Erazo CR, Toulkeridis T. Exploring the Antimicrobial Efficacy of Low-Cost Commercial Disinfectants Utilized in the Agro-Food Industry Wash Tanks: Towards Enhanced Hygiene Practices. Foods. 2024; 13(12):1915. https://doi.org/10.3390/foods13121915
Chicago/Turabian StyleChalen-Moreano, Francisco, Angélica Saeteros-Hernández, Paula Abdo-Peralta, Catherine Frey, Lilia Ofir Peralta-Saa, Andrea Damaris Hernández-Allauca, Carlos Rolando Rosero-Erazo, and Theofilos Toulkeridis. 2024. "Exploring the Antimicrobial Efficacy of Low-Cost Commercial Disinfectants Utilized in the Agro-Food Industry Wash Tanks: Towards Enhanced Hygiene Practices" Foods 13, no. 12: 1915. https://doi.org/10.3390/foods13121915
APA StyleChalen-Moreano, F., Saeteros-Hernández, A., Abdo-Peralta, P., Frey, C., Peralta-Saa, L. O., Hernández-Allauca, A. D., Rosero-Erazo, C. R., & Toulkeridis, T. (2024). Exploring the Antimicrobial Efficacy of Low-Cost Commercial Disinfectants Utilized in the Agro-Food Industry Wash Tanks: Towards Enhanced Hygiene Practices. Foods, 13(12), 1915. https://doi.org/10.3390/foods13121915