Plant-Based Alternatives to Mold-Ripened Cheeses as an Innovation among Dairy Analogues
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Biological Material
2.3. Culture Media
2.4. Microorganism Culture Conditions and Evaluation of Medium Composition on Their Growth
2.5. Plant-Based Camembert Cheese Analogues Preparation
2.6. Physicochemical Analysis of Plant-Based Camembert Cheese Alternatives
2.7. Determination of Total Acidity Content of Plant-Based Camembert Cheese Alternatives
2.8. Organoleptic Analysis of Plant-Based Camembert Cheese Alternatives
2.9. Statistical Analysis
3. Results
3.1. Evaluation of Survival and Growth of Selected Strains of LAB and Molds in Vegan Media
3.2. Development of a Formulation for a Plant Analogue of Mold-Ripened Cheese
3.3. Physicochemical Analysis of Selected Plant-Based Camembert Cheese Alternatives
3.4. Fortification of Camembert Cheese Plant Analogues with Calcium Correlated to Composition of Basic Elements
3.5. Organoleptic Analysis of Plant-Based Camembert Cheese Alternatives
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sethi, S.; Tyagi, S.K.; Anurag, R.K. Plant-Based Milk Alternatives an Emerging Segment of Functional Beverages: A Review. J. Food Sci. Technol. 2016, 53, 3408–3423. [Google Scholar] [CrossRef]
- Shurtleff, W.; Aoyagi, A. Early History of Soybeans and Soyfoods Worldwide (1024 BCE to 1899): Extensively Annotated Bibliography and Sourcebook; Soyinfo Center: Lafayette, CA, USA, 2014; ISBN 9781948436342. [Google Scholar]
- Mäkinen, O.E.; Wanhalinna, V.; Zannini, E.; Arendt, E.K. Foods for Special Dietary Needs: Non-Dairy Plant-Based Milk Substitutes and Fermented Dairy-Type Products. Crit. Rev. Food Sci. Nutr. 2016, 56, 339–349. [Google Scholar] [CrossRef]
- Jeske, S.; Zannini, E.; Arendt, E.K. Evaluation of Physicochemical and Glycaemic Properties of Commercial Plant-Based Milk Substitutes. Plant Foods Hum. Nutr. 2017, 72, 26–33. [Google Scholar] [CrossRef]
- Kamath, R.; Basak, S.; Gokhale, J. Recent Trends in the Development of Healthy and Functional Cheese Analogueues-a Review. Lebenson. Wiss. Technol. 2022, 155, 112991. [Google Scholar] [CrossRef]
- Lee, J.J.; Srebot, S.; Ahmed, M.; Mulligan, C.; Hu, G.; L’Abbé, M.R. Nutritional Quality and Price of Plant-based Dairy and Meat Analogues in the Canadian Food Supply System. J. Food Sci. 2023, 88, 3594–3606. [Google Scholar] [CrossRef]
- Pua, A.; Tang, V.C.Y.; Goh, R.M.V.; Sun, J.; Lassabliere, B.; Liu, S.Q. Ingredients, Processing, and Fermentation: Addressing the Organoleptic Boundaries of Plant-Based Dairy Analogues. Foods 2022, 11, 875. [Google Scholar] [CrossRef]
- Mäkinen, O.E.; Uniacke-Lowe, T.; O’Mahony, J.A.; Arendt, E.K. Physicochemical and Acid Gelation Properties of Commercial UHT-Treated Plant-Based Milk Substitutes and Lactose Free Bovine Milk. Food Chem. 2015, 168, 630–638. [Google Scholar] [CrossRef]
- Reyes-Jurado, F.; Soto-Reyes, N.; Dávila-Rodríguez, M.; Lorenzo-Leal, A.C.; Jiménez-Munguía, M.T.; Mani-López, E.; López-Malo, A. Plant-Based Milk Alternatives: Types, Processes, Benefits, and Characteristics. Food Rev. Int. 2023, 39, 2320–2351. [Google Scholar] [CrossRef]
- Mitek, M.; Słowiński, M. (Eds.) Wybrane Zagadnienia z Technologii Żywności; Warsaw University of Life Sciences: Warsaw, Poland, 2006. (In Polish) [Google Scholar]
- Batty, D.; Meunier-Goddik, L.; Waite-Cusic, J.G. Camembert-Type Cheese Quality and Safety Implications in Relation to the Timing of High-Pressure Processing during Aging. J. Dairy Sci. 2019, 102, 8721–8733. [Google Scholar] [CrossRef]
- Mane, A.; McSweeney, P.L.H. Proteolysis in Irish Farmhouse Camembert Cheese during Ripening. J. Food Biochem. 2020, 44, e13101. [Google Scholar] [CrossRef]
- Lessard, M.-H.; Viel, C.; Boyle, B.; St-Gelais, D.; Labrie, S. Metatranscriptome Analysis of Fungal Strains Penicillium camemberti and Geotrichum candidum reveal Cheese Matrix Breakdown and Potential Development of Sensory Properties of Ripened Camembert-Type Cheese. BMC Genomics 2014, 15, 235. [Google Scholar] [CrossRef] [PubMed]
- Hilbig, J.; Ma, Q.; Davidson, P.M.; Weiss, J.; Zhong, Q. Physical and Antimicrobial Properties of Cinnamon Bark Oil Co-Nanoemulsified by Lauric Arginate and Tween 80. Int. J. Food Microbiol. 2016, 233, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Łepecka, A.; Okoń, A.; Szymański, P.; Zielińska, D.; Kajak-Siemaszko, K.; Jaworska, D.; Neffe-Skocińska, K.; Sionek, B.; Trząskowska, M.; Kołożyn-Krajewska, D.; et al. The Use of Unique, Environmental Lactic Acid Bacteria Strains in the Traditional Production of Organic Cheeses from Unpasteurized Cow’s Milk. Molecules 2022, 27, 1097. [Google Scholar] [CrossRef] [PubMed]
- de Godoy Alves Filho, E.; Rodrigues, T.H.S.; Fernandes, F.A.N.; Pereira, A.L.F.; Narain, N.; de Brito, E.S.; Rodrigues, S. Chemometric Evaluation of the Volatile Profile of Probiotic Melon and Probiotic Cashew Juice. Food Res. Int. 2017, 99, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Parecha, D.; Alfano, A.; Cimini, D.; Schiraldi, C. Vegan Grade Medium Component Screening and Concentration Optimization for the Fermentation of the Probiotic Strain Lactobacillus Paracasei IMC 502® Using Design of Experiments. J. Ind. Microbiol. Biotechnol. 2024, 51, kuae016. [Google Scholar] [CrossRef]
- Ayu, B.T.; Chamnipa, N.; Apiraksakorn, J. The Potential of an Inexpensive Plant-Based Medium for Halal and Vegetarian Starter Culture Preparation. Fermentation 2023, 9, 216. [Google Scholar] [CrossRef]
- Elsawey, H.; Patz, S.; Nemr, R.A.; Sarhan, M.S.; Hamza, M.A.; Youssef, H.H.; Abdelfadeel, M.R.; Daanaa, H.-S.A.; El-Tahan, M.; Abbas, M.; et al. Plant Broth- (Not Bovine-) Based Culture Media Provide the Most Compatible Vegan Nutrition for In Vitro Culturing and In Situ Probing of Plant Microbiota. Divers 2020, 12, 418. [Google Scholar] [CrossRef]
- Souza Filho, P.F.; Nair, R.B.; Andersson, D.; Lennartsson, P.R.; Taherzadeh, M.J. Vegan-Mycoprotein Concentrate from Pea-Processing Industry Byproduct Using Edible Filamentous Fungi. Fungal Biol. Biotechnol. 2018, 5, 5. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Bravo, P.; Noguera-Artiaga, L.; Carbonell-Barrachina, Á.A.; Sendra, E. Fermented Beverage Obtained from hydrosustainable Pistachios. J. Food Sci. 2020, 85, 3601–3610. [Google Scholar] [CrossRef] [PubMed]
- Łopusiewicz, Ł.; Drozłowska, E.; Tarnowiecka-Kuca, A.; Bartkowiak, A.; Mazurkiewicz-Zapałowicz, K.; Salachna, P. Biotransformation of Flaxseed Oil Cake into Bioactive Camembert-Analog Using Lactic Acid BacteriaLAB, Penicillium camemberti and Geotrichum candidum. Microorganisms 2020, 8, 1266. [Google Scholar] [CrossRef]
- Mattison, C.P.; Aryana, K.J.; Clermont, K.; Prestenburg, E.; Lloyd, S.W.; Grimm, C.C.; Wasserman, R.L. Microbiological, Physicochemical, and Immunological Analysis of a Commercial Cashew Nut-Based Yogurt. Int. J. Mol. Sci. 2020, 21, 8267. [Google Scholar] [CrossRef] [PubMed]
- Peterlik, M.; Cross, H.S. Vitamin D and Calcium Deficits Predispose for Multiple Chronic Diseases. Eur. J. Clin. Investig. 2005, 35, 290–304. [Google Scholar] [CrossRef] [PubMed]
- Schlangen, M.; Ribberink, M.A.; Taghian Dinani, S.; Sagis, L.M.C.; van der Goot, A.J. Mechanical and Rheological Effects of Transglutaminase Treatment on Dense Plant Protein Blends. Food Hydrocoll. 2023, 136, 108261. [Google Scholar] [CrossRef]
- Chen, Y.; Lan, D.; Wang, W.; Zhang, W.; Wang, Y. Effect of Transglutaminase-Catalyzed Crosslinking Behavior on the Quality Characteristics of Plant-Based Burger Patties: A Comparative Study with Methylcellulose. Food Chem. 2023, 428, 136754. [Google Scholar] [CrossRef] [PubMed]
- Venkatachalam, M.; Sathe, S.K. Chemical Composition of Selected Edible Nut Seeds. J. Agric. Food Chem. 2006, 54, 4705–4714. [Google Scholar] [CrossRef]
- Redan, B.W.; Zuklic, J.; Hryshko, J.; Boyer, M.; Wan, J.; Sandhu, A.; Jackson, L.S. Analysis of Eight Types of Plant-Based Milk Alternatives from the United States Market for Target Minerals and Trace Elements. J. Food Compost. Anal. 2023, 122, 105457. [Google Scholar] [CrossRef]
- Harmankaya, M.; Özcan, M.M.; AL Juhaimi, F. Mineral Contents and Proximate Composition of Pistacia Vera Kernels. Environ. Monit. Assess. 2014, 186, 4217–4221. [Google Scholar] [CrossRef] [PubMed]
- Tošić, S.B.; Mitić, S.S.; Velimirović, D.S.; Stojanović, G.S.; Pavlović, A.N.; Pecev-Marinković, E.T. Elemental Composition of Edible Nuts: Fast Optimization and Validation Procedure of an ICP-OES Method. J. Sci. Food Agric. 2015, 95, 2271–2278. [Google Scholar] [CrossRef] [PubMed]
- Akbaba, U.; Şahin, Y.; Türkez, H. Element Content Analysis by WDXRF in Pistachios Grown under Organic and Conventional Farming Regimes for Human Nutrition and Health. Toxicol. Ind. Health 2012, 28, 783–788. [Google Scholar] [CrossRef] [PubMed]
- Sultana, S.; Bell, R.W.; Vance, W.H. Genotypic Variation among Chickpea and Wild Cicer Spp. in Nutrient Uptake with Increasing Concentration of Solution Al at Low pH. Plant Physiol. Biochem. 2020, 157, 390–401. [Google Scholar] [CrossRef]
No. | Plant Base | Plant Base: Water Ratio |
---|---|---|
1 | 100% Cashew nuts | 1:1 |
2 | 100% Pistachio nuts | 3:2 |
3 | 100% Pea protein | 1:3 |
4 | 100% Hemp protein | 1:1 |
5 | 50% Pumpkin protein + 50% pea protein | 2:3 |
6 | 100% Soy flour | 1:1 |
7 | 100% Chickpea flour | 1:1 |
8 | 70% Cashew nuts + 30% soy flour | 1:1 |
9 | 70% Cashew nuts + 30% soy flour + 0.5% spirulina powder | 1:1 |
Plant Base | Bacterial Starter Culture 1 | Mold Starter Culture 2 | LAB (log CFU/cm3) | Molds (log CFU/cm3) |
---|---|---|---|---|
100% Cashews | M | P | 9.19 ± 0.20 | 5.27 ± 0.14 |
100% Pistachios | M | P | 9.18 ± 0.10 | 6.65 ± 0.13 |
100% Pea protein | M | G | 8.77 ± 0.15 | 4.11 ± 0.23 |
50% Pumpkin protein + 50% pea protein | T | G | 8.96 ± 0.12 | 4.96 ± 0.08 |
100% Soy flour | T | G | 10.04 ± 0.40 | 5.40 ± 0.18 |
70% Cashew nuts + 30% soy flour | M | G | 9.08 ± 0.21 | 5.33 ± 0.32 |
100% Hemp protein | T | P | 7.07 ± 0.13 | 4.87 ± 0.10 |
100% Chickpea flour | T | G | 7.84 ± 0.20 | 4.33 ± 0.15 |
Plant Matrix | Lactic Acid Content (g/kg) | pH |
---|---|---|
Cashews | 10.04 ± 0.34 | 5.51 ± 0.11 |
Pistachios | 10.74 ± 1.09 | 5.46 ± 0.08 |
Cashews/soy flour/spirulina | 12.17 ± 1.53 | 5.74 ± 0.24 |
Pea protein | 11.78 ± 2.64 | 6.08 ± 0.46 |
Chickpea | 10.88 ± 0.50 | 5.59 ± 0.12 |
LAB Starter Culture | Lactic Acid Content (g/kg) | pH |
Mesophilic commercial culture | 9.35 ± 1.14 | 5.91 ± 0.17 |
Thermophilic commercial culture | 12.55 ± 1.83 | 5.69 ± 0.32 |
culture composed of L. lactis and S. salivarius | 11.82 ± 0.68 | 5.51 ± 0.12 |
Mold Starter Culture | Lactic Acid Content (g/kg) | pH |
G. candidum | 11.48 ± 0.74 | 5.55 ± 0.12 |
P. camemberti | 10.56 ± 0.94 | 5.80 ± 0.16 |
Elements | Unit | Chickpeas | Cashews | Pistachios | Peas | Cashews/Soy Flour/Spirulina |
---|---|---|---|---|---|---|
C | g/kg | 46.96 | 59.73 | 64.81 | 51.78 | 57.48 |
N | g/kg | 39.63 | 34.09 | 41.49 | 130.70 | 50.29 |
S | g/kg | 2.36 | 1.57 | 1.36 | 2.85 | 2.20 |
P | g/kg | 3.17 | 3.54 | 3.58 | 8.05 | 5.18 |
Na | g/kg | 0.06 | 15.79 | 2.69 | 9.73 | 4.73 |
K | g/kg | 10.48 | 5.83 | 10.06 | 2.86 | 10.51 |
Ca | g/kg | 1.36 | 0.39 | 1.25 | 0.81 | 0.96 |
Mg | g/kg | 1.49 | 2.12 | 1.32 | 0.47 | 3.03 |
Fe | mg/kg | 196.0 | 21.9 | 6.4 | 184.8 | 67.8 |
Al | mg/kg | 223.8 | 0.0 | 0.0 | 7.6 | 14.0 |
Mn | mg/kg | 30.70 | 11.25 | 11.90 | 10.33 | 24.00 |
Cu | mg/kg | 17.34 | 22.93 | 7.21 | 9.38 | 24.82 |
Zn | mg/kg | 26.81 | 38.46 | 17.22 | 64.53 | 51.90 |
Ni | mg/kg | 0.44 | 2.36 | 0.00 | 0.00 | 4.72 |
Pb | mg/kg | 0.88 | 0.04 | 0.00 | 0.08 | 0.29 |
Sr | mg/kg | 10.99 | 1.51 | 21.42 | 12.98 | 3.67 |
Ba | mg/kg | 2.11 | 0.58 | 0.09 | 2.06 | 1.72 |
Maturation Time (Days) | CaCl2 (g/100 g) | Plant Matrix | C | N | S | P | Na | K | Ca | Mg |
---|---|---|---|---|---|---|---|---|---|---|
(g/kg) | ||||||||||
14 | 0 | chickpeas | 46.96 | 39.63 | 2.36 | 3.17 | 8.06 | 10.48 | 1.36 | 1.49 |
7 | 0.6 | 45.63 | 38.74 | 1.80 | 2.80 | 8.62 | 9.56 | 1.78 | 1.40 | |
7 | 1.4 | 45.59 | 38.25 | 2.01 | 2.98 | 8.88 | 9.93 | 2.91 | 1.45 | |
14 | 0.6 | 46.02 | 38.56 | 1.58 | 2.66 | 8.30 | 9.51 | 1.89 | 1.36 | |
14 | 1.4 | 44.84 | 37.61 | 1.73 | 2.93 | 14.10 | 9.51 | 2.84 | 1.45 | |
14 | 0 | cashews | 59.73 | 34.09 | 1.57 | 3.54 | 15.79 | 5.83 | 0.39 | 2.12 |
7 | 0.6 | 59.90 | 36.00 | 1.58 | 4.19 | 7.14 | 5.84 | 1.50 | 2.53 | |
7 | 1.4 | 59.57 | 36.80 | 1.47 | 3.92 | 6.90 | 5.48 | 1.07 | 2.40 | |
14 | 0.6 | 59.81 | 35.89 | 1.31 | 3.96 | 8.35 | 5.39 | 0.91 | 2.45 | |
14 | 1.4 | 58.26 | 35.35 | 1.33 | 3.97 | 15.96 | 5.56 | 1.29 | 2.44 | |
14 | 0 | pistachios | 64.81 | 41.49 | 1.36 | 3.58 | 2.69 | 10.06 | 1.25 | 1.32 |
7 | 0.6 | 62.25 | 36.96 | 1.30 | 2.86 | 15.19 | 6.22 | 1.81 | 1.04 | |
14 | 0.6 | 62.56 | 36.59 | 1.18 | 2.51 | 18.66 | 6.37 | 1.47 | 0.94 |
Maturation Time (Days) | CaCl2 (g/100 g) | Plant Matrix | Fe | Al | Mn | Cu | Zn | Ni | Pb | Sr | Ba |
---|---|---|---|---|---|---|---|---|---|---|---|
(mg/kg) | |||||||||||
14 | 0 | chickpeas | 196.0 | 223.8 | 30.70 | 17.34 | 26.81 | 0.44 | 0.88 | 10.99 | 2.11 |
7 | 0.6 | 157.4 | 182.6 | 28.08 | 10.16 | 24.31 | 0.00 | 0.41 | 10.27 | 2.40 | |
7 | 1.4 | 171.0 | 186.9 | 29.40 | 11.21 | 26.56 | 0.35 | 0.10 | 10.89 | 3.38 | |
14 | 0.6 | 176.7 | 207.5 | 25.08 | 9.52 | 21.69 | 0.03 | 0.25 | 10.52 | 2.50 | |
14 | 1.4 | 162.7 | 186.6 | 28.49 | 10.14 | 24.69 | 0.00 | 0.37 | 11.08 | 3.49 | |
14 | 0 | cashews | 21.9 | 0.0 | 11.25 | 22.93 | 38.46 | 2.36 | 0.04 | 1.51 | 0.58 |
7 | 0.6 | 28.4 | 0.0 | 16.58 | 26.34 | 49.22 | 3.99 | 0.06 | 1.89 | 1.65 | |
7 | 1.4 | 27.9 | 0.0 | 15.80 | 25.33 | 47.21 | 3.55 | 0.21 | 1.68 | 1.16 | |
14 | 0.6 | 33.8 | 0.0 | 16.74 | 25.38 | 50.77 | 3.68 | 0.07 | 1.64 | 1.04 | |
14 | 1.4 | 29.3 | 0.0 | 15.83 | 25.46 | 49.22 | 3.51 | 0.22 | 1.83 | 1.44 | |
14 | 0 | pistachios | 6.4 | 0.0 | 11.90 | 7.21 | 17.22 | 0.00 | 0.00 | 21.42 | 0.09 |
7 | 0.6 | 0.0 | 0.0 | 7.30 | 4.95 | 11.05 | 0.00 | 0.46 | 21.95 | 1.19 | |
14 | 0.6 | 2.7 | 0.0 | 6.10 | 5.42 | 9.95 | 0.00 | 0.00 | 20.92 | 0.66 |
Plant Matrix | 70% Cashews/30% Soy Flour/Spirulina | Cashews | Pistachios |
---|---|---|---|
Appearance * | 8 | 6.5 | 8 |
Color * | 7 | 7 | 8 |
Sour taste | 2 a | 5.5 b | 4 ab |
Salty taste | 4 ab | 2.5 a | 5 b |
Bitter taste * | 4 | 4 | 2 |
Creaminess | 2 ab | 4 b | 1.5 a |
Spreadability | 9 ab | 8 a | 9 b |
Aroma | 3 a | 5 b | 3 ab |
Overall impression | 8 ab | 6 a | 8 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabiszewska, A.; Wierzchowska, K.; Dębkowska, I.; Śliczniak, W.; Ziółkowska, M.; Jasińska, K.; Kobus, J.; Nowak, D.; Zieniuk, B. Plant-Based Alternatives to Mold-Ripened Cheeses as an Innovation among Dairy Analogues. Foods 2024, 13, 2305. https://doi.org/10.3390/foods13142305
Fabiszewska A, Wierzchowska K, Dębkowska I, Śliczniak W, Ziółkowska M, Jasińska K, Kobus J, Nowak D, Zieniuk B. Plant-Based Alternatives to Mold-Ripened Cheeses as an Innovation among Dairy Analogues. Foods. 2024; 13(14):2305. https://doi.org/10.3390/foods13142305
Chicago/Turabian StyleFabiszewska, Agata, Katarzyna Wierzchowska, Ilona Dębkowska, Weronika Śliczniak, Magdalena Ziółkowska, Karina Jasińska, Joanna Kobus, Dorota Nowak, and Bartłomiej Zieniuk. 2024. "Plant-Based Alternatives to Mold-Ripened Cheeses as an Innovation among Dairy Analogues" Foods 13, no. 14: 2305. https://doi.org/10.3390/foods13142305
APA StyleFabiszewska, A., Wierzchowska, K., Dębkowska, I., Śliczniak, W., Ziółkowska, M., Jasińska, K., Kobus, J., Nowak, D., & Zieniuk, B. (2024). Plant-Based Alternatives to Mold-Ripened Cheeses as an Innovation among Dairy Analogues. Foods, 13(14), 2305. https://doi.org/10.3390/foods13142305