Plant-Based Meat Analogues: Exploring Proteins, Fibers and Polyphenolic Compounds as Functional Ingredients for Future Food Solutions
Abstract
:1. Introduction
1.1. Trends in Animal-Based Food Consumption
1.2. Uncovering Meat and Meat Analogues
2. Plant-Based Proteins in Food Formulations
3. Dietary Fibres
3.1. Dietary Fibres in Food Formulation
3.2. Biofunctionality of Dietary Fibres
4. Polyphenolic Compounds in Food Industry
4.1. Polyphenolic Compounds
4.2. Technological Properties of Polyphenolic Compounds
4.3. Biofunctionality of Polyphenolic Compounds
5. Polyphenols and Dietary Fibre Matrix Interactions
Polyphenol–Dietary Fibre Matrix—Technological Properties and Food Applications
6. Meat Analogues
6.1. The Creation of Meat Analogues
6.2. Alternative Protein Sources for Processed Meat and Meat Analogues
6.3. Plant-Based Fat Replacers for Processed Meat and Meat Analogues
6.4. Polyphenols and Dietary Fibres Applications on Meat and Meat Analogue Products
6.5. Meat Analogues Products
6.5.1. Burgers
6.5.2. Minced Meat
6.5.3. Emulsion Type Products (Ham, Mortadella, Sausages)
7. Consumer Acceptance
8. Perspectives and Challenges
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations Department of Economic and Social Affairs. P.D. World Population Prospects 2022: Summary of Results, UN DESA/POP/2022/TR/NO. 3; United Nations Department of Economic and Social Affairs: Washington, DC, USA, 2022. [Google Scholar]
- El Bilali, H.; Callenius, C.; Strassner, C.; Probst, L. Food and nutrition security and sustainability transitions in food systems. Food Energy Secur. 2019, 8, e00154. [Google Scholar] [CrossRef]
- Fresán, U.; Sabaté, J. Vegetarian Diets: Planetary Health and Its Alignment with Human Health. Adv. Nutr. 2019, 10, S380–S388. [Google Scholar] [CrossRef] [PubMed]
- Varela, P.; Arvisenet, G.; Gonera, A.; Myhrer, K.S.; Fifi, V.; Valentin, D. Meat replacer? No thanks! The clash between naturalness and processing: An explorative study of the perception of plant-based foods. Appetite 2022, 169, 105793. [Google Scholar] [CrossRef] [PubMed]
- Bryant, C.J. Plant-based animal product alternatives are healthier and more environmentally sustainable than animal products. Future Foods 2022, 6, 100174. [Google Scholar] [CrossRef]
- Helkar, P.B.; Sahoo, A.K.; Patil, N. Review: Food industry by-products used as a functional food ingredients. Int. J. Waste Resour. 2016, 6, 1–6. [Google Scholar]
- Khan, Z.S.; Amir, S.; Sokač Cvetnić, T.; Jurinjak Tušek, A.; Benković, M.; Jurina, T.; Valinger, D.; Gajdoš Kljusurić, J. Sustainable Isolation of Bioactive Compounds and Proteins from Plant-Based Food (and Byproducts). Plants 2023, 12, 2904. [Google Scholar] [CrossRef] [PubMed]
- Dohlman, E.; Hansen, J.; Chambers, W. USDA Agricultural Projections to 2032; USDA: Washington, DC, USA, 2023; p. 119.
- Wang, H.H. The perspective of meat and meat-alternative consumption in China. Meat Sci. 2022, 194, 108982. [Google Scholar] [CrossRef] [PubMed]
- Organisation for Economic Co-Operation and Development-Food Agriculture Organization of the United Nations. OECD-FAO Agricultural Outlook 2023–2032; Organisation for Economic Co-Operation and Development: Paris, France, 2023. [Google Scholar]
- Ismail, I.; Hwang, Y.H.; Joo, S.T. Meat analog as future food: A review. J. Anim. Sci. Technol. 2020, 62, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Górska-Warsewicz, H.; Laskowski, W.; Kulykovets, O.; Kudlińska-Chylak, A.; Czeczotko, M.; Rejman, K. Food Products as Sources of Protein and Amino Acids—The Case of Poland. Nutrients 2018, 10, 1977. [Google Scholar] [CrossRef] [PubMed]
- White, N.D. Vitamin B12 and Plant-Predominant Diets. Am. J. Lifestyle Med. 2022, 16, 295–297. [Google Scholar] [CrossRef] [PubMed]
- IARC. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. In Red Meat and Processed Meat; International Agency for Research on Cancer: Lyon, France, 2018. [Google Scholar]
- Deveci, G.; Tek, N.A. N-Nitrosamines: A potential hazard in processed meat products. J. Sci. Food Agric. 2023, 104, 2551–2560. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Geng, Y.; Yao, J.; Ji, J.; Chen, F.; Xiao, J.; Hu, X.; Ma, L. N-nitrosamines in processed meats: Exposure, formation and mitigation strategies. J. Agric. Food Res. 2023, 13, 100645. [Google Scholar] [CrossRef]
- Gu, X.; Drouin-Chartier, J.P.; Sacks, F.M.; Hu, F.B.; Rosner, B.; Willett, W.C. Red meat intake and risk of type 2 diabetes in a prospective cohort study of United States females and males. Am. J. Clin. Nutr. 2023, 118, 1153–1163. [Google Scholar] [CrossRef]
- Collatuzzo, G.; Etemadi, A.; Sotoudeh, M.; Nikmanesh, A.; Poustchi, H.; Khoshnia, M.; Pourshams, A.; Hashemian, M.; Roshandel, G.; Dawsey, S.M.; et al. Meat consumption and risk of esophageal and gastric cancer in the Golestan Cohort Study, Iran. Int. J. Cancer 2022, 151, 1005–1012. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.D.; Li, Y.; Nguyen, X.M.; Ho, Y.L.; Hu, F.B.; Willett, W.C.; Wilson, P.W.; Cho, K.; Gaziano, J.M.; Djoussé, L. Red Meat Intake and the Risk of Cardiovascular Diseases: A Prospective Cohort Study in the Million Veteran Program. J. Nutr. 2024, 154, 886–895. [Google Scholar] [CrossRef] [PubMed]
- Etemadi, A.; Sinha, R.; Ward, M.H.; Graubard, B.I.; Inoue-Choi, M.; Dawsey, S.M.; Abnet, C.C. Mortality from different causes associated with meat, heme iron, nitrates, and nitrites in the NIH-AARP Diet and Health Study: Population based cohort study. BMJ 2017, 357, j1957. [Google Scholar] [CrossRef] [PubMed]
- Latvala, T.; Niva, M.; Mäkelä, J.; Pouta, E.; Heikkilä, J.; Kotro, J.; Forsman-Hugg, S. Diversifying meat consumption patterns: Consumers’ self-reported past behaviour and intentions for change. Meat Sci. 2012, 92, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Cheah, I.; Sadat Shimul, A.; Liang, J.; Phau, I. Drivers and barriers toward reducing meat consumption. Appetite 2020, 149, 104636. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Kataria, P.; Nautiyal, M.; Tuteja, I.; Sharma, V.; Ahmad, F.; Haque, S.; Shahwan, M.; Capanoglu, E.; Vashishth, R.; et al. Comprehensive Review on the Role of Plant Protein as a Possible Meat Analogue: Framing the Future of Meat. ACS Omega 2023, 8, 23305–23319. [Google Scholar] [CrossRef] [PubMed]
- Araújo dos Santos, R.; Silva da Costa, J.; Maranduba, H.L.; Almeida Neto, J.A.d.; Rodrigues, L.B. Reducing the environmental impacts of Brazilian chicken meat production using different waste recovery strategies. J. Environ. Manag. 2023, 341, 118021. [Google Scholar] [CrossRef] [PubMed]
- Clonan, A.; Wilson, P.; Swift, J.A.; Leibovici, D.G.; Holdsworth, M. Red and processed meat consumption and purchasing behaviours and attitudes: Impacts for human health, animal welfare and environmental sustainability. Public Health Nutr. 2015, 18, 2446–2456. [Google Scholar] [CrossRef] [PubMed]
- Ploll, U.; Stern, T. From diet to behaviour: Exploring environmental-and animal-conscious behaviour among Austrian vegetarians and vegans. Br. Food J. 2020, 122, 3249–3265. [Google Scholar] [CrossRef]
- Milford, A.B.; Le Mouël, C.; Bodirsky, B.L.; Rolinski, S. Drivers of meat consumption. Appetite 2019, 141, 104313. [Google Scholar] [CrossRef] [PubMed]
- Boukid, F. Plant-based meat analogues: From niche to mainstream. Eur. Food Res. Technol. 2021, 247, 297–308. [Google Scholar] [CrossRef]
- Aschemann-Witzel, J.; Gantriis, R.F.; Fraga, P.; Perez-Cueto, F.J.A. Plant-based food and protein trend from a business perspective: Markets, consumers, and the challenges and opportunities in the future. Crit. Rev. Food Sci. Nutr. 2021, 61, 3119–3128. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.-K.; Yong, H.I.; Cha, J.Y.; Park, S.-Y.; Jung, S.; Choi, Y.-S. Drying-induced restructured jerky analog developed using a combination of edible insect protein and textured vegetable protein. Food Chem. 2022, 373, 131519. [Google Scholar] [CrossRef] [PubMed]
- Rizos, V.; Tuokko, K.; Behrens, A. The Circular Economy: A review of definitions, processes and impacts. In CEPS Papers; Centre for European Policy Studies: Burssels, Belgium, 2017; p. 12440. [Google Scholar]
- FAO. Tracking Progress on Food and Agriculture-Related SDG Indicators 2022; FAO: Rome, Italy, 2022; 179p. [Google Scholar]
- UNEP. Food Waste Index Report 2021; United Nations Environment Programme: Nairobi, Kenya, 2021. [Google Scholar]
- Scialabba, N. Food Wastage Footprint & Climate Change; FAO: Rome, Italy, 2015; 4p. [Google Scholar]
- Capanoglu, E.; Nemli, E.; Tomas-Barberan, F. Novel Approaches in the Valorization of Agricultural Wastes and Their Applications. J. Agric. Food Chem. 2022, 70, 6787–6804. [Google Scholar] [CrossRef] [PubMed]
- Parsafar, B.; Ahmadi, M.; Jahed Khaniki, G.R.; Shariatifar, N.; Rahimi Foroushani, A. The impact of fruit and vegetable waste on economic loss estimation. Glob. J. Environ. Sci. Manag. 2023, 9, 871–884. [Google Scholar] [CrossRef]
- Campos, D.A.; Gómez-García, R.; Vilas-Boas, A.A.; Madureira, A.R.; Pintado, M.M. Management of Fruit Industrial By-Products—A Case Study on Circular Economy Approach. Molecules 2020, 25, 320. [Google Scholar] [CrossRef] [PubMed]
- Pintado, M.E.; Teixeira, J.A. Valorização de subprodutos da indústria alimentar: Obtenção de ingredientes de valor acrescentado. Bol. Biotecnol. 2015, 10–12. [Google Scholar]
- Ferrari, L.; Panaite, S.A.; Bertazzo, A.; Visioli, F. Animal- and Plant-Based Protein Sources: A Scoping Review of Human Health Outcomes and Environmental Impact. Nutrients 2022, 14, 5115. [Google Scholar] [CrossRef] [PubMed]
- Koch, C.A.; Kjeldsen, E.W.; Frikke-Schmidt, R. Vegetarian or vegan diets and blood lipids: A meta-analysis of randomized trials. Eur. Heart J. 2023, 44, 2609–2622. [Google Scholar] [CrossRef] [PubMed]
- Orlich, M.J.; Singh, P.N.; Sabaté, J.; Jaceldo-Siegl, K.; Fan, J.; Knutsen, S.; Beeson, W.L.; Fraser, G.E. Vegetarian dietary patterns and mortality in Adventist Health Study 2. JAMA Intern. Med. 2013, 173, 1230–1238. [Google Scholar] [CrossRef] [PubMed]
- Sabaté, J.; Sranacharoenpong, K.; Harwatt, H.; Wien, M.; Soret, S. The environmental cost of protein food choices. Public Health Nutr. 2015, 18, 2067–2073. [Google Scholar] [CrossRef] [PubMed]
- Popova, A.; Mihaylova, D. Antinutrients in plant-based foods: A review. Open Biotechnol. J. 2019, 13. [Google Scholar] [CrossRef]
- Shaghaghian, S.; McClements, D.J.; Khalesi, M.; Garcia-Vaquero, M.; Mirzapour-Kouhdasht, A. Digestibility and bioavailability of plant-based proteins intended for use in meat analogues: A review. Trends Food Sci. Technol. 2022, 129, 646–656. [Google Scholar] [CrossRef]
- Nikbakht Nasrabadi, M.; Sedaghat Doost, A.; Mezzenga, R. Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocoll. 2021, 118, 106789. [Google Scholar] [CrossRef]
- Brandolini, A.; Hidalgo, A. Wheat germ: Not only a by-product. Int. J. Food Sci. Nutr. 2012, 63, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Karabulut, G.; Yildiz, S.; Karaca, A.C.; Yemiş, O. Ultrasound and enzyme-pretreated extraction for the valorization of pea pod proteins. J. Food Process Eng. 2023, 46, e14452. [Google Scholar] [CrossRef]
- Prandi, B.; Zurlini, C.; Maria, C.I.; Cutroneo, S.; Di Massimo, M.; Bondi, M.; Brutti, A.; Sforza, S.; Tedeschi, T. Targeting the Nutritional Value of Proteins from Legumes By-Products Through Mild Extraction Technologies. Front. Nutr. 2021, 8, 695793. [Google Scholar] [CrossRef] [PubMed]
- Schlangen, M.; Taghian Dinani, S.; Schutyser, M.A.I.; van der Goot, A.J. Dry fractionation to produce functional fractions from mung bean, yellow pea and cowpea flour. Innov. Food Sci. Emerg. Technol. 2022, 78, 103018. [Google Scholar] [CrossRef]
- Waglay, A.; Karboune, S.; Alli, I. Potato protein isolates: Recovery and characterization of their properties. Food Chem. 2014, 142, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Gençdağ, E.; Görgüç, A.; Yılmaz, F.M. Recent Advances in the Recovery Techniques of Plant-Based Proteins from Agro-Industrial By-Products. Food Rev. Int. 2021, 37, 447–468. [Google Scholar] [CrossRef]
- Prandi, B.; Cigognini, I.M.; Faccini, A.; Zurlini, C.; Rodríguez, Ó.; Tedeschi, T. Comparative Study of Different Protein Extraction Technologies Applied on Mushrooms By-products. Food Bioprocess Technol. 2023, 16, 1570–1581. [Google Scholar] [CrossRef]
- Privatti, R.T. Recuperação de Proteínas e Isoflavonas para Valorização do Okara, Coproduto da Agroindústria do Extrato Hidrossolúvel de Soja. Ph.D. Thesis, Universidade de São Paulo, São Paulo, Brazil, 2023. [Google Scholar]
- Kleekayai, T.; Khalesi, M.; Amigo-Benavent, M.; Cermeño, M.; Harnedy-Rothwell, P.; FitzGerald, R.J. Enzyme-Assisted Extraction of Plant Proteins. In Green Protein Processing Technologies from Plants: Novel Extraction and Purification Methods for Product Development; Hernández-Álvarez, A.J., Mondor, M., Nosworthy, M.G., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 131–178. [Google Scholar] [CrossRef]
- Sengar, A.S.; Thirunavookarasu, N.; Choudhary, P.; Naik, M.; Surekha, A.; Sunil, C.K.; Rawson, A. Application of power ultrasound for plant protein extraction, modification and allergen reduction—A review. Appl. Food Res. 2022, 2, 100219. [Google Scholar] [CrossRef]
- Wang, P.-Y.; Shuang, F.-F.; Yang, J.-X.; Jv, Y.-X.; Hu, R.-Z.; Chen, T.; Yao, X.-H.; Zhao, W.-G.; Liu, L.; Zhang, D.-Y. A rapid and efficient method of microwave-assisted extraction and hydrolysis and automatic amino acid analyzer determination of 17 amino acids from mulberry leaves. Ind. Crops Prod. 2022, 186, 115271. [Google Scholar] [CrossRef]
- Ramaswamy, R.; Krishnan, S.B.; Leong, S.S.J. Pulsed Electric Field Technology for Recovery of Proteins from Waste Plant Resources and Deformed Mushrooms: A Review. Processes 2024, 12, 342. [Google Scholar] [CrossRef]
- Barba, F.J.; Boussetta, N.; Vorobiev, E. Emerging technologies for the recovery of isothiocyanates, protein and phenolic compounds from rapeseed and rapeseed press-cake: Effect of high voltage electrical discharges. Innov. Food Sci. Emerg. Technol. 2015, 31, 67–72. [Google Scholar] [CrossRef]
- Di Domenico Ziero, H.; Buller, L.S.; Mudhoo, A.; Ampese, L.C.; Mussatto, S.I.; Carneiro, T.F. An overview of subcritical and supercritical water treatment of different biomasses for protein and amino acids production and recovery. J. Environ. Chem. Eng. 2020, 8, 104406. [Google Scholar] [CrossRef]
- Bowen, H.; Durrani, R.; Delavault, A.; Durand, E.; Chenyu, J.; Yiyang, L.; Lili, S.; Jian, S.; Weiwei, H.; Fei, G. Application of deep eutectic solvents in protein extraction and purification. Front. Chem. 2022, 10, 912411. [Google Scholar] [CrossRef] [PubMed]
- De Angelis, D.; Latrofa, V.; Caponio, F.; Pasqualone, A.; Summo, C. Techno-functional properties of dry-fractionated plant-based proteins and application in food product development: A review. J. Sci. Food Agric. 2024, 104, 1884–1896. [Google Scholar] [CrossRef] [PubMed]
- Gorissen, S.H.M.; Crombag, J.J.R.; Senden, J.M.G.; Waterval, W.A.H.; Bierau, J.; Verdijk, L.B.; van Loon, L.J.C. Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids 2018, 50, 1685–1695. [Google Scholar] [CrossRef] [PubMed]
- Herreman, L.; Nommensen, P.; Pennings, B.; Laus, M.C. Comprehensive overview of the quality of plant- and animal-sourced proteins based on the digestible indispensable amino acid score. Food Sci. Nutr. 2020, 8, 5379–5391. [Google Scholar] [CrossRef] [PubMed]
- Snauwaert, E.; Paglialonga, F.; Vande Walle, J.; Wan, M.; Desloovere, A.; Polderman, N.; Renken-Terhaerdt, J.; Shaw, V.; Shroff, R. The benefits of dietary fiber: The gastrointestinal tract and beyond. Pediatr. Nephrol. 2023, 38, 2929–2938. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Shah, B.R.; Li, J.; Liang, H.; Zhan, F.; Geng, F.; Li, B. A critical review on interplay between dietary fibers and gut microbiota. Trends Food Sci. Technol. 2022, 124, 237–249. [Google Scholar] [CrossRef]
- Meral, H.; Savaş, İ.; Çiçek, Ş.K.; Demirdöven, A. Peach pomace: A potential probiotic carrier for fiber enrichment in milk. J. Food Meas. Charact. 2023, 18, 1933–1946. [Google Scholar] [CrossRef]
- Baskaya-Sezer, D. The characteristics of microwave-treated insoluble and soluble dietary fibers from grape and their effects on bread quality. Food Sci. Nutr. 2023, 11, 7877–7886. [Google Scholar] [CrossRef] [PubMed]
- Ben Jeddou, K.; Bouaziz, F.; Zouari-Ellouzi, S.; Chaari, F.; Ellouz-Chaabouni, S.; Ellouz-Ghorbel, R.; Nouri-Ellouz, O. Improvement of texture and sensory properties of cakes by addition of potato peel powder with high level of dietary fiber and protein. Food Chem. 2017, 217, 668–677. [Google Scholar] [CrossRef] [PubMed]
- de Moraes Crizel, T.; Jablonski, A.; de Oliveira Rios, A.; Rech, R.; Flôres, S.H. Dietary fiber from orange byproducts as a potential fat replacer. LWT-Food Sci. Technol. 2013, 53, 9–14. [Google Scholar] [CrossRef]
- Salem, M.A.; Mansour, H.E.A.; Mosalam, E.M.; El-Shiekh, R.A.; Ezzat, S.M.; Zayed, A. Valorization of by-products Derived from Onions and Potato: Extraction Optimization, Metabolic Profile, Outstanding Bioactivities, and Industrial Applications. Waste Biomass Valorization 2023, 14, 1823–1858. [Google Scholar] [CrossRef]
- Niño-Medina, G.; Muy-Rangel, D.; de la Garza, A.L.; Rubio-Carrasco, W.; Pérez-Meza, B.; Araujo-Chapa, A.P.; Gutiérrez-Álvarez, K.A.; Urías-Orona, V. Dietary Fiber from Chickpea (Cicer arietinum) and Soybean (Glycine max) Husk Byproducts as Baking Additives: Functional and Nutritional Properties. Molecules 2019, 24, 991. [Google Scholar] [CrossRef]
- Hanoğlu, A.; Karaoğlu, M.M.; Bedir, Y. The effect of carob, orange and carrot pulps on physical, chemical and microbiological properties of Turkish delight. Int. J. Gastron. Food Sci. 2023, 32, 100709. [Google Scholar] [CrossRef]
- Göksel Saraç, M.; Dogan, M. Incorporation of dietary fiber concentrates from fruit and vegetable wastes in butter: Effects on physicochemical, textural, and sensory properties. Eur. Food Res. Technol. 2016, 242, 1331–1342. [Google Scholar] [CrossRef]
- Tariq, A.; Sahar, A.; Usman, M.; Sameen, A.; Azhar, M.; Tahir, R.; Younas, R.; Khan, M.I. Extraction of dietary fiber and polyphenols from mango peel and its therapeutic potential to improve gut health. Food Biosci. 2023, 53, 102669. [Google Scholar] [CrossRef]
- Haris, S.; Alam, M.; Galiwango, E.; Mohamed, M.M.; Kamal-Eldin, A.; Al-Marzouqi, A.H. Characterization analysis of date fruit pomace: An underutilized waste bioresource rich in dietary fiber and phenolic antioxidants. Waste Manag. 2023, 163, 34–42. [Google Scholar] [CrossRef] [PubMed]
- López-Marcos, M.C.; Bailina, C.; Viuda-Martos, M.; Pérez-Alvarez, J.A.; Fernández-López, J. Properties of Dietary Fibers from Agroindustrial Coproducts as Source for Fiber-Enriched Foods. Food Bioprocess Technol. 2015, 8, 2400–2408. [Google Scholar] [CrossRef]
- Mudgil, D.; Barak, S. Chapter 2—Classification, Technological Properties, and Sustainable Sources. In Dietary Fiber: Properties, Recovery, and Applications; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 27–58. [Google Scholar] [CrossRef]
- Wang, Y.X.; Li, L.Y.; Zhang, T.; Wang, J.Q.; Huang, X.J.; Hu, J.L.; Yin, J.Y.; Nie, S.P. Fractionation, physicochemical and structural characterization of polysaccharides from barley water-soluble fiber. Food Hydrocoll. 2021, 113, 106539. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Li, Y.; Li, B.; Liu, S. Water-insoluble dietary-fibers from Flammulina velutiper used as edible stabilizers for oil-in-water Pickering emulsions. Food Hydrocoll. 2020, 101, 105519. [Google Scholar] [CrossRef]
- Mudgil, D.; Barak, S. Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: A review. Int. J. Biol. Macromol. 2013, 61, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Xue, P.; Chen, Y.; Xie, J.; Peng, G.; Tian, S.; Chang, X.; Yu, Q. Effect of Soluble Dietary Fiber of Navel Orange Peel Prepared by Mixed Solid-State Fermentation on the Quality of Jelly. Foods 2023, 12, 1724. [Google Scholar] [CrossRef] [PubMed]
- Prakongpan, T.; Nitithamyong, A.; Luangpituksa, P. Extraction and Application of Dietary Fiber and Cellulose from Pineapple Cores. J. Food Sci. 2002, 67, 1308–1313. [Google Scholar] [CrossRef]
- Silva Zamora, R.; Baldelli, A.; Pratap-Singh, A. Characterization of selected dietary fibers microparticles and application of the optimized formulation as a fat replacer in hazelnut spreads. Food Res. Int. 2023, 165, 112466. [Google Scholar] [CrossRef] [PubMed]
- Araujo-Chapa, A.P.; Urías-Orona, V.; Niño-Medina, G.; Muy-Rangel, D.; de la Garza, A.L.; Castro, H. Dietary Fiber from Soybean (Glycine max) Husk as Fat and Phosphate Replacer in Frankfurter Sausage: Effect on the Nutritional, Physicochemical and Nutraceutical Quality. Molecules 2023, 28, 4997. [Google Scholar] [CrossRef] [PubMed]
- Yuan, D.; Xu, Y.; Kong, B.; Cao, C.; Zhang, F.; Xia, X.; Zhang, H.; Liu, Q.; Zhao, J. Application of seaweed dietary fiber as a potential alternative to phosphates in frankfurters with healthier profiles. Meat Sci. 2023, 196, 109044. [Google Scholar] [CrossRef] [PubMed]
- Tseng, A.; Zhao, Y. Wine grape pomace as antioxidant dietary fibre for enhancing nutritional value and improving storability of yogurt and salad dressing. Food Chem. 2013, 138, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Ajila, C.M.; Aalami, M.; Leelavathi, K.; Rao, U.J.S.P. Mango peel powder: A potential source of antioxidant and dietary fiber in macaroni preparations. Innov. Food Sci. Emerg. Technol. 2010, 11, 219–224. [Google Scholar] [CrossRef]
- Siddiqui, H.; Sultan, Z.; Yousuf, O.; Malik, M.; Younis, K. A review of the health benefits, functional properties, and ultrasound-assisted dietary fiber extraction. Bioact. Carbohydr. Diet. Fibre 2023, 30, 100356. [Google Scholar] [CrossRef]
- Wanders, A.J.; Jonathan, M.C.; van den Borne, J.J.G.C.; Mars, M.; Schols, H.A.; Feskens, E.J.M.; de Graaf, C. The effects of bulking, viscous and gel-forming dietary fibres on satiation. Br. J. Nutr. 2013, 109, 1330–1337. [Google Scholar] [CrossRef] [PubMed]
- Jahani-Sherafat, S.; Azimirad, M.; Raeisi, H.; Azizmohammad looha, M.; Tavakkoli, S.; Ahmadi Amoli, H.; Moghim, S.; Rostami-Nejad, M.; Yadegar, A.; Zali, M.R. Alterations in the gut microbiota and their metabolites in human intestinal epithelial cells of patients with colorectal cancer. Mol. Biol. Rep. 2024, 51, 265. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.R.; Borre, Y.; O’ Brien, C.; Patterson, E.; El Aidy, S.; Deane, J.; Kennedy, P.J.; Beers, S.; Scott, K.; Moloney, G.; et al. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J. Psychiatr. Res. 2016, 82, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Chen, J.; Jiang, L.; Geng, T.; Tian, S.; Liao, Y.; Yang, K.; Zheng, Y.; He, M.; Tang, H.; et al. Gut microbiota-derived secondary bile acids, bile acids receptor polymorphisms, and risk of cardiovascular disease in individuals with newly diagnosed type 2 diabetes: A cohort study. Am. J. Clin. Nutr. 2024, 119, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Verspreet, J.; Damen, B.; Broekaert, W.F.; Verbeke, K.; Delcour, J.A.; Courtin, C.M. A Critical Look at Prebiotics within the Dietary Fiber Concept. Annu. Rev. Food Sci. Technol. 2016, 7, 167–190. [Google Scholar] [CrossRef] [PubMed]
- Padayachee, A.; Day, L.; Howell, K.; Gidley, M.J. Complexity and health functionality of plant cell wall fibers from fruits and vegetables. Crit. Rev. Food Sci. Nutr. 2017, 57, 59–81. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, Q.; Huang, J.; Fang, D.; Zhuang, W.; Luo, X.; Zou, X.; Zheng, B.; Cao, H. Hypoglycemic effect of dietary fibers from bamboo shoot shell: An in vitro and in vivo study. Food Chem. Toxicol. 2019, 127, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Jakobek, L.; Matić, P. Non-covalent dietary fiber-Polyphenol interactions and their influence on polyphenol bioaccessibility. Trends Food Sci. Technol. 2019, 83, 235–247. [Google Scholar] [CrossRef]
- Duda-Chodak, A.; Tarko, T. Possible Side Effects of Polyphenols and Their Interactions with Medicines. Molecules 2023, 28, 2536. [Google Scholar] [CrossRef] [PubMed]
- Durazzo, A.; Lucarini, M.; Souto, E.B.; Cicala, C.; Caiazzo, E.; Izzo, A.A.; Novellino, E.; Santini, A. Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytother. Res. 2019, 33, 2221–2243. [Google Scholar] [CrossRef]
- Belščak-Cvitanović, A.; Durgo, K.; Huđek, A.; Bačun-Družina, V.; Komes, D. 1-Overview of polyphenols and their properties. In Polyphenols: Properties, Recovery, and Applications; Galanakis, C.M., Ed.; Woodhead Publishing: Sawston, UK, 2018; pp. 3–44. [Google Scholar] [CrossRef]
- Singla, R.K.; Dubey, A.K.; Garg, A.; Sharma, R.K.; Fiorino, M.; Ameen, S.M.; Haddad, M.A.; Al-Hiary, M. Natural Polyphenols: Chemical Classification, Definition of Classes, Subcategories, and Structures. J. AOAC Int. 2019, 102, 1397–1400. [Google Scholar] [CrossRef] [PubMed]
- Pathak, S.; Kesavan, P.; Banerjee, A.; Banerjee, A.; Celep, G.S.; Bissi, L.; Marotta, F. Chapter 25—Metabolism of Dietary Polyphenols by Human Gut Microbiota and Their Health Benefits. In Polyphenols: Mechanisms of Action in Human Health and Disease, 2nd ed.; Watson, R.R., Preedy, V.R., Zibadi, S., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 347–359. [Google Scholar] [CrossRef]
- Tsao, R. Chemistry and Biochemistry of Dietary Polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Shen, T.; Lou, H. Dietary Polyphenols and Their Biological Significance. Int. J. Mol. Sci. 2007, 8, 950–988. [Google Scholar] [CrossRef]
- Naoya Fukuda, M.E.; Yoshida, H.; Kusano, M. Effects of light quality, photoperiod, CO2 concentration, and air temperature on chlorogenic acid and rutin accumulation in young lettuce plants. Plant Physiol. Biochem. 2022, 186, 290–298. [Google Scholar] [CrossRef]
- Ciocan, A.G.; Tecuceanu, V.; Enache-Preoteasa, C.; Mitoi, E.M.; Helepciuc, F.E.; Dimov, T.V.; Simon-Gruita, A.; Cogălniceanu, G.C. Phenological and Environmental Factors’ Impact on Secondary Metabolites in Medicinal Plant Cotinus coggygria Scop. Plants 2023, 12, 1762. [Google Scholar] [CrossRef] [PubMed]
- Abbas, M.; Saeed, F.; Anjum, F.M.; Afzaal, M.; Tufail, T.; Bashir, M.S.; Ishtiaq, A.; Hussain, S.; Suleria, H.A.R. Natural polyphenols: An overview. Int. J. Food Prop. 2017, 20, 1689–1699. [Google Scholar] [CrossRef]
- Cruz, E.P.d.; Jansen, E.T.; Fonseca, L.M.; Hackbart, H.C.d.S.; Siebeneichler, T.J.; Pires, J.B.; Gandra, E.A.; Rombaldi, C.V.; Zavareze, E.d.R.; Dias, A.R.G. Red onion skin extract rich in flavonoids encapsulated in ultrafine fibers of sweet potato starch by electrospinning. Food Chem. 2023, 406, 134954. [Google Scholar] [CrossRef]
- Bajkacz, S.; Ligor, M.; Baranowska, I.; Buszewski, B. Separation and determination of chemopreventive phytochemicals of flavonoids from brassicaceae plants. Molecules 2021, 26, 4734. [Google Scholar] [CrossRef] [PubMed]
- Ramli, A.N.M.; Manap, N.W.A.; Bhuyar, P.; Azelee, N.I.W. Passion fruit (Passiflora edulis) peel powder extract and its application towards antibacterial and antioxidant activity on the preserved meat products. SN Appl. Sci. 2020, 2, 1748. [Google Scholar] [CrossRef]
- Wang, T.; Liu, Y.; Li, X.; Xu, Q.; Feng, Y.; Yang, S. Isoflavones from green vegetable soya beans and their antimicrobial and antioxidant activities. J. Sci. Food Agric. 2018, 98, 2043–2047. [Google Scholar] [CrossRef] [PubMed]
- Bey, D.; Mahfoudi, R.; Benalia, M.; Djeridane, A.; Ami, Y.; Yousfi, M. Inter- and intraspecific variability of phenolic content, antioxidant activities and α-amylase inhibitory potential of different bran and husk extracts from Algerian durum wheat (Triticum turgidum Desf.), barley (Hordeum vulgare L.) and their derived products (frik and mermez). J. Food Meas. Charact. 2024, 18, 1158–1174. [Google Scholar] [CrossRef]
- Fernandes, A.; Simões, S.; Ferreira, I.M.P.L.V.O.; Alegria, M.J.; Mateus, N.; Raymundo, A.; de Freitas, V. Upcycling Rocha do Oeste Pear Pomace as a Sustainable Food Ingredient: Composition, Rheological Behavior and Microstructure Alone and Combined with Yeast Protein Extract. Molecules 2023, 28, 179. [Google Scholar] [CrossRef]
- Craciunescu, O.; Seciu-Grama, A.M.; Mihai, E.; Utoiu, E.; Negreanu-Pirjol, T.; Lupu, C.E.; Artem, V.; Ranca, A.; Negreanu-Pirjol, B.S. The Chemical Profile, Antioxidant, and Anti-Lipid Droplet Activity of Fluid Extracts from Romanian Cultivars of Haskap Berries, Bitter Cherries, and Red Grape Pomace for the Management of Liver Steatosis. Int. J. Mol. Sci. 2023, 24, 6849. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Soh, S.Y.; Bae, H.; Nam, S.-Y. Antioxidant and phenolic contents in potatoes (Solanum tuberosum L.) and micropropagated potatoes. Appl. Biol. Chem. 2019, 62, 17. [Google Scholar] [CrossRef]
- Dias, M.C.; Pinto, D.; Silva, A.M.S. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules 2021, 26, 5377. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef] [PubMed]
- Saito, A. Challenges and complexity of functionality evaluation of flavan-3-ol derivatives. Biosci. Biotechnol. Biochem. 2017, 81, 1055–1060. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Mena, A.; Ochoa-Martínez, L.A.; González-Herrera, S.M.; Rutiaga-Quiñones, O.M.; González-Laredo, R.F.; Olmedilla-Alonso, B.; Vega-Maturino, S. Coloring potential of anthocyanins from purple sweet potato paste: Ultrasound-assisted extraction, enzymatic activity, color and its application in ice pops. Food Chem. Adv. 2023, 3, 100358. [Google Scholar] [CrossRef]
- Chaalal, M.; Ydjedd, S.; Chemache, L.; López-Nicolás, R.; Sánchez-Moya, T.; Frontela-Saseta, C.; Ros-Berruezo, G.; Kati, D.E. Evaluation of the antimicrobial potential of digested and undigested carob phenolic extracts: Impact on selected gut microbiota. Acta Aliment. 2023, 52, 612–622. [Google Scholar] [CrossRef]
- Elsebaie, E.M.; Essa, R.Y. Microencapsulation of red onion peel polyphenols fractions by freeze drying technicality and its application in cake. J. Food Process. Preserv. 2018, 42, e13654. [Google Scholar] [CrossRef]
- Pinto, T.; Vilela, A. Healthy Drinks with Lovely Colors: Phenolic Compounds as Constituents of Functional Beverages. Beverages 2021, 7, 12. [Google Scholar] [CrossRef]
- Pažarauskaitė, A.; Noriega Fernández, E.; Sone, I.; Sivertsvik, M.; Sharmin, N. Combined Effect of Citric Acid and Polyphenol-Rich Grape Seed Extract towards Bioactive Smart Food Packaging Systems. Polymers 2023, 15, 3118. [Google Scholar] [CrossRef] [PubMed]
- Gomes, V.; Bermúdez, R.; Mateus, N.; Guedes, A.; Lorenzo, J.M.; de Freitas, V.; Cruz, L. FoodSmarTag: An innovative dynamic labeling system based on pyranoflavylium- based colorimetric films for real-time monitoring of food freshness. Food Hydrocoll. 2023, 143, 108914. [Google Scholar] [CrossRef]
- Coman, V.; Vodnar, D.C. Hydroxycinnamic acids and human health: Recent advances. J. Sci. Food Agric. 2020, 100, 483–499. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Qin, R.; Hou, M.; Xue, J.; Zhou, M.; Xu, L.; Zhang, Y. The interactions of polyphenols with Fe and their application in Fenton/Fenton-like reactions. Sep. Purif. Technol. 2022, 300, 121831. [Google Scholar] [CrossRef]
- Jia, B.; Zeng, H.L.; Shang, J.; Wang, X.; Xu, L.; Fang, M.; Zeng, F.; Yang, Q. Inhibitory effect of rosmarinic acid on IgE-trigged mast cell degranulation in vitro and in vivo. Mol. Biol. Rep. 2024, 51, 194. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.Y.; Kim, J.; Hong, E.; Lee, K.; Na, Y.; Yeom, C.H.; Park, S. Curcumin inhibits human cancer cell growth and migration through downregulation of SVCT2. Cell Biochem. Funct. 2023, 41, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Wu, L.-M.; Yang, L.; Liu, Z.-L. Evidence for α-tocopherol regeneration reaction of green tea polyphenols in SDS micelles. Free. Radic. Biol. Med. 2005, 38, 78–84. [Google Scholar] [CrossRef]
- Malik, F.; Iqbal, A.; Zia, S.; Ranjha, M.M.A.N.; Khalid, W.; Nadeem, M.; Selim, S.; Hadidi, M.; Moreno, A.; Manzoor, M.F.; et al. Role and mechanism of fruit waste polyphenols in diabetes management. Open Chem. 2023, 21, 20220272. [Google Scholar] [CrossRef]
- Bouarab-Chibane, L.; Forquet, V.; Lantéri, P.; Clément, Y.; Léonard-Akkari, L.; Oulahal, N.; Degraeve, P.; Bordes, C. Antibacterial properties of polyphenols: Characterization and QSAR (Quantitative structure-activity relationship) models. Front. Microbiol. 2019, 10, 829. [Google Scholar] [CrossRef] [PubMed]
- de Camargo, A.C.; Regitano-d’Arce, M.A.B.; Rasera, G.B.; Canniatti-Brazaca, S.G.; do Prado-Silva, L.; Alvarenga, V.O.; Sant’Ana, A.S.; Shahidi, F. Phenolic acids and flavonoids of peanut by-products: Antioxidant capacity and antimicrobial effects. Food Chem. 2017, 237, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Wojtunik-Kulesza, K.; Oniszczuk, A.; Oniszczuk, T.; Combrzyński, M.; Nowakowska, D.; Matwijczuk, A. Influence of In Vitro Digestion on Composition, Bioaccessibility and Antioxidant Activity of Food Polyphenols—A Non-Systematic Review. Nutrients 2020, 12, 1401. [Google Scholar] [CrossRef] [PubMed]
- Quirós-Sauceda, A.E.; Palafox-Carlos, H.; Sáyago-Ayerdi, S.G.; Ayala-Zavala, J.F.; Bello-Perez, L.A.; Álvarez-Parrilla, E.; de la Rosa, L.A.; González-Córdova, A.F.; González-Aguilar, G.A. Dietary fiber and phenolic compounds as functional ingredients: Interaction and possible effect after ingestion. Food Funct. 2014, 5, 1063–1072. [Google Scholar] [CrossRef] [PubMed]
- Das, T.; Chatterjee, N.; Capanoglu, E.; Lorenzo, J.M.; Das, A.K.; Dhar, P. The synergistic ramification of insoluble dietary fiber and associated non-extractable polyphenols on gut microbial population escorting alleviation of lifestyle diseases. Food Chem. X 2023, 18, 100697. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Yeo, J. Insoluble-Bound Phenolics in Food. Molecules 2016, 21, 1216. [Google Scholar] [CrossRef] [PubMed]
- McLusky, S.R.; Bennett, M.H.; Beale, M.H.; Lewis, M.J.; Gaskin, P.; Mansfield, J.W. Cell wall alterations and localized accumulation of feruloyl-3′-methoxytyramine in onion epidermis at sites of attempted penetration by Botrytis allii are associated with actin polarisation, peroxidase activity and suppression of flavonoid biosynthesis. Plant J. 1999, 17, 523–534. [Google Scholar] [CrossRef]
- Zhao, J.; Dixon, R.A. The ‘ins’ and ‘outs’ of flavonoid transport. Trends Plant Sci. 2010, 15, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Markham, K.R.; Ryan, K.G.; Gould, K.S.; Rickards, G.K. Cell wall sited flavonoids in lisianthus flower petals. Phytochemistry 2000, 54, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ying, D.; Sanguansri, L.; Cai, Y.; Le, X. Adsorption of catechin onto cellulose and its mechanism study: Kinetic models, characterization and molecular simulation. Food Res. Int. 2018, 112, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, A.; Oliveira, J.; Fonseca, F.; Ferreira-da-Silva, F.; Mateus, N.; Vincken, J.-P.; de Freitas, V. Molecular binding between anthocyanins and pectic polysaccharides–Unveiling the role of pectic polysaccharides structure. Food Hydrocoll. 2020, 102, 105625. [Google Scholar] [CrossRef]
- Sudha, M.; Baskaran, V.; Leelavathi, K. Apple pomace as a source of dietary fiber and polyphenols and its effect on the rheological characteristics and cake making. Food Chem. 2007, 104, 686–692. [Google Scholar] [CrossRef]
- Tarasevičienė, Ž.; Čechovičienė, I.; Paulauskienė, A.; Gumbytė, M.; Blinstrubienė, A.; Burbulis, N. The Effect of Berry Pomace on Quality Changes of Beef Patties during Refrigerated Storage. Foods 2022, 11, 2180. [Google Scholar] [CrossRef] [PubMed]
- Sozzi, A.; Zambon, M.; Mazza, G.; Salvatori, D. Fluidized bed drying of blackberry wastes: Drying kinetics, particle characterization and nutritional value of the obtained granular solids. Powder Technol. 2021, 385, 37–49. [Google Scholar] [CrossRef]
- Jurevičiūtė, I.; Keršienė, M.; Bašinskienė, L.; Leskauskaitė, D.; Jasutienė, I. Characterization of Berry Pomace Powders as Dietary Fiber-Rich Food Ingredients with Functional Properties. Foods 2022, 11, 716. [Google Scholar] [CrossRef] [PubMed]
- Hotchkiss, A.T.; Chau, H.K.; Strahan, G.D.; Nuñez, A.; Simon, S.; White, A.K.; Dieng, S.; Heuberger, E.R.; Yadav, M.P.; Hirsch, J. Structure and composition of blueberry fiber pectin and xyloglucan that bind anthocyanins during fruit puree processing. Food Hydrocoll. 2021, 116, 106572. [Google Scholar] [CrossRef]
- Hoskin, R.T.; Xiong, J.; Lila, M.A. Comparison of berry juice concentrates and pomaces and alternative plant proteins to produce spray dried protein–polyphenol food ingredients. Food Funct. 2019, 10, 6286–6299. [Google Scholar] [CrossRef] [PubMed]
- Deng, Q.; Penner, M.H.; Zhao, Y. Chemical composition of dietary fiber and polyphenols of five different varieties of wine grape pomace skins. Food Res. Int. 2011, 44, 2712–2720. [Google Scholar] [CrossRef]
- Soquetta, M.B.; Stefanello, F.S.; Huerta, K.d.M.; Monteiro, S.S.; da Rosa, C.S.; Terra, N.N. Characterization of physiochemical and microbiological properties, and bioactive compounds, of flour made from the skin and bagasse of kiwi fruit (Actinidia deliciosa). Food Chem. 2016, 199, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xu, H.; Yuan, F.; Pan, Q.; Fan, R.; Gao, Y. Physicochemical characterization of five types of citrus dietary fibers. Biocatal. Agric. Biotechnol. 2015, 4, 250–258. [Google Scholar] [CrossRef]
- Dong, X.; Hu, Y.; Li, Y.; Zhou, Z. The maturity degree, phenolic compounds and antioxidant activity of Eureka lemon [Citrus limon (L.) Burm. f.]: A negative correlation between total phenolic content, antioxidant capacity and soluble solid content. Sci. Hortic. 2019, 243, 281–289. [Google Scholar] [CrossRef]
- Sánchez-Camargo, A.d.P.; Gutiérrez, L.-F.; Vargas, S.M.; Martinez-Correa, H.A.; Parada-Alfonso, F.; Narváez-Cuenca, C.-E. Valorisation of mango peel: Proximate composition, supercritical fluid extraction of carotenoids, and application as an antioxidant additive for an edible oil. J. Supercrit. Fluids 2019, 152, 104574. [Google Scholar] [CrossRef]
- Castrica, M.; Rebucci, R.; Giromini, C.; Tretola, M.; Cattaneo, D.; Baldi, A. Total phenolic content and antioxidant capacity of agri-food waste and by-products. Ital. J. Anim. Sci. 2019, 18, 336–341. [Google Scholar] [CrossRef]
- Yi, T.; Huang, X.; Pan, S.; Wang, L. Physicochemical and functional properties of micronized jincheng orange by-products (Citrus sinensis Osbeck) dietary fiber and its application as a fat replacer in yogurt. Int. J. Food Sci. Nutr. 2014, 65, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Macagnan, F.T.; Santos, L.R.d.; Roberto, B.S.; de Moura, F.A.; Bizzani, M.; da Silva, L.P. Biological properties of apple pomace, orange bagasse and passion fruit peel as alternative sources of dietary fibre. Bioact. Carbohydr. Diet. Fibre 2015, 6, 1–6. [Google Scholar] [CrossRef]
- Do Reis, L.C.R.; Facco, E.M.P.; Salvador, M.; Flôres, S.H.; Rios, A.d.O. Characterization of Orange Passion Fruit Peel Flour and Its Use as an Ingredient in Bakery Products. J. Culin. Sci. Technol. 2020, 18, 214–230. [Google Scholar] [CrossRef]
- Rivera, A.M.P.; Toro, C.R.; Londoño, L.; Bolivar, G.; Ascacio, J.A.; Aguilar, C.N. Bioprocessing of pineapple waste biomass for sustainable production of bioactive compounds with high antioxidant activity. J. Food Meas. Charact. 2023, 17, 586–606. [Google Scholar] [CrossRef]
- Abid, M.; Cheikhrouhou, S.; Renard, C.M.G.C.; Bureau, S.; Cuvelier, G.; Attia, H.; Ayadi, M.A. Characterization of pectins extracted from pomegranate peel and their gelling properties. Food Chem. 2017, 215, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Walid, E.; Hedia, H.; Nizar, T.; Yassine, Y.; Nizar, N.; Ali, F. Total phenolic contents and antioxidant activities of pomegranate peel, seed, leaf and flower. J. Med. Plants Res. 2012, 6, 4724–4730. [Google Scholar]
- Górecka, D.; Pachołek, B.; Dziedzic, K.; Górecka, M. Raspberry pomace as a potential fiber source for cookies enrichment. Acta Sci. Pol. Technol. Aliment. 2010, 9, 451–461. [Google Scholar]
- Różyło, R.; Amarowicz, R.; Janiak, M.A.; Domin, M.; Gawłowski, S.; Kulig, R.; Łysiak, G.; Rząd, K.; Matwijczuk, A. Micronized Powder of Raspberry Pomace as a Source of Bioactive Compounds. Molecules 2023, 28, 4871. [Google Scholar] [CrossRef] [PubMed]
- Navarro-González, I.; García-Valverde, V.; García-Alonso, J.; Periago, M.J. Chemical profile, functional and antioxidant properties of tomato peel fiber. Food Res. Int. 2011, 44, 1528–1535. [Google Scholar] [CrossRef]
- Šeremet, D.; Durgo, K.; Jokić, S.; Huđek, A.; Vojvodić Cebin, A.; Mandura, A.; Jurasović, J.; Komes, D. Valorization of Banana and Red Beetroot Peels: Determination of Basic Macrocomponent Composition, Application of Novel Extraction Methodology and Assessment of Biological Activity In Vitro. Sustainability 2020, 12, 4539. [Google Scholar] [CrossRef]
- Hernández-Alcántara, A.M.; Totosaus, A.; Pérez-Chabela, M.L. Evaluation of Agro-Industrial Co-Products as Source of Bioactive Compounds: Fiber, Antioxidants and Prebiotic. Acta Univ. Cibiniensis. Ser. E Food Technol. 2016, 20, 3–16. [Google Scholar] [CrossRef]
- Villaño, D.; Fernández-Pan, I.; Arozarena, Í.; Ibañez, F.C.; Vírseda, P.; Beriain, M.J. Revalorisation of broccoli crop surpluses and field residues: Novel ingredients for food industry uses. Eur. Food Res. Technol. 2023, 249, 3227–3237. [Google Scholar] [CrossRef]
- Banerjee, D.K.; Das, A.K.; Banerjee, R.; Pateiro, M.; Nanda, P.K.; Gadekar, Y.P.; Biswas, S.; McClements, D.J.; Lorenzo, J.M. Application of Enoki Mushroom (Flammulina Velutipes) Stem Wastes as Functional Ingredients in Goat Meat Nuggets. Foods 2020, 9, 432. [Google Scholar] [CrossRef] [PubMed]
- Benítez, V.; Mollá, E.; Martín-Cabrejas, M.A.; Aguilera, Y.; López-Andréu, F.J.; Cools, K.; Terry, L.A.; Esteban, R.M. Characterization of Industrial Onion Wastes (Allium cepa L.): Dietary Fibre and Bioactive Compounds. Plant Foods Hum. Nutr. 2011, 66, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Singh, L.; Kaur, S.; Aggarwal, P.; Kaur, N. Characterisation of industrial potato waste for suitability in food applications. Int. J. Food Sci. Technol. 2023, 58, 2686–2694. [Google Scholar] [CrossRef]
- Mejri, F.; Ben Khoud, H.; Njim, L.; Baati, T.; Selmi, S.; Martins, A.; Serralheiro, M.L.M.; Rauter, A.P.; Hosni, K. In vitro and in vivo biological properties of pea pods (Pisum sativum L.). Food Biosci. 2019, 32, 100482. [Google Scholar] [CrossRef]
- de Araújo, F.F.; de Paulo Farias, D.; Neri-Numa, I.A.; Pastore, G.M. Polyphenols and their applications: An approach in food chemistry and innovation potential. Food Chem. 2021, 338, 127535. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Yao, F.; Zhang, M.; Khalifa, I.; Li, K.; Li, C. Effect of persimmon tannin on the physicochemical properties of maize starch with different amylose/amylopectin ratios. Int. J. Biol. Macromol. 2019, 132, 1193–1199. [Google Scholar] [CrossRef] [PubMed]
- Rupasinghe, H.P.V.; Wang, L.; Huber, G.M.; Pitts, N.L. Effect of baking on dietary fibre and phenolics of muffins incorporated with apple skin powder. Food Chem. 2008, 107, 1217–1224. [Google Scholar] [CrossRef]
- Vashanta Rupasinghe, H.P.; Wang, L.; Pitts, N.L.; Astatkie, T. Baking and Sensory Characteristics of Muffins Incorporated with Apple Skin Powder. J. Food Qual. 2009, 32, 685–694. [Google Scholar] [CrossRef]
- Pinto, D.; Moreira, M.M.; Vieira, E.F.; Švarc-Gajić, J.; Vallverdú-Queralt, A.; Brezo-Borjan, T.; Delerue-Matos, C.; Rodrigues, F. Development and Characterization of Functional Cookies Enriched with Chestnut Shells Extract as Source of Bioactive Phenolic Compounds. Foods 2023, 12, 640. [Google Scholar] [CrossRef] [PubMed]
- Pinto, D.; Moreira, M.M.; Švarc-Gajić, J.; Vallverdú-Queralt, A.; Brezo-Borjan, T.; Delerue-Matos, C.; Rodrigues, F. In-vitro gastrointestinal digestion of functional cookies enriched with chestnut shells extract: Effects on phenolic composition, bioaccessibility, bioactivity, and α-amylase inhibition. Food Biosci. 2023, 53, 102766. [Google Scholar] [CrossRef]
- Viskelis, J.; Rubinskiene, M.; Bobinas, C.; Bobinaite, R. Enrichment of fruit leathers with berry press cake powder increase product functionality. In Proceedings of the 11th Baltic Conference on Food Science and Technology “Food Science and Technology in a Changing World”, Jelgava, Latvia, 27–28 April 2017; pp. 27–28. [Google Scholar]
- Amorim, F.L.; de Cerqueira Silva, M.B.; Cirqueira, M.G.; Oliveira, R.S.; Machado, B.A.S.; Gomes, R.G.; de Souza, C.O.; Druzian, J.I.; de Souza Ferreira, E.; Umsza-Guez, M.A. Grape peel (Syrah var.) jam as a polyphenol-enriched functional food ingredient. Food Sci. Nutr. 2019, 7, 1584–1594. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Mejía, E.; Sacristán, I.; Rosales-Conrado, N.; León-González, M.E.; Madrid, Y. Valorization of Citrus reticulata Blanco Peels to Produce Enriched Wheat Bread: Phenolic Bioaccessibility and Antioxidant Potential. Antioxidants 2023, 12, 1742. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.-T.; Chang, Y.-H.; Shiau, S.-Y. Rheological, antioxidative and sensory properties of dough and Mantou (steamed bread) enriched with lemon fiber. LWT-Food Sci. Technol. 2015, 61, 56–62. [Google Scholar] [CrossRef]
- Selani, M.M.; Shirado, G.A.N.; Margiotta, G.B.; Saldaña, E.; Spada, F.P.; Piedade, S.M.S.; Contreras-Castillo, C.J.; Canniatti-Brazaca, S.G. Effects of pineapple byproduct and canola oil as fat replacers on physicochemical and sensory qualities of low-fat beef burger. Meat Sci. 2016, 112, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Singh, L.; Kaur, S.; Aggarwal, P. Techno and bio functional characterization of industrial potato waste for formulation of phytonutrients rich snack product. Food Biosci. 2022, 49, 101824. [Google Scholar] [CrossRef]
- Bedrníček, J.; Jirotková, D.; Kadlec, J.; Laknerová, I.; Vrchotová, N.; Tříska, J.; Samková, E.; Smetana, P. Thermal stability and bioavailability of bioactive compounds after baking of bread enriched with different onion by-products. Food Chem. 2020, 319, 126562. [Google Scholar] [CrossRef] [PubMed]
- Brennan, M.A.; Derbyshire, E.; Tiwari, B.K.; Brennan, C.S. Enrichment of Extruded Snack Products with Coproducts from Chestnut Mushroom (Agrocybe aegerita) Production: Interactions between Dietary Fiber, Physicochemical Characteristics, and Glycemic Load. J. Agric. Food Chem. 2012, 60, 4396–4401. [Google Scholar] [CrossRef] [PubMed]
- Nour, V.; Ionica, M.E.; Trandafir, I. Bread enriched in lycopene and other bioactive compounds by addition of dry tomato waste. J. Food Sci. Technol. 2015, 52, 8260–8267. [Google Scholar] [CrossRef] [PubMed]
- Kołodziejczak, K.; Onopiuk, A.; Szpicer, A.; Poltorak, A. Meat Analogues in the Perspective of Recent Scientific Research: A Review. Foods 2022, 11, 105. [Google Scholar] [CrossRef] [PubMed]
- Kyriakopoulou, K.; Keppler, J.K.; van der Goot, A.J. Functionality of Ingredients and Additives in Plant-Based Meat Analogues. Foods 2021, 10, 600. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Krishnaswamy, K. Sustainable zero-waste processing system for soybeans and soy by-product valorization. Trends Food Sci. Technol. 2022, 128, 331–344. [Google Scholar] [CrossRef]
- Purohit, P.; Rawat, H.; Verma, N.; Mishra, S.; Nautiyal, A.; Anshul; Bhatt, S.; Bisht, N.; Aggarwal, K.; Bora, A.; et al. Analytical approach to assess anti-nutritional factors of grains and oilseeds: A comprehensive review. J. Agric. Food Res. 2023, 14, 100877. [Google Scholar] [CrossRef]
- Wu Min, W.M.; Sun Yang, S.Y.; Bi ChongHao, B.C.; Ji Fang, J.F.; Li BoRui, L.B.; Xing JunJie, X.J. Effects of extrusion conditions on the physicochemical properties of soy protein/gluten composite. Int. J. Agric. Biol. Eng. 2018, 11, 230–237. [Google Scholar]
- Chiang, J.H.; Tay, W.; Ong, D.S.M.; Liebl, D.; Ng, C.P.; Henry, C.J. Physicochemical, textural and structural characteristics of wheat gluten-soy protein composited meat analogues prepared with the mechanical elongation method. Food Struct. 2021, 28, 100183. [Google Scholar] [CrossRef]
- Ferawati, F.; Zahari, I.; Barman, M.; Hefni, M.; Ahlström, C.; Witthöft, C.; Östbring, K. High-Moisture Meat Analogues Produced from Yellow Pea and Faba Bean Protein Isolates/Concentrate: Effect of Raw Material Composition and Extrusion Parameters on Texture Properties. Foods 2021, 10, 843. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.-G.; Tang, H.-Q.; Cheng, Y.-Q.; Li, Z.-G.; Tong, L.-T. Potential of preparing meat analogue by functional dry and wet pea (Pisum sativum) protein isolate. LWT 2021, 148, 111702. [Google Scholar] [CrossRef]
- Rajpurohit, B.; Li, Y. Overview on pulse proteins for future foods: Ingredient development and novel applications. J. Future Foods 2023, 3, 340–356. [Google Scholar] [CrossRef]
- Al-Maqtari, Q.A.; Li, B.; He, H.-J.; Mahdi, A.A.; Al-Ansi, W.; Saeed, A. An Overview of the Isolation, Modification, Physicochemical Properties, and Applications of Sweet Potato Starch. Food Bioprocess Technol. 2024, 17, 1–32. [Google Scholar] [CrossRef]
- Hu, C.; He, Y.; Zhang, W.; He, J. Potato proteins for technical applications: Nutrition, isolation, modification and functional properties-A review. Innov. Food Sci. Emerg. Technol. 2024, 91, 103533. [Google Scholar] [CrossRef]
- Cheng, Y.; Xiong, Y.L.; Chen, J. Antioxidant and emulsifying properties of potato protein hydrolysate in soybean oil-in-water emulsions. Food Chem. 2010, 120, 101–108. [Google Scholar] [CrossRef]
- Pęksa, A.; Miedzianka, J. Potato Industry By-Products as a Source of Protein with Beneficial Nutritional, Functional, Health-Promoting and Antimicrobial Properties. Appl. Sci. 2021, 11, 3497. [Google Scholar] [CrossRef]
- Szenderák, J.; Fróna, D.; Rákos, M. Consumer Acceptance of Plant-Based Meat Substitutes: A Narrative Review. Foods 2022, 11, 1274. [Google Scholar] [CrossRef] [PubMed]
- Sha, L.; Xiong, Y.L. Plant protein-based alternatives of reconstructed meat: Science, technology, and challenges. Trends Food Sci. Technol. 2020, 102, 51–61. [Google Scholar] [CrossRef]
- Ozturk, O.K.; Hamaker, B.R. Texturization of plant protein-based meat alternatives: Processing, base proteins, and other constructional ingredients. Future Foods 2023, 8, 100248. [Google Scholar] [CrossRef]
- Bohrer, B.M. An investigation of the formulation and nutritional composition of modern meat analogue products. Food Sci. Hum. Wellness 2019, 8, 320–329. [Google Scholar] [CrossRef]
- Pérez-Monterroza, E.J.; Márquez-Cardozo, C.J.; Ciro-Velásquez, H.J. Rheological behavior of avocado (Persea americana Mill, cv. Hass) oleogels considering the combined effect of structuring agents. LWT-Food Sci. Technol. 2014, 59, 673–679. [Google Scholar] [CrossRef]
- Guo, J.; Cui, L.; Meng, Z. Oleogels/emulsion gels as novel saturated fat replacers in meat products: A review. Food Hydrocoll. 2023, 137, 108313. [Google Scholar] [CrossRef]
- Fernandes, A.; Mateus, N.; de Freitas, V. Polyphenol-Dietary Fiber Conjugates from Fruits and Vegetables: Nature and Biological Fate in a Food and Nutrition Perspective. Foods 2023, 12, 1052. [Google Scholar] [CrossRef] [PubMed]
- Fernández-López, J.; Lucas-González, R.; Viuda-Martos, M.; Sayas-Barberá, E.; Ballester-Sánchez, J.; Haros, C.M.; Martínez-Mayoral, A.; Pérez-Álvarez, J.A. Chemical and technological properties of bologna-type sausages with added black quinoa wet-milling coproducts as binder replacer. Food Chem. 2020, 310, 125936. [Google Scholar] [CrossRef] [PubMed]
- Fernández-López, J.; Lucas-González, R.; Viuda-Martos, M.; Sayas-Barberá, E.; Navarro, C.; Haros, C.M.; Pérez-Álvarez, J.A. Chia (Salvia hispanica L.) products as ingredients for reformulating frankfurters: Effects on quality properties and shelf-life. Meat Sci. 2019, 156, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Marvizadeh, M.M.; Akbari, N. Development and Utilization of Rice Bran in Hamburger as a Fat Replacer. J. Chem. Health Risks 2019, 9, 245–251. [Google Scholar] [CrossRef]
- Di Nunzio, M.; Loffi, C.; Montalbano, S.; Chiarello, E.; Dellafiora, L.; Picone, G.; Antonelli, G.; Tedeschi, T.; Buschini, A.; Capozzi, F.; et al. Cleaning the Label of Cured Meat; Effect of the Replacement of Nitrates/Nitrites on Nutrients Bioaccessibility, Peptides Formation, and Cellular Toxicity of In Vitro Digested Salami. Int. J. Mol. Sci. 2022, 23, 12555. [Google Scholar] [CrossRef]
- Shakil, M.H.; Trisha, A.T.; Rahman, M.; Talukdar, S.; Kobun, R.; Huda, N.; Zzaman, W. Nitrites in Cured Meats, Health Risk Issues, Alternatives to Nitrites: A Review. Foods 2022, 11, 3355. [Google Scholar] [CrossRef] [PubMed]
- Efenberger-Szmechtyk, M.; Nowak, A.; Czyzowska, A. Plant extracts rich in polyphenols: Antibacterial agents and natural preservatives for meat and meat products. Crit. Rev. Food Sci. Nutr. 2021, 61, 149–178. [Google Scholar] [CrossRef] [PubMed]
- Camo, J.; Beltrán, J.A.; Roncalés, P. Extension of the display life of lamb with an antioxidant active packaging. Meat Sci. 2008, 80, 1086–1091. [Google Scholar] [CrossRef] [PubMed]
- Radha krishnan, K.; Babuskin, S.; Azhagu Saravana Babu, P.; Sasikala, M.; Sabina, K.; Archana, G.; Sivarajan, M.; Sukumar, M. Antimicrobial and antioxidant effects of spice extracts on the shelf life extension of raw chicken meat. Int. J. Food Microbiol. 2014, 171, 32–40. [Google Scholar] [CrossRef]
- Martín-Mateos, M.J.; Delgado-Adámez, J.; Moreno-Cardona, D.; Valdés-Sánchez, M.E.; Ramírez-Bernabé, M.R. Application of White-Wine-Pomace-Derived Ingredients in Extending Storage Stability of Fresh Pork Burgers. Foods 2023, 12, 4468. [Google Scholar] [CrossRef] [PubMed]
- França, F.; Harada-Padermo, S.d.S.; Frasceto, R.A.; Saldaña, E.; Lorenzo, J.M.; Vieira, T.M.F.d.S.; Selani, M.M. Umami ingredient from shiitake (Lentinula edodes) by-products as a flavor enhancer in low-salt beef burgers: Effects on physicochemical and technological properties. LWT 2022, 154, 112724. [Google Scholar] [CrossRef]
- Albergamo, A.; Vadalà, R.; Metro, D.; Nava, V.; Bartolomeo, G.; Rando, R.; Macrì, A.; Messina, L.; Gualtieri, R.; Colombo, N.; et al. Physicochemical, Nutritional, Microbiological, and Sensory Qualities of Chicken Burgers Reformulated with Mediterranean Plant Ingredients and Health-Promoting Compounds. Foods 2021, 10, 2129. [Google Scholar] [CrossRef] [PubMed]
- Longato, E.; Lucas-González, R.; Peiretti, P.G.; Meineri, G.; Pérez-Alvarez, J.A.; Viuda-Martos, M.; Fernández-López, J. The Effect of Natural Ingredients (Amaranth and Pumpkin Seeds) on the Quality Properties of Chicken Burgers. Food Bioprocess Technol. 2017, 10, 2060–2068. [Google Scholar] [CrossRef]
- Tarjuelo, L.; Rabadán, A.; Álvarez-Ortí, M.; Pardo-Giménez, A.; Pardo, I.; Pardo, J.E. Nutritional characteristics and consumer attitudes towards burgers produced by replacing animal fat with oils obtained from food by-products. J. Funct. Foods 2023, 104, 105500. [Google Scholar] [CrossRef]
- Besbes, S.; Attia, H.; Deroanne, C.; Makni, S.; Blecker, C. Partial Replacement of Meat by Pea Fiber and Wheat Fiber: Effect on the Chemical Composition, Cooking Characteristics and Sensory Properties of Beef Burgers. J. Food Qual. 2008, 31, 480–489. [Google Scholar] [CrossRef]
- Nascimento, N.P.d.; Vinhal Borges, Í.G.A.; de Castro, J.S.; Nascimento, C.P.d.; Bitu, L.A.; de Sousa, P.H.M.; da Silva, E.M.C. Enhancing the quality and antioxidant properties of beef burgers with dried Hibiscus sabdariffa L. leaves: Characterization and sensory evaluation. Food Biosci. 2024, 57, 103568. [Google Scholar] [CrossRef]
- Al-Marazeeq, K.; Al-Rousan, W.; Taha, S.; Osaili, T. The influence of cactus (Opuntia ficus-indica (L.) Mill) cladodes powder on improving the characteristics and shelf life of low-fat beef and chicken burgers. Food Sci. Technol. 2023, 43, e124322. [Google Scholar] [CrossRef]
- de Oliveira, A.S.; dos Santos, B.A.; Farias, C.A.A.; Correa, L.P.; Cordeiro, M.W.S.; Pinton, M.B.; Barcia, M.T.; Wagner, R.; Cichoski, A.J.; Barin, J.S.; et al. Raspberry Extract as a Strategy to Improve the Oxidative Stability of Pork Burgers Enriched with Omega-3 Fatty Acids. Foods 2023, 12, 1631. [Google Scholar] [CrossRef] [PubMed]
- Bedrníček, J.; Laknerová, I.; Linhartová, Z.; Kadlec, J.; Samková, E.; Bárta, J.; Bártová, V.; Mráz, J.; Pešek, M.; Winterová, R.; et al. Onion waste as a rich source of antioxidants for meat products. Czech J. Food Sci. 2019, 37, 268–275. [Google Scholar] [CrossRef]
- Wang, L.L.; Xiong, Y.L. Inhibition of Lipid Oxidation in Cooked Beef Patties by Hydrolyzed Potato Protein Is Related to Its Reducing and Radical Scavenging Ability. J. Agric. Food Chem. 2005, 53, 9186–9192. [Google Scholar] [CrossRef] [PubMed]
- Moll, P.; Salminen, H.; Schmitt, C.; Weiss, J. Pea protein–sugar beet pectin binders can provide cohesiveness in burger type meat analogues. Eur. Food Res. Technol. 2023, 249, 1089–1096. [Google Scholar] [CrossRef]
- Szpicer, A.; Onopiuk, A.; Barczak, M.; Kurek, M. The optimization of a gluten-free and soy-free plant-based meat analogue recipe enriched with anthocyanins microcapsules. LWT 2022, 168, 113849. [Google Scholar] [CrossRef]
- Stephan, A.; Ahlborn, J.; Zajul, M.; Zorn, H. Edible mushroom mycelia of Pleurotus sapidus as novel protein sources in a vegan boiled sausage analog system: Functionality and sensory tests in comparison to commercial proteins and meat sausages. Eur. Food Res. Technol. 2018, 244, 913–924. [Google Scholar] [CrossRef]
- Kamani, M.H.; Meera, M.S.; Bhaskar, N.; Modi, V.K. Partial and total replacement of meat by plant-based proteins in chicken sausage: Evaluation of mechanical, physico-chemical and sensory characteristics. J. Food Sci. Technol. 2019, 56, 2660–2669. [Google Scholar] [CrossRef] [PubMed]
- Broucke, K.; Van Poucke, C.; Duquenne, B.; De Witte, B.; Baune, M.-C.; Lammers, V.; Terjung, N.; Ebert, S.; Gibis, M.; Weiss, J.; et al. Ability of (extruded) pea protein products to partially replace pork meat in emulsified cooked sausages. Innov. Food Sci. Emerg. Technol. 2022, 78, 102992. [Google Scholar] [CrossRef]
- Salejda, A.M.; Olender, K.; Zielińska-Dawidziak, M.; Mazur, M.; Szperlik, J.; Miedzianka, J.; Zawiślak, I.; Kolniak-Ostek, J.; Szmaja, A. Frankfurter-Type Sausage Enriched with Buckwheat By-Product as a Source of Bioactive Compounds. Foods 2022, 11, 674. [Google Scholar] [CrossRef] [PubMed]
- Cocan, I.; Cadariu, A.-I.; Negrea, M.; Alexa, E.; Obistioiu, D.; Radulov, I.; Poiana, M.-A. Investigating the Antioxidant Potential of Bell Pepper Processing By-Products for the Development of Value-Added Sausage Formulations. Appl. Sci. 2022, 12, 12421. [Google Scholar] [CrossRef]
- Keerthana Priya, R.; Rawson, A.; Vidhyalakshmi, R.; Jagan Mohan, R. Development of vegan sausage using banana floret (Musa paradisiaca) and jackfruit (Artocarpus heterophyllus Lam.) as a meat substitute: Evaluation of textural, physico-chemical and sensory characteristics. J. Food Process. Preserv. 2022, 46, e16118. [Google Scholar] [CrossRef]
- Wongkaew, M.; Sommano, S.R.; Tangpao, T.; Rachtanapun, P.; Jantanasakulwong, K. Mango Peel Pectin by Microwave-Assisted Extraction and Its Use as Fat Replacement in Dried Chinese Sausage. Foods 2020, 9, 450. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.-M.; Lee, S.-H.; Kim, H.-Y. Effects of Using Soybean Protein Emulsion as a Meat Substitute for Chicken Breast on Physicochemical Properties of Vienna Sausage. Food Sci. Anim. Resour. 2022, 42, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Slozhenkina, M.I.; Gorlov, I.F.; Bozhkova, S.E.; Ermolova, K.A.; Serkova, A.E.; Khramova, V.N. Ham production using processed apple products. IOP Conf. Ser. Earth Environ. Sci. 2022, 965, 012044. [Google Scholar] [CrossRef]
- Lise, C.C.; Marques, C.; da Cunha, M.A.A.; Mitterer-Daltoé, M.L. Alternative protein from Pereskia aculeata Miller leaf mucilage: Technological potential as an emulsifier and fat replacement in processed mortadella meat. Eur. Food Res. Technol. 2021, 247, 851–863. [Google Scholar] [CrossRef]
- Auriema, B.E.; Correa, F.J.; Silva, R.; Soares, P.T.S.; Lima, A.L.; Vidal, V.A.S.; Raices, R.S.L.; Pollonio, M.A.R.; Luchese, R.H.; Esmerino, E.A.; et al. Fat replacement by green banana biomass: Impact on the technological, nutritional and dynamic sensory profiling of chicken mortadella. Food Res. Int. 2022, 152, 110890. [Google Scholar] [CrossRef] [PubMed]
- Biasi, V.; Huber, E.; de Melo, A.P.Z.; Hoff, R.B.; Verruck, S.; Barreto, P.L.M. Antioxidant effect of blueberry flour on the digestibility and storage of Bologna-type mortadella. Food Res. Int. 2023, 163, 112210. [Google Scholar] [CrossRef] [PubMed]
- Revilla, I.; Santos, S.; Hernández-Jiménez, M.; Vivar-Quintana, A.M. The Effects of the Progressive Replacement of Meat with Texturized Pea Protein in Low-Fat Frankfurters Made with Olive Oil. Foods 2022, 11, 923. [Google Scholar] [CrossRef] [PubMed]
- Belluco, C.Z.; Mendonça, F.J.; Zago, I.C.C.; Di Santis, G.W.; Marchi, D.F.; Soares, A.L. Application of orange albedo fat replacer in chicken mortadella. J. Food Sci. Technol. 2022, 59, 3659–3668. [Google Scholar] [CrossRef] [PubMed]
- Sośnicka, M.; Nowak, A.; Czyżowska, A.; Gałązka-Czarnecka, I.; Czerbniak, A. Polyphenolic Herbal Extract of Cistus incanus as Natural Preservatives for Sausages Enriched with Natural Colors. Processes 2021, 9, 1556. [Google Scholar] [CrossRef]
- Biasi, V.; Huber, E.; Goldoni, T.S.H.; de Melo, A.P.Z.; Hoff, R.B.; Verruck, S.; Barreto, P.L.M. Goldenberry flour as a natural antioxidant in Bologna-type mortadella during refrigerated storage and in vitro digestion. Meat Sci. 2023, 196, 109041. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Oliver, M.; Escalona-Buendía, H.B.; Ponce-Alquicira, E. Effect of the addition of microcapsules with avocado peel extract and nisin on the quality of ground beef. Food Sci. Nutr. 2020, 8, 1325–1334. [Google Scholar] [CrossRef] [PubMed]
- Devatkal, S.K.; Naveena, B.M. Effect of salt, kinnow and pomegranate fruit by-product powders on color and oxidative stability of raw ground goat meat during refrigerated storage. Meat Sci. 2010, 85, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Stobnicka, A.; Gniewosz, M. Antimicrobial protection of minced pork meat with the use of Swamp Cranberry (Vaccinium oxycoccos L.) fruit and pomace extracts. J. Food Sci. Technol. 2018, 55, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Mazumder, M.A.R.; Sukchot, S.; Phonphimai, P.; Ketnawa, S.; Chaijan, M.; Grossmann, L.; Rawdkuen, S. Mushroom-Legume-Based Minced Meat: Physico-Chemical and Sensory Properties. Foods 2023, 12, 2094. [Google Scholar] [CrossRef] [PubMed]
- Fernández-López, J.; Ponce-Martínez, A.J.; Rodríguez-Párraga, J.; Solivella-Poveda, A.M.; Fernández-López, J.A.; Viuda-Martos, M.; Pérez-Alvarez, J.A. Beetroot juices as colorant in plant-based minced meat analogues: Color, betalain composition and antioxidant activity as affected by juice type. Food Biosci. 2023, 56, 103156. [Google Scholar] [CrossRef]
- Khaleque, M.A.; Keya, C.A.; Hasan, K.N.; Hoque, M.M.; Inatsu, Y.; Bari, M.L. Use of cloves and cinnamon essential oil to inactivate Listeria monocytogenes in ground beef at freezing and refrigeration temperatures. LWT 2016, 74, 219–223. [Google Scholar] [CrossRef]
- Ramos-Diaz, J.M.; Kantanen, K.; Edelmann, J.M.; Jouppila, K.; Sontag-Strohm, T.; Piironen, V. Functionality of oat fiber concentrate and faba bean protein concentrate in plant-based substitutes for minced meat. Curr. Res. Food Sci. 2022, 5, 858–867. [Google Scholar] [CrossRef] [PubMed]
- Morshdy, A.E.; Gamal, S.; Saad, S.; Bkear, N.; Ali, E. Effect of Lemon Leaf Extracts on Bacterial Count and Keeping Quality of Minced Meat. Damanhour J. Vet. Sci. 2023, 10, 1–7. [Google Scholar] [CrossRef]
- Bhattacharya, S. Chapter 5—Meat-, fish-, and poultry-based snacks. In Snack Foods; Bhattacharya, S., Ed.; Academic Press: Cambridge, MA, USA, 2023; pp. 117–150. [Google Scholar] [CrossRef]
- Knipe, C.L. Sausages, types of: Emulsion. In Encyclopedia of Meat Sciences, 3rd ed.; Dikeman, M., Ed.; Elsevier: Oxford, UK, 2024; pp. 425–430. [Google Scholar] [CrossRef]
- Majzoobi, M.; Talebanfar, S.; Eskandari, M.H.; Farahnaky, A. Improving the quality of meat-free sausages using κ-carrageenan, konjac mannan and xanthan gum. Int. J. Food Sci. Technol. 2017, 52, 1269–1275. [Google Scholar] [CrossRef]
- Zhou, H.; Hu, Y.; Tan, Y.; Zhang, Z.; McClements, D.J. Digestibility and gastrointestinal fate of meat versus plant-based meat analogs: An in vitro comparison. Food Chem. 2021, 364, 130439. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.K.; Choi, J.S.; Moon, S.S.; Jeong, J.Y.; Kim, G.D. The Assessment of Red Beet as a Natural Colorant, and Evaluation of Quality Properties of Emulsified Pork Sausage Containing Red Beet Powder during Cold Storage. Korean J. Food Sci. Anim. Resour. 2014, 34, 472–481. [Google Scholar] [CrossRef] [PubMed]
- de Boer, J.; Aiking, H. Prospects for pro-environmental protein consumption in Europe: Cultural, culinary, economic and psychological factors. Appetite 2018, 121, 29–40. [Google Scholar] [CrossRef]
- Tsvakirai, C.Z.; Zulu, N.M. Investigating the motivations driving meat analogue purchase among middle-income consumers in Mbombela, South Africa. Agrekon 2022, 61, 138–150. [Google Scholar] [CrossRef]
- Moussaoui, D.; Torres-Moreno, M.; Tárrega, A.; Martí, J.; López-Font, G.; Chaya, C. Evaluation of consumers’ response to plant-based burgers according to their attitude towards meat reduction. Food Qual. Prefer. 2023, 110, 104955. [Google Scholar] [CrossRef]
- Tonheim, L.E.; Groufh-Jacobsen, S.; Stea, T.H.; Henjum, S. Consumption of meat and dairy substitute products amongst vegans, vegetarians and pescatarians. Food Nutr. Res. 2023, 67, 9081. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, D.L. Why some choose the vegetarian option: Are all ethical motivations the same? Motiv. Emot. 2019, 43, 400–411. [Google Scholar] [CrossRef]
- Allès, B.; Baudry, J.; Méjean, C.; Touvier, M.; Péneau, S.; Hercberg, S.; Kesse-Guyot, E. Comparison of Sociodemographic and Nutritional Characteristics between Self-Reported Vegetarians, Vegans, and Meat-Eaters from the NutriNet-Santé Study. Nutrients 2017, 9, 1023. [Google Scholar] [CrossRef] [PubMed]
- Kerslake, E.; Kemper, J.A.; Conroy, D. What’s your beef with meat substitutes? Exploring barriers and facilitators for meat substitutes in omnivores, vegetarians, and vegans. Appetite 2022, 170, 105864. [Google Scholar] [CrossRef] [PubMed]
- McIlveen, H.; Abraham, C.; Armstrong, G. Meat avoidance and the role of replacers. Nutr. Food Sci. 1999, 99, 29–36. [Google Scholar] [CrossRef]
- Banovic, M.; Sveinsdóttir, K. Importance of being analogue: Female attitudes towards meat analogue containing rapeseed protein. Food Control 2021, 123, 107833. [Google Scholar] [CrossRef]
- Giampietri, E.; Bugin, G.; Trestini, S. Exploring the Interplay of Risk Attitude and Organic Food Consumption. J. Food Syst. Dyn. 2020, 11, 189–201. [Google Scholar] [CrossRef]
- Begho, T.; Zhu, Y. Determinants of consumer acceptance of meat analogues: Exploring measures of risk preferences in predicting consumption. J. Agric. Food Res. 2023, 11, 100509. [Google Scholar] [CrossRef]
- Garaus, M.; Garaus, C. US consumers’ mental associations with meat substitute products. Front. Nutr. 2023, 10, 1135476. [Google Scholar] [CrossRef] [PubMed]
- Garaus, M.; Lalicic, L. The unhealthy-tasty intuition for online recipes–when healthiness perceptions backfire. Appetite 2021, 159, 105066. [Google Scholar] [CrossRef] [PubMed]
- Fadimu, G.J.; Olatunde, O.O.; Bandara, N.; Truong, T. Chapter 4—Reducing allergenicity in plant-based proteins. In Engineering Plant-Based Food Systems; Prakash, S., Bhandari, B.R., Gaiani, C., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 61–77. [Google Scholar] [CrossRef]
- Day, L.; Cakebread, J.A.; Loveday, S.M. Food proteins from animals and plants: Differences in the nutritional and functional properties. Trends Food Sci. Technol. 2022, 119, 428–442. [Google Scholar] [CrossRef]
- Samtiya, M.; Aluko, R.E.; Dhewa, T. Plant food anti-nutritional factors and their reduction strategies: An overview. Food Prod. Process. Nutr. 2020, 2, 6. [Google Scholar] [CrossRef]
Source of Dietary Fibre | Application | Properties | References | ||
---|---|---|---|---|---|
Nutritional | Physicochemical | Technological | |||
Orange byproducts (peel, pulp, and seeds) | Fat Replacer (70% fat reduction in ice cream production) | Source of phenolic compounds and carotenoids | Good water holding capacity | 70% fat reduction | [69] |
Reduced caloric value | Good oil holding capacity | Bitter aftertaste | |||
Orange peel | Development of jelly products | Cholesterol and glucose adsorption capacity | Good water holding capacity | Elevated thermal stability | [81] |
Good oil holding capacity | Improved chewiness, texture, and gumminess | ||||
Pineapple core | Oil replacer and volume enhancer in baking products | Reduced caloric value | Good water holding capacity | Increased yield capacity | [82] |
Texture enhancer in beef burgers | Prolonged shelf life | ||||
Texture enhancer | |||||
Chia seed mucilage, Psyllium husk and Konjac glucomannan | Fat replacer in hazelnut spread | Reduced caloric value | - | Total fat replacer | [83] |
(Spray dried microparticles technique) | High dietary fibre content | Enhancement in brightness | |||
Soybean husk | Fat and phosphate replacer in Frankfurter sausages | Increased calcium content | Good water holding capacity | [84] | |
Antioxidant capacity | Decrease in hardening during storage | ||||
Source of phenolic compounds | |||||
Seaweed dietary fibre | Phosphate replacer in Frankfurter sausages | Phosphate replacer | Good water holding capacity | Texture enhancer | [85] |
Good oil holding capacity | Emulsion stability enhancer | ||||
Retarded lipid oxidation | |||||
Wine grape pomace | Enhanced storability of yogurt and salad dressing | Source of phenolic compounds | Retarded lipid oxidation | - | [86] |
High antioxidant dietary fibre content | |||||
Mango peel | Macaroni | Source of phenolic compounds | - | Increased firmness | [87] |
High antioxidant dietary fibre content |
Source | Total Dietary Fibre (%) | Total Phenolic Content (mg GAE/100 g) | References |
---|---|---|---|
Apple | 51.1 | 1016 | [141] |
Blackberry pomace | 78.37–79.91 | 1044 | [142,143] |
Black Currant | 49.24 | 11,060 | [144] |
Blueberry pomace | 60.8 | 10,810 | [145,146] |
Grape (Pinot Noir.) skin pomace | 56.31 | 2140 | [147] |
Kiwifruit skin flour | 25.85–30.30 | 1262.34 | [148] |
Lemon (Citrus limon L.) peels | 64.07 | 796 | [149,150] |
Mango peels | 35.6 | 6480 | [151] |
Orange (Citrus sinensis L.) peel extract | 19.4 | 3596 (mgTAE/100 g) | [152] |
Orange (Citrus sinensis Osbeck) peel pulp and seeds | 63.69 | 12,123 | [153] |
Passionfruit (Passiflora edulis) peel | 62.65 | 694.33 | [154] |
Passionfruit (Passiflora edulis) peel flour | 45.34 | 758.09 | [155] |
Pineapple (Ananas comosus) peel | 14.72 | 3000 | [156] |
Pomegranate (Punica granatum L.) peel | 28.10–33.93 | 5365–8560 | [157,158] |
Raspberry pomace | 77.5 | 1974–2394 | [159,160] |
Tomato peel | 86.15 | 158.1 | [161] |
Beetroot peel | 33.6 | 3972–6630 | [162] |
Carrot (Daucus carota L.) pomace | 52 | 515.73 | [163] |
Broccoli stalk flour | 16–22 | 300–837 | [164] |
Mushroom (Flammulina velutipes) stem flour | 32.3 | 630 | [165] |
Onion (Allium cepa L.) brown skin | 75 | 5270 | [166] |
Potato (Solanum tuberosum L.) peel extract | 13.05 | 834.24 | [167] |
Pea (Pisum sativum L.) pod flour | 51 | 3200 | [168] |
Source | Product | Properties | References | |||
---|---|---|---|---|---|---|
Nutritional | Physicochemical/Technological | Sensorial | ||||
Apple | Skin powder | Muffin | Higher total dietary fibre content | Lower volume | Darker colour | [171,172] |
Higher phenolic content | Increased firmness | Enhanced sweetness | ||||
Higher antioxidant activity | Higher density | Similar Overall acceptability | ||||
Carob | Pulp powder | Turkish delight | Reduced sugar content | Higher water insoluble dry matter | Colour change | [72] |
Carrot | Antioxidant activity | |||||
Higher phenolic content | ||||||
Orange | Higher mineral content | |||||
Mango | Peel powder | Macaroni | Higher phenolic content | Increased cooking loss | Colour change | [87] |
Higher total dietary fibre content | Increased firmness | Acceptable overall quality for products with up to 5% of mango peel powder | ||||
Higher antioxidant activity | ||||||
Grape | Pomace powder | Yoghurt and salad dressing | Higher antioxidant activity | Lower pH levels | Colour change | [86] |
Higher lactic acid content | Flavour and texture change | |||||
Higher phenolic content | Delayed lipid oxidation | Similar overall acceptability | ||||
Higher total dietary fibrecontent | Lower viscosity | |||||
Chestnut | Shell powder extract | Cookies | Higher total dietary fibre content | Lower hardness | Colour change | [173,174] |
Higher caloric value | High total polyphenol content and total flavonoid content bioaccessibility (high recover rates after intestinal digestion) | Texture change | ||||
Higher phenolic content | Similar overall acceptability | |||||
Higher antioxidant activity | ||||||
Raspberry | Press cake powder | Fruit leather | Higher phenolic content | Lower firmness | Colour change | [175] |
Black current | Higher antioxidant activity | Texture change | ||||
Grape | Peel Extract flour | Jam | Lower caloric value | High water activity | Colour change | [176] |
Higher phenolic content | High titrable acidity | |||||
Higher antioxidant activity | Good stability | |||||
Mandarin | Peel Extract | Enriched Wheat bread | Higher phenolic content | High total polyphenol content and total flavonoid content bioacessibility (high recover rates after intestinal digestion) | - | [177] |
Higher antioxidant activity | ||||||
Lemon | Fibre powder (obtained from pomace) | Dough and steamed bread | Higher total dietary fibre content | Lower extensibility | Similar overall acceptability | [178] |
Higher phenolic content | Lower elasticity | |||||
Higher antioxidant activity | Higer hardness | |||||
Pineapple | Peel and pomace powder | Beef burger | Higher total dietary fibre content | Lower cooking loss | Similar overall acceptability | [179] |
Higher moisture and fat retention | ||||||
Low fat product | ||||||
Higher hardness | ||||||
Potato | Mash and peel powder | Salty snack | Higher total dietary fibre content | Higher water holding capacity | Lower sensorial score | [180] |
Higher phenolic content | Higher oil holding capacity | Darker colour | ||||
Higher mineral content | Lower hardness | |||||
Onion | Peel powder | Bread | Higher phenolic content | - | Improved appearance | [181] |
Similar overall acceptability | ||||||
Higher antioxidant activity | Darker colour | |||||
Chestnut Mushroom | Stalks and basal section powder | Extruded snack | Higher total dietary fibre content | Lower viscosity | - | [182] |
Lower water solubility | ||||||
Reduced glucose release during digestion | Increased water holding capacity | |||||
Higher hardness | ||||||
Tomato | Skin and seeds powder | Enriched bread | Higher phenolic content | Higher elasticity | Colour, flavour, and odour changes | [183] |
Lower porosity | ||||||
Lower acceptability | ||||||
Product | Source | Application | Main Conclusions | References |
---|---|---|---|---|
Fresh pork burgers | White wine grape pomace | Extending storage Stability | Prevented lipid and protein oxidation | [212] |
Limited antimicrobial effect | ||||
Limited anti-discoloration effect | ||||
Low-salt beef burgers | Umami extract from Shiitake mushroom byproducts | Flavour enhancer | Increase in amino acid content | [213] |
Slight colour change | ||||
50% salt reduction achieved | ||||
Chicken burgers | Cherry tomato flakes, rosemary, thyme oil and basil leaves | Nutritional enrichment | Successful enrichment with Mg, Fe, Se, and vitamin B9 | [214] |
Higher acceptability than conventional burgers | ||||
Chicken burgers | Amaranth and pumpkin seeds powder | Functional and nutritional enrichment | Improved lipid stability | [215] |
Improved raw meat antioxidant properties | ||||
Similar sensory quality | ||||
Increased fat, moisture, and cooking yield | ||||
Lamb burgers | Melon and Pumpkin seed oil | Fat replacer | 75% replacement with similar sensorial results | [216] |
Improved nutritional profile | ||||
Low-fat beef burgers | Mango, pineapple, and passionfruit pomace | Functional and nutritional enrichment | Enhanced cooking properties | [179] |
Similar sensory quality and acceptability | ||||
Hybrid beef burger | Pea and wheat fibre | Partial replacement of beef meat | Improved cooking properties | [217] |
13% reduction in meat incorporation | ||||
Beef burgers | Hibiscus dried leaves powder | Quality and antioxidant properties enhancement | Similar nutritional content and sensorial results | [218] |
Increased antioxidant properties after digestion | ||||
Low-fat beef and chicken burgers | Cactus cladodes powder | Binder and shelf-life extender | Improved colour, tenderness, juiciness, and taste | [219] |
Improved cooking properties | ||||
Increased oxidation stability | ||||
Pork burgers | Raspberry extract | Oxidative stability enhancer | 43% fat reduction | [220] |
Pea protein | Omega 3 fatty acids enrichment | Improved cooking properties | ||
Linseed oil | Mitigation of the decrease in oxidative stability | |||
Pork burgers | Onion skin water extracts | Antioxidant activity enhancer | Increased antioxidant activity and lipid stability | [221] |
Similar sensorial results | ||||
Beef burgers | Potato protein powder | Lipid oxidation Inhibitor | Improved oxidative stability | [222] |
Lower cooking loss | ||||
Burger meat analogue | Pea protein | Full replacement of animal protein | Improved cohesiveness | [223] |
Sugar beet pectin | Easier to shape | |||
Textured vegetable protein | Replacement for a clean label binder | Lower sensory quality and acceptability | ||
Emulsion type meat analogue | Pea protein | Full replacement of animal protein | Free from gluten and soy | [224] |
Increased antioxidant capacity | ||||
Chickpea flour | Natural antioxidant activity enhancer) | Acceptable colour change | ||
Vegan sausage | Mushroom mycelia of Pleurotus sapidus | Full replacement of animal meat | Similar physicochemical parameters to a traditional German sausage | [225] |
Increased strength and hardness relatively to a type of Russian sausage | ||||
Higher acceptance than for other vegetable proteins tested | ||||
Chicken sausage | Soy protein isolate | Partial replacement of chicken meat | Improved emulsion stability | [226] |
Chickpea flour | Improved cooking properties | |||
Similar sensory quality and acceptability | ||||
Hybrid pork sausage | Extruded pea protein | Partial replacement of pork meat | Promising results at 20% substitution | [227] |
Weaker texture and network formation | ||||
Frankfurter-type sausage | Buckwheat husk | Functional and nutritional enrichment | Increased phenolic, amino acid content | [228] |
Decreased sensory quality and acceptability | ||||
Pork Sausages | Bell-pepper pomace | Antioxidant activity enhancer | Decreased total oxidation | [229] |
Higher phenolic content | ||||
Vegan sausage | Banana floret | Meat replacer | Higher protein, dietary fibre content | [230] |
Jackfruit | Functional and nutritional enrichment | Reduced fat content | ||
Pea protein isolate | Increased emulsion stability | |||
Similar sensory quality and acceptability | ||||
Dried Chinese sausage | Mango peel pectin | Fat replacer | Similar colour, textural quality and acceptability for 5% pectin replacement | [231] |
Vienna-style chicken sausage | Soybean protein | Partial replacement of chicken meat | Improved protein quality | [232] |
Increased cooking yield | ||||
Decreased crude fat content | ||||
Ham | Apple pomace | Functional and nutritional enrichment | Decreased oxidative processes during storage | [233] |
Increased yield and nutritional quality | ||||
Mortadella | Pereskia aculeata Miller leaf mucilage | Emulsifying agent | Increased emulsifying power | [234] |
Fat replacer | Improved emulsion stability | |||
Reduced fat content | ||||
Chicken Mortadella | Green banana biomass | Fat replacer | Increased WHC | [235] |
Reduced fat and caloric content | ||||
Similar acceptance for 100 replacements | ||||
Bologna-type Mortadella | Blueberry flour | Functional and nutritional enrichment | Increased polyphenol content | [236] |
Increased antioxidant activity after digestion | ||||
Decreased lipid oxidation | ||||
Low-fat sausages | Texturized pea protein | Fat replacer | Increased emulsion stability | [237] |
Partial replacer of pork meat | Healthier fatty acid profile | |||
Olive oil | Decrease in colour and textural quality | |||
Chicken Mortadella | Orange albedo flour | Fat replacer | 23–35% fat reduction | [238] |
Similar lipid oxidation and emulsion stability | ||||
Good sensorial acceptance and high purchase intent | ||||
Pork sausages | Polyphenolic extract of Cistus incanus | Natural additives (Preservatives and dyes) | Decreased lipid oxidation | [239] |
Increased proportion of red colour | ||||
Betanin dye | Microbial quality assured with 50% nitrates reduction | |||
Lycopene dye | Slightly better overall acceptability | |||
Bologna-type Mortadella | Goldenberry flour | Natural preservative (antioxidant activity enhancer) | Increased polyphenol content | [240] |
Increased antioxidant activity after digestion | ||||
Decrease in lipid oxidation | ||||
Ground beef | Avocado peel extract and nisin microcapsules | Natural additives (Antioxidant and antimicrobial agent) | Increased oxidation stability | [241] |
Increased antibacterial activity | ||||
Ground goat meat | Pomegranate rind and seed powder | Antioxidant activity enhancer | Decreased lipid oxidation | [242] |
Increased antioxidant activity | ||||
Kinnow rind powder | ||||
Minced pork meat | Swamp cranberry fruit and pomace extracts | Antimicrobial protection | Strong antibacterial properties | [243] |
Insufficient antifungal activity | ||||
Minced meat analogue | Mushrooms | Meat replacer | Higher protein, dietary fibre and mineral content | [244] |
Chickpea flour | Functional and nutritional enrichment | |||
Beetroot extract | High consumer acceptance | |||
Canola oil | Similar texture and sensorial results | |||
Minced meat analogue | Beetroot juice | Natural additives (Antioxidant and dye) | Similar appearance to pork and beef minced meat | [245] |
Soy protein | ||||
Instability of the desirable colour over time | ||||
Ground beef meat | Clove essential oils | Antimicrobial protection | Complete inactivation of Listeria monocytogenes at 10% oil incorporation | [246] |
Minced meat analogue | Oat fibre | Meat replacer | Considerable difference for some mechanical properties | [247] |
Faba bean protein concentrate | Functional and nutritional enrichment | Remarkable structural strength | ||
Higher dietary fibre content | ||||
Minced beef meat | Lemon leaf extract | Antimicrobial protection | Enhanced sensory qualities, chemical quality, and bacteriological quality | [248] |
Antibacterial properties against Enterobacteriaceae, staphylococcus, coliform, and Escherichia coli |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, V.T.; Mateus, N.; de Freitas, V.; Fernandes, A. Plant-Based Meat Analogues: Exploring Proteins, Fibers and Polyphenolic Compounds as Functional Ingredients for Future Food Solutions. Foods 2024, 13, 2303. https://doi.org/10.3390/foods13142303
da Silva VT, Mateus N, de Freitas V, Fernandes A. Plant-Based Meat Analogues: Exploring Proteins, Fibers and Polyphenolic Compounds as Functional Ingredients for Future Food Solutions. Foods. 2024; 13(14):2303. https://doi.org/10.3390/foods13142303
Chicago/Turabian Styleda Silva, Vasco Trincão, Nuno Mateus, Victor de Freitas, and Ana Fernandes. 2024. "Plant-Based Meat Analogues: Exploring Proteins, Fibers and Polyphenolic Compounds as Functional Ingredients for Future Food Solutions" Foods 13, no. 14: 2303. https://doi.org/10.3390/foods13142303
APA Styleda Silva, V. T., Mateus, N., de Freitas, V., & Fernandes, A. (2024). Plant-Based Meat Analogues: Exploring Proteins, Fibers and Polyphenolic Compounds as Functional Ingredients for Future Food Solutions. Foods, 13(14), 2303. https://doi.org/10.3390/foods13142303