Physicochemical and Sensory Properties and Antioxidant Activity of Xylitol Candies Containing Yuja (Citrus junos) Peels or Pulp
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Candy
2.2. Analysis of Proximate Composition
2.3. Melting Properties Measurement
2.4. Food Texture Analysis
2.5. Analysis of Antioxidant Compound
2.6. Determination of Antioxidant Activities
2.7. Electronic Tongue Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Proximate Composition
3.2. Melting Properties and Texture Analysis
3.3. Antioxidant Compound Contents
3.4. Antioxidant Activities
3.5. Sensory Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baek, S.Y.; Kim, E.J.; Li, F.Y.; Choi, H.J.; Kim, M.R. Physicochemical properties and antioxidant activities of tetraploid ‘Etteum’ variety Platycodon grandiflorum Jungkwa substituted for sucrose with different sugar alcohols. J. Korean Soc. Food Sci. Nutr. 2017, 46, 1477–1485. [Google Scholar] [CrossRef]
- Alkhaldi, A.K.; Alshiddi, H.; Aljubair, M.; Alzahrani, S.; Alkhaldi, A.; Al-Khalifa, K.S.; Gaffar, B. Sex differences in oral health and the consumption of sugary diets in a Saudi Arabian population. Patient Prefer. Adherence 2021, 15, 1121–1131. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Chen, D.; Chan, C.; Yeh, Y.; Chen, H. ‘I Knew I Should Stop, but I Couldn’t Control Myself’: A qualitative study to explore the factors influencing adolescents’ consumption of sugar-sweetened beverages and sugary snacks from a socio-ecological perspective. Public. Health Nutr. 2022, 25, 2465–2474. [Google Scholar] [CrossRef] [PubMed]
- Kaur, K.K. Obesity and Oral Health-Emphasis on Early Childhood Caries (ECC) and Trying to Implement Prevention Strategies Right from Neonatal Age Besides Updating on other Causes of the Same-A Mini Review. EC Dent. Sci. 2019, 18, 51–60. [Google Scholar]
- Pinheiro, M.V.S.; Oliveira, M.N.d.; Penna, A.L.B.; Tamime, A.Y. The effect of different sweeteners in low-calorie yogurts—A review. Int. J. Dairy Technol. 2005, 58, 193–199. [Google Scholar] [CrossRef]
- Beer, J.H.; Allemann, M. Xylitol: Bitter cardiovascular data for a successful sweetener. Eur. Heart J. 2024, 45, 2453–2455. [Google Scholar] [CrossRef] [PubMed]
- Umai, D.; Kayalvizhi, R.; Kumar, V.; Jacob, S. Xylitol: Bioproduction and applications-a review. Front. Sustain. 2022, 3, 826190. [Google Scholar] [CrossRef]
- Mussatto, S.I. Application of xylitol in food formulations and benefits for health. In D-Xylitol: Fermentative Production, Application and Commercialization; Springer: Berlin/Heidelberg, Germnay, 2012; pp. 309–323. [Google Scholar] [CrossRef]
- Ur-Rehman, S.; Mushtaq, Z.; Zahoor, T.; Jamil, A.; Murtaza, M.A. Xylitol: A review on bioproduction, application, health benefits, and related safety issues. Crit. Rev. Food Sci. Nutr. 2015, 55, 1514–1528. [Google Scholar] [CrossRef]
- Cong, Y.-J.; Zhang, H.-Y. Optimization of fermentation process of xylitol fig mulberry fruit yogurt using fuzzy mathematics method combined with response surface method. Food Res. Dev. 2021, 42, 127–135. [Google Scholar]
- Miller, C.S.; Danaher, R.J.; Kirakodu, S.; Carlson, C.R.; Mumper, R.J. Effect of chewing gum containing Xylitol and blackberry powder on oral bacteria: A randomized controlled crossover trial. Arch. Oral Biol. 2022, 143, 105523. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Jeong, B.; Song, W.; Jung, J.; Chun, J. Enhancement of functional and sensory properties of eastern prickly pear (Opuntia humifusa) by fermentation with yuza peel and guava leaf. Food Biosci. 2021, 41, 100921. [Google Scholar] [CrossRef]
- Samanta, S.; Banerjee, J.; Ahmed, R.; Dash, S.K. Potential Benefits of Bioactive Functional Components of Citrus Fruits for Health Promotion and Disease Prevention. In Recent Advances in Citrus Fruits; Springer: Berlin/Heidelberg, Germany, 2023; pp. 451–499. [Google Scholar]
- Yoo, K.; Moon, B. Comparative carotenoid compositions during maturation and their antioxidative capacities of three citrus varieties. Food Chem. 2016, 196, 544–549. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Oh, G.T.; Park, Y.B.; Lee, M.; Seo, H.; Choi, M. Naringin alters the cholesterol biosynthesis and antioxidant enzyme activities in LDL receptor-knockout mice under cholesterol fed condition. Life Sci. 2004, 74, 1621–1634. [Google Scholar] [CrossRef] [PubMed]
- Zang, L.; Shimada, Y.; Kawajiri, J.; Tanaka, T.; Nishimura, N. Effects of Yuzu (Citrus junos Siebold ex Tanaka) peel on the diet-induced obesity in a zebrafish model. J. Funct. Foods 2014, 10, 499–510. [Google Scholar] [CrossRef]
- Hwang, J.; Yang, H.J.; Ha, K.; So, B.; Choi, E.; Chae, S. A randomized, double-blind, placebo-controlled clinical trial to investigate the anti-diabetic effect of Citrus junos Tanaka peel. J. Funct. Foods 2015, 18, 532–537. [Google Scholar] [CrossRef]
- Nam, S.; Cho, H.; Jeong, H.; Lee, B.; Cho, Y.; Rameeza, F.; Eun, J. Physiochemical properties, dietary fibers, and functional characterization of three yuzu cultivars at five harvesting times. Food Sci. Biotechnol. 2021, 30, 117–127. [Google Scholar] [CrossRef]
- Moon, S.H.; Assefa, A.D.; Ko, E.Y.; Park, S.W. Comparison of flavonoid contents and antioxidant activity of yuzu (Citrus junos Sieb. ex Tanaka) based on harvest time. Hortic. Sci. Technol. 2015, 33, 283–291. [Google Scholar] [CrossRef]
- Lee, M.; Yoon, J.; Lee, H. Comparison of the Preadipocyte Differentiation Inhibitory Effects and Antioxidant Activities of Immature and Mature Yuzu Peel Hot Water Extracts In Vitro. J. Korean Soc. Food Sci. Nutr. 2023, 52, 1005–1012. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Biglari, F.; AlKarkhi, A.F.; Easa, A.M. Antioxidant activity and phenolic content of various date palm (Phoenix dactylifera) fruits from Iran. Food Chem. 2008, 107, 1636–1641. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.P.; Xavier, K.M.; Nayak, B.B.; Kumar, H.S.; Venkateshwarlu, G.; Balange, A.K. Effect of different drying methods on the quality characteristics of Pangasius hypophthalmus. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 184–195. [Google Scholar] [CrossRef]
- Cappa, C.; Lavelli, V.; Mariotti, M. Fruit candies enriched with grape skin powders: Physicochemical properties. LWT-Food Sci. Technol. 2015, 62, 569–575. [Google Scholar] [CrossRef]
- Urooj, A. Development of fruit candies from wood apple (Limonia acidissim) and passion fruit (Passiflora edulis), nutritional and acceptability study during storage. J. Food Diet. Res. 2021, 1, 14–18. [Google Scholar] [CrossRef]
- Anjliany, M.; Nabilah, T.A.; Syafutri, M.I. Variation of Pectin and Sugar Concentration on The Characteristic of Passion Fruit Gummy Candy. Indones. Food Sci. Technol. J. 2022, 6, 19–26. [Google Scholar] [CrossRef]
- Lee, S.; Shin, J.; Kang, M.; Jeong, C.; Ju, J.; Sung, N. Physicochemical properties, free sugar and volatile compounds of Korean citrons cultivated in different areas. J. Korean Soc. Food Sci. Nutr. 2010, 39, 92–98. [Google Scholar] [CrossRef]
- Tarahi, M.; Mohamadzade Fakhr-davood, M.; Ghaedrahmati, S.; Roshanak, S.; Shahidi, F. Physicochemical and sensory properties of vegan gummy candies enriched with high-fiber jaban watermelon exocarp powder. Foods 2023, 12, 1478. [Google Scholar] [CrossRef]
- DeMars, L.L.; Ziegler, G.R. Texture and structure of gelatin/pectin-based gummy confections. Food Hydrocoll. 2001, 15, 643–653. [Google Scholar] [CrossRef]
- Shin, J.; Baek, S.; Rhee, K. Effect of Color on Taste of Foods-I. Effect of Color on Flavor Identification of Candies. J. Korean Soc. Food Cult. 1990, 5, 473–480. [Google Scholar]
- Spanemberg, F.E.; Korzenowski, A.L.; Sellitto, M.A. Effects of sugar composition on shelf life of hard candy: Optimization study using D-optimal mixture design of experiments. J. Food Process Eng. 2019, 42, e13213. [Google Scholar] [CrossRef]
- Ozel, B.; Kuzu, S.; Marangoz, M.A.; Dogdu, S.; Morris, R.H.; Oztop, M.H. Hard Candy Production and Quality Parameters: A review. Open Res. Eur. 2024, 4, 60. [Google Scholar] [CrossRef]
- Garcia Loredo, A.B.; Guerrero, S.N. Correlation between instrumental and sensory ratings by evaluation of some texture reference scales. Int. J. Food Sci. Tech. 2011, 46, 1977–1985. [Google Scholar] [CrossRef]
- Sahlan, M.; Ridhowati, A.; Hermansyah, H.; Wijanarko, A.; Rahmawati, O.; Pratami, D.K. Formulation of hard candy contains pure honey as functional food. In AIP Conference Proceedings; AIP Publishing: Baltimore, MD, USA, 2019. [Google Scholar]
- Rathod, N.B.; Elabed, N.; Punia, S.; Ozogul, F.; Kim, S.; Rocha, J.M. Recent developments in polyphenol applications on human health: A review with current knowledge. Plants 2023, 12, 1217. [Google Scholar] [CrossRef] [PubMed]
- Assefa, A.D.; Saini, R.K.; Keum, Y.S. Extraction of antioxidants and flavonoids from yuzu (Citrus junos Sieb ex Tanaka) peels: A response surface methodology study. J. Food Meas. Charact. 2017, 11, 364–379. [Google Scholar] [CrossRef]
- Yoo, K.; Lee, C.; Hwang, I. Preparation of chocolate added with Yuza (Citrus junos Seib ex Tanaka) and its antioxidant characteristics. Korean J. Food Cook. Sci. 2008, 24, 222–227. [Google Scholar]
- Hwang, S.; Jang, J.; Kim, M.; Kim, K. The change of free sugar, hesperidine, naringin, flavonoid contents and antihypertensive activities of yuza variety according to harvest date. Korean J. Food Nutr. 2014, 27, 1051–1058. [Google Scholar] [CrossRef]
- Rahaman, M.M.; Hossain, R.; Herrera-Bravo, J.; Islam, M.T.; Atolani, O.; Adeyemi, O.S.; Owolodun, O.A.; Kambizi, L.; Daştan, S.D.; Calina, D. Natural antioxidants from some fruits, seeds, foods, natural products, and associated health benefits: An update. Food Sci. Nutr. 2023, 11, 1657–1670. [Google Scholar] [CrossRef] [PubMed]
- Poljsak, B.; Kovač, V.; Milisav, I. Antioxidants, food processing and health. Antioxidants 2021, 10, 433. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical methods used in determining antioxidant activity: A review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Kim, J.; Cho, H.; Hong, S.; Lee, J.; Lee, Y.; Kim, D.; Seo, K. Antioxidant and antiproliferating effects of Setaria italica, Panicum miliaceum and Sorghum bicolor extracts on prostate cancer cell lines. Korean J. Food Preserv. 2016, 23, 1033–1041. [Google Scholar] [CrossRef]
- Jeon, S.; Lee, J.; Kim, H.; Lee, Y.; Jang, H.; Hwang, K.; Kim, H.; Park, D. Antioxidant activity of extracts and fractions from Aster scaber. J. Korean Soc. Food Sci. Nutr. 2012, 41, 1197–1204. [Google Scholar] [CrossRef]
- Choi, E.; Lee, M.; Oh, M. Quality characteristics of Jeju mandarin orange jellies with sugar derivative sweeteners for consumption by the elderly. J. Korean Soc. Food Cult. 2009, 24, 212–218. [Google Scholar]
CON * | MYP-C | IYP-C | YP-C | |
---|---|---|---|---|
Moisture (%) | 0.02 ± 0.002 | 0.02 ± 0.002 | 0.03 ± 0.003 | 0.02 ± 0.002 |
Crude lipid (%) | 0.45 ± 0.05 a | 0.96 ± 0.02 b | 0.84 ± 0.05 b | 0.83 ± 0.07 b |
Crude protein (%) | 2.95 ± 0.12 | 2.45 ± 0.23 | 3.23 ± 0.07 | 3.01 ± 0.189 |
Crude ash (%) | 0.04 ± 0.01 a | 0.18 ± 0.01 b | 0.18 ± 0.00 b | 0.02 ± 0.00 a |
Carbohydrate (%) | 96.54 ± 0.16 b | 96.39 ± 0.24 ab | 95.72 ± 0.04 a | 96.12 ± 0.14 ab |
CON * | MYP-C | IYP-C | YP-C | |
---|---|---|---|---|
L* | 79.01 ± 0.14 d | 69.59 ± 0.08 b | 66.25 ± 0.02 a | 72.05 ± 0.05 c |
a* | 0.90 ± 0.05 a | 6.57 ± 0.04 c | 3.87 ± 0.02 b | 1.04 ± 0.02 a |
b* | −0.57 ± 0.03 a | 23.50 ± 0.10 d | 17.55 ± 0.04 c | 8.90 ± 0.01 b |
Hardness (kg) | 44.35 ± 1.03 c | 35.90 ± 0.49 b | 37.00 ± 1.02 b | 3.27 ± 0.22 a |
Fracturability (kg) | 11.17 ± 0.54 c | 2.70 ± 0.18 b | 2.94 ± 0.28 b | 0.31 ± 0.01 a |
CON * | MYP-C | IYP-C | YP-C | |
---|---|---|---|---|
Total polyphenol (mg GAE/g) | 6.80 ± 0.21 a | 61.74 ± 2.93 c | 89.21 ± 4.04 d | 43.64 ± 1.85 b |
Total flavonoid (mg RE/g) | 3.43 ± 0.60 a | 35.15 ± 2.82 c | 53.94 ± 2.78 d | 16.18 ± 3.05 b |
Naringin (mg/100 g) | 0.00 ± 0.00 a | 13.26 ± 0.38 b | 13.11 ± 0.50 b | 0.00 ± 0.00 a |
Hesperidin (mg/100 g) | 0.00 ± 0.00 a | 32.70 ± 0.59 b | 33.34 ± 1.72 b | 0.00 ± 0.00 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Im, J.-H.; Lee, M.-K.; Lee, H.-I. Physicochemical and Sensory Properties and Antioxidant Activity of Xylitol Candies Containing Yuja (Citrus junos) Peels or Pulp. Foods 2024, 13, 2396. https://doi.org/10.3390/foods13152396
Im J-H, Lee M-K, Lee H-I. Physicochemical and Sensory Properties and Antioxidant Activity of Xylitol Candies Containing Yuja (Citrus junos) Peels or Pulp. Foods. 2024; 13(15):2396. https://doi.org/10.3390/foods13152396
Chicago/Turabian StyleIm, Ju-Hye, Mi-Kyung Lee, and Hae-In Lee. 2024. "Physicochemical and Sensory Properties and Antioxidant Activity of Xylitol Candies Containing Yuja (Citrus junos) Peels or Pulp" Foods 13, no. 15: 2396. https://doi.org/10.3390/foods13152396
APA StyleIm, J. -H., Lee, M. -K., & Lee, H. -I. (2024). Physicochemical and Sensory Properties and Antioxidant Activity of Xylitol Candies Containing Yuja (Citrus junos) Peels or Pulp. Foods, 13(15), 2396. https://doi.org/10.3390/foods13152396