Quality Optimization and Evaluation of New Cookie Product with Celery Root Powder Addition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Combined Method of Dehydration
2.3. Convective Drying
2.4. Lyophilization
2.5. Cookie Samples Preparation
2.6. Technological Parameters Analysis
2.7. Texture Instrumental Analysis
2.8. Color Instrumental Analysis
2.9. Descriptive Sensory Analysis
2.10. Chemical Analysis
2.11. Minerals Analysis
2.12. Phenol Content and Antioxidant Activity Analysis
2.13. Methods of Statistical Analysis
2.13.1. Analysis of Variance
2.13.2. Z-Score Analysis
2.13.3. Principle Component Analysis
3. Results and Discussion
3.1. Technological Quality of Cookies
3.2. Textural Parameters of Cookies
3.3. Color Parameters of Cookies
3.4. Sensory Profile of Cookies
3.5. Chemical Composition of Cookies
3.6. Mineral Composition of Cookies
3.7. Antioxidant Activity of Cookies
3.8. Optimization of Celery Powder Addition
3.9. The Influence of Dehydration Method of Celery on Technological and Nutritional Quality of Cookies
3.10. PCA
3.11. Evaluation of the Overall Quality of the Cookies with Celery Root Powder Addition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Priecina, L.; Karlina, D. Natural antioxidant changes in fresh and dried spices and vegetables. Int. J. Food Eng. 2014, 8, 492–496. [Google Scholar]
- Golubkina, N.A.; Kharchenko, V.A.; Moldovan, A.I.; Koshevarov, A.A.; Zamana, S.; Nadezhkin, S.; Soldatenko, A.; Sekara, A.; Tallarita, A.; Caruso, G. Yield, growth, quality, biochemical characteristics and elemental composition of plant parts of celery leafy, stalk and root types grown in the northern hemisphere. Plants 2020, 9, 484. [Google Scholar] [CrossRef] [PubMed]
- Goldewska, K.; Pacyga, P.; Michalak, I.; Biesiada, A.; Szumny, A.; Pachura, N.; Piszcz, U. Field-Scale evaluation of botanical extracts effect on the yield, chemical composition and antioxidant activity of celeriac (Apium graveolens L. var. rapaceum). Molecules 2020, 25, 4212. [Google Scholar]
- Kaiser, A.; Hartmann, K.I.; Kammerer, D.R.; Carle, R. Evaluation of the effects of thermal treatments on colour, polyphenol stability, enzyme activities and antioxidant capacities of innovative pasty celeriac (Apium graveolens L. var. rapaceum (Mill.) DC.) products. Eur. Food Res. Technol. 2013, 237, 353–365. [Google Scholar] [CrossRef]
- Pajevic, S.P.; Mimica-Dukić, N.M.; Nemeš, I.M.; Župunski, M.D.; Simin, N.D.; Watson, M.A.; Arsenov, D.D. Arsenic content and phenolic compounds in parsley (Petroselinum crispum (mill.) Fuss) and celery (Apium graveolens L.) cultivated in Vojvodina region, Serbia. Food Feed Res. 2021, 48, 213–225. [Google Scholar] [CrossRef]
- Beltrán Sanahuja, A.; Ponce Landete, M.; Domingo Martínez, M.I.; Prats Moya, M.S.; Valdés García, A. Optimization of volatile compounds extraction from industrial celery (Apium graveolens) by-products by using response surface methodology and study of their potential as antioxidant sources. Foods 2021, 10, 2664. [Google Scholar] [CrossRef]
- Szarek, N.; Jaworska, G.; Hanus, P. Profile of phenolic compounds and antioxidant activity of celery (Apium graveolens) juices obtained from pulp after α-amylase treatment from Aspergillus oryzae. Molecules 2024, 29, 1438. [Google Scholar] [CrossRef]
- Wang, N.; Xu, Y.; Chao, H.; Zhang, M.; Zhou, Y.; Wang, M. Effects of celery powder on wheat dough properties and textural, antioxidant and starch digestibility properties of bread. J. Food Sci. Technol. 2020, 57, 1710–1718. [Google Scholar] [CrossRef]
- Kręcisz, M.; Kolniak-Ostek, J.; Łyczko, J.; Stępień, B. Evaluation of bioactive compounds, volatile compounds, drying process kinetics and selected physical properties of vacuum impregnation celery dried by different methods. Food Chem. 2023, 413, 135490. [Google Scholar] [CrossRef]
- Krešić, G.; Lelas, V.; Šimundić, B. Effects of processing on nutritional composition and quality evaluation of candied celeriac. Sadhana 2004, 29, 1–12. [Google Scholar] [CrossRef]
- Marić, L.; Malešić, E.; Jurinjak Tušek, A.; Benković, M.; Valinger, D.; Jurina, T.; Gajdoš Kljusurić, J. Effects of drying on physical and chemical properties of root vegetables: Artificial neural network modelling. Food Bioprod. Process. 2020, 119, 148–160. [Google Scholar] [CrossRef]
- Ignaczak, A.; Salamon, A.; Kowalska, J.; Marzec, A.; Kowalska, H. Influence of pre-treatment and drying methods on the quality of dried carrot properties as snacks. Molecules 2023, 28, 6407. [Google Scholar] [CrossRef]
- Filipović, V.; Filipović, J.; Lončar, B.; Knežević, V.; Nićetin, M.; Vujačić, V. Modeling the effects of osmotic dehydration pretreatment parameters and lyophilization kinetics on mass transfer and selected nutritive parameters of peaches. Period. Polytech. Chem. Eng. 2022, 66, 650–659. [Google Scholar] [CrossRef]
- Molina-Cortés, A.; Sánchez-Motta, T.; Tobar-Tosse, F.; Quimbaya, M. Spectrophotometric estimation of total phenolic contentand antioxidant capacity of molasses and vinasses generated from the sugar industry. Waste Biomass Valoriz. 2020, 11, 3453–3463. [Google Scholar] [CrossRef]
- Shafiqa-Atikah, M.K.; Nor-Khaizura, M.A.R.; Mahyudin, N.A.; Abas, F.; Nur-Syifa’, J.; Ummul-Izzatul, Y. Evaluation of phenolic constituent, antioxidant and antibacterial activities of sugarcane molasses towards foodborne pathogens. Food Res. 2020, 4, 40–47. [Google Scholar]
- Cvetković, B.; Pezo, L.; Mišan, A.; Mastilović, J.; Kevrešan, Ž.; Ilić, N.; Filipčev, B. The effects of osmotic dehydration of whitecabbage on polyphenols and mineral content. LWT—Food Sci. Technol. 2019, 110, 332–337. [Google Scholar] [CrossRef]
- Šobot, K.; Laličić-Petronijević, J.; Filipović, V.; Nićetin, M.; Filipović, J.; Popović, L. Contribution of osmotically dehydrated wild garlic on biscuits’ quality parameters. Period. Polytech. Chem. Eng. 2019, 63, 499–507. [Google Scholar] [CrossRef]
- Nićetin, M.; Pezo, L.; Filipović, V.; Lončar, B.; Filipović, J.; Šuput, D.; Knežević, V. Effects of solution type temperature and time on antioxidant capacity of osmotically dried celery leaves. Therm. Sci. 2021, 25, 1759–1770. [Google Scholar] [CrossRef]
- Zlatanović, S.; Kalušević, A.; Micić, D.; Laličić-Petronijević, J.; Tomić, N.; Ostojić, S.; Gorjanović, S. Functionality and storability of cookies fortified at the industrial scale with up to 75% of apple pomace flour produced by dehydration. Foods 2019, 8, 561. [Google Scholar] [CrossRef]
- Dauda, A.O.; Abiodun, O.A.; Arise, A.K.; Oyeyinka, S.A. Nutritional and consumers acceptance of biscuit made from wheat flour fortified with partially defatted groundnut paste. LWT—Food Sci. Technol. 2018, 90, 265–269. [Google Scholar] [CrossRef]
- Šoronja-Simović, D.; Pajin, B.; Šubarić, D.; Dokić, L.; Šereš, Z.; Nikolić, I. Quality, sensory and nutritional characteristics of cookies fortified with chestnut flour. J. Food Process. Preserv. 2017, 41, e12887. [Google Scholar] [CrossRef]
- Pinto, D.; Moreira, M.M.; Vieira, E.F.; Švarc-Gajić, J.; Vallverdú-Queralt, A.; Brezo-Borjan, T.; Delerue-Matos, C.; Rodrigues, F. Development and characterization of functional cookies enriched with chestnut shells extract as source of bioactive phenolic compounds. Foods 2023, 12, 640. [Google Scholar] [CrossRef] [PubMed]
- Kaur, M.; Singh, V.; Kaur, R. Effect of partial replacement of wheat flour with varying levels of flaxseed flour on physicochemical, antioxidant and sensory characteristics of cookies. Bioact. Carbohydr. Diet. Fibre 2017, 9, 14–20. [Google Scholar] [CrossRef]
- Klunklin, W.; Savage, G. Biscuits: A substitution of wheat flour with purple rice flour. Adv. Food Sci. Eng. 2018, 2, 81–97. [Google Scholar] [CrossRef]
- Galla, N.R.; Pamidighantam, R.P.; Karakala, B.; Gurusiddaiah, R.M.; Akula, S. Nutritional, textural and sensory quality of biscuits supplemented with spinach (Spinacia oleracea L.). Int. J. Gastron. Food Sci. 2017, 7, 20–26. [Google Scholar] [CrossRef]
- AACC International. 10–50D: Baking Quality of Cookie Flour. In Approved Methods of the American Association of Cereal Chemists, 10th ed.; AACC International: St. Paul, MN, USA, 2000. [Google Scholar]
- Filipović, V.; Lončar, B.; Filipović, J.; Nićetin, M.; Knežević, V.; Šeregelj, V.; Košutić, M.; Bodroža, S.M. Addition of combinedly dehydrated peach to the cookies—Technological quality testing and optimization. Foods 2022, 11, 1258. [Google Scholar] [CrossRef] [PubMed]
- ISO 6658:2017; Sensory Analysis—Methodology—General Guidance. ISO: Geneva, Switzerland, 2017.
- ISO 4121:2003; Sensory Analysis—Guidelines for the Use of Quantitative Response Scales. ISO: Geneva, Switzerland, 2003.
- ISO 8589:2007; Sensory Analysis—General Guidance for the Design of Test Rooms. ISO: Geneva, Switzerland, 2007.
- Horwitz, W. Official Methods of Analysis of AOAC International, 21st ed.; AOAC International: Gaithersburg, MD, USA, 2019. [Google Scholar]
- Tumbas Šaponjac, V.; Ćetković, G.; Čanadanović-Brunet, J.; Pajin, B.; Ðilas, S.; Petrović, J.; Lončarević, I.; Stajčić, S.; Vulić, J. Sour cherry pomace extract encapsulated in whey and soy proteins: Incorporation in cookies. Food Chem. 2016, 207, 27–33. [Google Scholar] [CrossRef]
- Tumbas Šaponjac, V.; Girones-Vilaplana, A.; Djilas, S.; Mena, P.; Ćetković, G.; Moreno, D.A.; Čanadanović-Brunet, J.; Vulić, J.; Stajčić, S.; Krunić, M. Anthocyanin profiles and biological properties of caneberry (Rubus spp.) press residues. J. Sci. Food Agric. 2014, 94, 2393–2400. [Google Scholar] [CrossRef] [PubMed]
- Aborus, N.E.; TumbasŠaponjac, V.; Čanadanović-Brunet, J.; Ćetković, G.; Hidalgo, A.; Vulić, J.; Šeregelj, V. Sprouted and freeze-dried wheat and oat seeds—Phytochemical profile and in vitro biological activities. Chem. Biodivers. 2018, 15, e1800119. [Google Scholar] [CrossRef]
- Filipčev, B.; Šimurina, O.; Bodroža, S.M.; Brkljača, J. Dough rheological properties in relation to cracker-making performance of organically grown spelt cultivars. Int. J. Food Sci. Technol. 2013, 48, 2356–2362. [Google Scholar] [CrossRef]
- Ghaboos, H.; Ardabili, S.; Kashaninejad, M. Physico-chemical, textural and sensory evaluation of sponge cake supplemented with pumpkin flour. Int. Food Res. J. 2018, 25, 854–860. [Google Scholar]
- Mamat, H.; Hardan, M.; Hill, S. Physicochemical properties of commercial semi-sweet biscuit. Food Chem. 2010, 121, 1029–1038. [Google Scholar] [CrossRef]
- Salehi, F.; Aghajanzadeh, S. Effect of dried fruits and vegetables powder on cakes quality: A review. Trends Food Sci. Technol. 2020, 95, 162–172. [Google Scholar] [CrossRef]
- Lauková, M.; Kohajdová, Z.; Karovičová, J.; Kuchtová, V.; Minarovičová, L.; Tomášiková, L. Effects of cellulose fiber with different fiber length on rheological properties of wheat dough and quality of baked rolls. Food Sci. Technol. Int. 2017, 23, 490–499. [Google Scholar] [CrossRef]
- Sowmya, R.S.; Sugriv, G.; Annapure, U.S. Effect of basil herb on cookies development and its effect on the nutritive, elemental, phytochemical, textural and sensory quality. J. Food Sci. Technol. 2022, 59, 3482–3491. [Google Scholar] [CrossRef]
- Drisya, C.R.; Swetha, B.G.; Velu, V.; Indrani, D.; Singh, R.P. Effect of dried Murrayakoenigii leaves on nutritional, textural and sensory characteristics of cookies. J. Food Sci. Technol. 2015, 2, 500–506. [Google Scholar] [CrossRef]
- Deepali, M.; Roji, W. The fortification of biscuits with coriander leaf powder and its effect on physico-chemical, antioxidant, nutritional and organoleptic characteristics. Int. J. Food Stud. 2019, 9, 225–237. [Google Scholar]
- Pestorić, M.; Šimurina, O.; Filipčev, B.; Jambrec, D.; Belović, M.; Mišan, A.; Nedeljković, N. Relationship of physicochemical characteristics with sensory profile of cookies enriched with medicinal herbs. Int. J. Food Prop. 2015, 18, 2699–2712. [Google Scholar] [CrossRef]
- Parul, S.; Rakhi, S.; Alok, J.; Prasad, R.; Anuj Kumar, G. Optimization of a process for high fibre and high protein biscuit. J. Food Sci. Technol. 2015, 52, 1394–1403. [Google Scholar]
- Šarić, L.; Filipčev, B.; Šimurina, O.; Plavšić, D.; Šarić, B.; Lazarević, J.; Milovanović, I. Sugar beet molasses: Properties and applications in osmotic dehydration of fruits and vegetables. Food Feed Res. 2016, 43, 135–144. [Google Scholar] [CrossRef]
- Lončar, B.; Pezo, L.; Filipović, V.; Nićetin, M.; Filipović, J.; Pezo, M.; Šuput, D.; Aćimović, M. Physico-chemical, textural and sensory evaluation of spelt muffins supplemented with apple powder enriched with sugar beet molasses. Foods 2022, 11, 1750. [Google Scholar] [CrossRef]
- Mitrevski, J.; Pantelić, N.Đ.; Dodevska, M.S.; Kojić, J.S.; Vulić, J.J.; Zlatanović, S.; Gorjanović, S.; Laličić-Petronijević, J.; Marjanović, S.; Antić, V.V. Effect of beetroot powder incorporation on functional properties and shelf life of biscuits. Foods 2023, 12, 322. [Google Scholar] [CrossRef]
- Thorat, P.P.; Sawate, A.R.; Patil, B.M.; Kshirsagar, R.B. Effect of lemongrass powder on proximate and phytochemical content of herbal cookies. J. Pharm. Phytochem. 2017, 6, 155–159. [Google Scholar]
- Agrahar-Murugkar, D. Food to food fortification of breads and biscuits with herbs, spices, millets and oilseeds on bio-accessibility of calcium, iron and zinc and impact of proteins, fat and phenolics. LWT—Food Sci. Technol. 2020, 130, 109703. [Google Scholar] [CrossRef]
- Filipčev, B.; Mišan, A.; Šarić, B.; Šimurina, O. Sugar beet molasses as an ingredient to enhance the nutritional and functional properties of gluten-free cookies. Int. J. Food Sci. Nutr. 2016, 67, 249–256. [Google Scholar] [CrossRef]
- Shuchi, U.; Soobia, A.K.; Rajeev, T.; Sanjay, K.; Deepikakohli, I.R.; Poonam, M.; Richa, B. Nutritional and sensory evaluation of herbal cookies. Int. J. Food Sci. Nutr. 2017, 2, 156–160. [Google Scholar]
- Kajal, P.; Salman, K.; Shubham, S.; Mhd Shahid, K.; Khinchi, M.P. Formulation of polyherbal antidiabetic cookies. J. Chem. Pharm. Res. 2018, 10, 91–97. [Google Scholar]
- Filipčev, B.; Šimurina, O.; Mišan, A.; Šarić, B.; Filipović, V.; Lončar, M.; Nićetin, M. Antioxidant activity and phenolic compounds in gluten-free cookies enriched with sugar beet molasses. In Proceedings of the IV International Congress “Engineering, Environment and Materials in Processing Industry”, Jahorina, Bosnia and Herzegovina, 4–6 March 2015; pp. 1135–1140. [Google Scholar]
- Mordenti, A.L.; Giaretta, E.; Campidonico, L.; Parazza, P.; Formigoni, A. A review regarding the use of molasses in animal nutrition. Animals 2021, 11, 115. [Google Scholar] [CrossRef]
- Chen, M.; Zhao, Y.; Meng, H.; Proffesor, S. The antibiotic activity and mechanisms of sugar beet (Beta vulgaris) molasses polyphenols against selected food-borne pathogens. LWT—Food Sci. Technol. 2017, 82, 354–360. [Google Scholar] [CrossRef]
- Sorour, M.; Hassanen, N.H.M.; Ahmed, H.M. Natural antioxidant changes in fresh and dried celery (Apium graveolens). Am. J. Energy Eng. 2015, 3, 12–16. [Google Scholar] [CrossRef]
- Salamatullah, A.; Ozcan, M.; Alkaltham, M.; Uslu, N.; Hayat, K. Influence of boiling on total phenol, antioxidant activity, and phenolic compounds of celery (Apium graveolens L.) root. J. Food Process. Preserv. 2020, 45, e15171. [Google Scholar]
- Ramachandraiah, K.; Chin, K.B. Impact of drying and micronization on the physicochemical properties andantioxidant activities of celery stalk. J. Sci. Food Agric. 2017, 97, 4539–4547. [Google Scholar] [CrossRef]
- Filipović, V.; Nićetin, M.; Filipović, J.; Stupar, A.; Kojić, J.; Lončarević, I.; Šobot, K.; Laličić-Petronijević, J. Evaluation of cookies enriched with osmodehydrated wild garlic from nutritional and sensory aspects. Foods 2024, 13, 1941. [Google Scholar] [CrossRef]
Research Phase: | The First | The Second | |||||||
---|---|---|---|---|---|---|---|---|---|
Sample no: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Wheat white flour (%) | 100 | 95 | 90 | 85 | 80 | 75 | 70 | 80 | 80 |
O.D. + L. celery root (% dry matter (d.m.)) * | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 0 | 0 |
C.D. celery root (% d.m.) ** | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 20 | 0 |
L. celery root (% d.m.) *** | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 20 |
Cookie samples formulation, uniform for all samples | |||||||||
Wheat white flour/flour mixture (g) | 56.25 | ||||||||
Margarine (g) | 16.00 | ||||||||
Sugar (g) | 0.56 | ||||||||
NaCl (g) | 0.53 | ||||||||
NaHCO3 (g) | 0.63 | ||||||||
Tap water (g) | 12.50 |
Sample No: | BWL (%) | DWL (%) | T (mm) | R (mm) | R/T |
---|---|---|---|---|---|
1 | 25.22 ± 0.51 e | 0.96 ±0.13 e | 55.05 ± 0.81 f | 97.05 ± 0.83 a | 1.76 ± 0.01 a |
2 | 21.37 ± 0.73 d | 0.91 ± 0.09 e | 53.12 ± 0.76 e | 98.43 ± 0.49 ab | 1.85 ± 0.02 b |
3 | 18.97 ± 1.04 c | 0.86 ± 0.06 de | 50.43 ± 0.63 d | 98.91 ± 0.39 a–c | 1.96 ± 0.02 c |
4 | 17.91 ± 0.44 bc | 0.77 ± 0.03 c–e | 49.74 ± 0.81 cd | 99.27 ± 0.23 b–d | 2.00 ± 0.03 c |
5 | 17.00 ± 0.46 ab | 0.65 ± 0.04 bc | 48.42 ± 0.49 bc | 99.73 ± 0.38 b–d | 2.06 ± 0.01 d |
6 | 16.59 ± 0.36 ab | 0.53 ± 0.05 ab | 47.12 ± 0.37 ab | 100.51 ± 0.73 cd | 2.13 ± 0.00 e |
7 | 15.96 ± 0.30 a | 0.37 ± 0.01 a | 46.24 ± 0.67 a | 101.12 ± 1.20 d | 2.19 ± 0.01 f |
Sample No: | Hardness (N) | Fracturability (mm) |
---|---|---|
1 | 2091.73 ± 193.53 a | 1.30 ± 0.20 a |
2 | 2483.43 ± 204.43 ab | 1.71 ± 0.12 ab |
3 | 2798.05 ± 424.90 ab | 2.09 ± 0.09 bc |
4 | 3297.34 ± 241.17 bc | 2.27 ± 0.19 cd |
5 | 3923.50 ± 300.53 cd | 2.49 ± 0.16 c–e |
6 | 4643.45 ± 401.27 de | 2.65 ± 0.21 de |
7 | 5299.71 ± 534.12 e | 2.84 ± 0.25 e |
Sample No: | L | a | b | ΔΕ |
---|---|---|---|---|
1 | 57.79 ± 1.01 f | 6.55 ± 0.13 ab | 22.72 ± 0.29 f | 0 |
2 | 55.19 ± 1.09 e | 6.81 ± 0.19 ab | 20.19 ± 0.18 e | 3.64 ± 0.02 a |
3 | 50.97 ± 0.51 d | 7.35 ± 0.28 bc | 18.11 ± 0.13 d | 8.27 ± 0.52 c |
4 | 46.53 ± 0.61 c | 8.24 ± 0.47 cd | 16.01 ± 0.29 c | 13.22 ± 0.38 d |
5 | 41.98 ± 0.37 b | 8.99 ± 0.57 de | 14.83 ± 0.30 b | 17.84 ± 0.62 e |
6 | 39.68 ± 0.49 ab | 9.37 ± 0.30 e | 13.71 ± 0.20 a | 20.42 ± 0.52 f |
7 | 37.61 ± 0.78 a | 9.67 ± 0.39 e | 12.97 ± 0.17 a | 22.63 ± 0.29 g |
Sample No: | Color Intensity | Surface Appearance | Taste | Odor | Hardness | Fractur-Ability |
---|---|---|---|---|---|---|
1 | 3.5 ± 0.2 ab | 5.9 ± 0.3 e | 4.0 ± 0.0 b | 4.0 ± 0.1 c | 3.0 ± 0.2 a | 4.0 ± 0.0 a |
2 | 4.1 ± 0.3 bc | 5.3 ± 0.2 de | 3.8 ± 0.2 b | 3.9 ± 0.1 c | 3.5 ± 0.3 ab | 4.6 ± 0.0 ab |
3 | 4.5 ± 0.3 cd | 4.5 ± 0.6 cd | 3.6 ± 0.4 b | 3.7 ± 0.4 c | 4.2 ± 0.5 a-c | 4.9 ± 0.7 ab |
4 | 5.1 ± 0.4 de | 3.9 ± 0.6 bc | 3.5 ± 0.1 b | 3.6 ± 0.1 c | 4.6 ± 0.3 bc | 5.5 ± 0.0 bc |
5 | 5.6 ± 0.2 ef | 3.5 ± 0.4 bc | 3.3 ± 0.5 b | 3.5 ± 0.4 c | 5.0 ± 0.5 cd | 6.1 ± 0.1 cd |
6 | 6.1 ± 0.3 fg | 2.9 ± 0.2 ab | 2.4 ± 0.2 a | 2.6 ± 0.1 b | 5.5 ± 0.5 cd | 6.9 ± 0.1 d |
7 | 6.6 ± 0.4 g | 2.0 ± 0.3 a | 2.0 ± 0.2 a | 1.9 ± 0.1 a | 6.1 ± 0.3 d | 7.0 ± 0.0 d |
Sample No: | Proteins (% d.m.) | Starch (% d.m.) | Total Sugars (% d.m.) | Cellulose (% d.m.) | Lipids (% d.m.) | Ash (% d.m.) |
---|---|---|---|---|---|---|
1 | 10.85 ± 0.10 e | 47.33 ± 0.27 g | 2.17 ± 0.03 a | 0.32 ± 0.01 a | 23.07 ± 0.19 g | 0.41 ± 0.00 a |
2 | 10.65 ± 0.06 e | 45.00 ± 0.34 f | 3.35 ± 0.01 c | 0.41 ± 0.01 b | 21.99 ± 0.13 f | 0.64 ± 0.01 c |
3 | 10.27 ± 0.17 d | 42.64 ± 0.38 e | 4.59 ± 0.05 d | 0.46 ± 0.01 c | 20.70 ± 0.17 e | 0.88 ± 0.00 d |
4 | 9.99 ± 0.08 d | 40.31 ± 0.43 d | 5.70 ± 0.05 e | 0.52 ± 0.00 d | 19.61 ± 0.09 d | 1.11 ± 0.00 e |
5 | 9.67 ± 0.07 c | 38.06 ± 0.39 c | 6.84 ± 0.04 f | 0.59 ± 0.01 e | 18.43 ± 0.21 c | 1.35 ± 0.01 f |
6 | 9.24 ± 0.13 b | 35.71 ± 0.30 b | 7.99 ± 0.06 g | 0.65 ± 0.00 f | 17.20 ± 0.13 b | 1.59 ± 0.01 g |
7 | 8.91 ± 0.07 a | 33.30 ± 0.27 a | 9.09 ± 0.06 h | 0.71 ± 0.01 g | 16.15 ± 0.09 a | 1.82 ± 0.01 h |
Sample No: | K (mg/100 g d.m.) | Mg (mg/100 g d.m.) | Ca (mg/100 g d.m.) | Fe (mg/100 g d.m.) | Zn (mg/100 g d.m.) | Cu (mg/100 g d.m.) |
---|---|---|---|---|---|---|
1 | 90.63 ± 0.57 a | 16.79 ± 0.15 a | 24.54 ± 0.19 a | 1.20 ± 0.01 b | 0.39 ± 0.00 a | 0.24 ± 0.00 a |
2 | 179.50 ± 0.66 c | 18.22 ± 0.18 b | 29.43 ± 0.20 b | 1.42 ± 0.00 c | 0.48 ± 0.00 b | 0.26 ± 0.00 b |
3 | 265.84 ± 3.19 d | 19.55 ± 0.18 c | 33.99 ± 0.13 c | 1.64 ± 0.01 d | 0.53 ± 0.01 c | 0.30 ± 0.00 d |
4 | 353.43 ± 4.85 e | 20.79 ± 0.16 d | 39.00 ± 0.45 d | 1.89 ± 0.02 e | 0.55 ± 0.00 d | 0.33 ± 0.00 e |
5 | 438.46 ± 3.14 f | 21.99 ± 0.13 e | 43.60 ± 0.26 e | 2.11 ± 0.02 f | 0.59 ± 0.00 e | 0.36 ± 0.00 f |
6 | 530.73 ± 5.80 g | 23.30 ± 0.23 f | 49.01 ± 0.67 f | 2.30 ± 0.01 g | 0.67 ± 0.01 f | 0.39 ± 0.00 g |
7 | 620.76 ± 5.21 h | 24.39 ± 0.06 g | 53.20 ± 0.46 g | 2.57 ± 0.02 h | 0.69 ± 0.01 g | 0.43 ± 0.00 h |
Sample No: | Total Phenolic Content (mg GAE/100 g d.m.) | Antioxidant Activity by DPPH (µmol TE/100 g d.m.) | Antioxidant Activity by ABTS (µmol TE/100 g d.m.) |
---|---|---|---|
1 | 6.42 ± 0.04 a | 0.60 ± 0.00 a | 2.43 ± 0.02 a |
2 | 52.46 ± 0.49 b | 8.57 ± 0.04 b | 32.44 ± 0.28 b |
3 | 97.82 ± 1.15 c | 17.17 ± 0.12 c | 60.46 ± 0.29 d |
4 | 141.69 ± 0.72 d | 26.10 ± 0.28 d | 90.73 ± 0.51 e |
5 | 189.41 ± 2.54 f | 33.97 ± 0.12 f | 119.71 ± 1.02 g |
6 | 234.76 ± 1.95 g | 42.47 ± 0.12 g | 153.76 ± 1.63 h |
7 | 299.46 ± 2.02 h | 50.84 ± 0.35 h | 180.61 ± 1.95 i |
Technological Quality Responses | Textural Analysis Responses | Instrumental Color Analysis Responses | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample No: | BWL (%) | DWL (%) | T (mm) | R (mm) | R/T | Hardness (n) | Fracturability (mm) | L | a | B | ΔΕ | |
5 * | 17.00 ± 0.46 ab | 0.65 ± 0.04 bc | 48.42 ± 0.49 bc | 99.73 ± 0.38 b–d | 2.06 ± 0.01 d | 3923.50 ± 300.53 cd | 2.49 ± 0.16 c–e | 41.98 ± 0.37 b | 8.99 ± 0.57 de | 14.83 ± 0.30 b | 17.84 ± 0.62 e | |
8 | 17.53 ± 0.84 a-c | 0.69 ± 0.09 b–d | 48.05 ± 0.29 bc | 100.21 ± 0.67 b–d | 2.09 ± 0.00 d | 4713.87 ± 155.54 de | 2.57 ± 0.26 c–e | 45.06 ± 0.25 c | 9.46 ± 0.47 e | 18.93 ± 0.33 d | 13.60 ± 0.77 d | |
9 | 17.18 ± 0.19 ab | 0.67 ± 0.04 b–d | 48.11 ± 0.41 bc | 99.83 ± 0.48 b–d | 2.08 ± 0.00 d | 4343.45 ± 691.20 c–e | 2.43 ± 0.10 c–e | 64.34 ± 1.44 g | 6.07 ± 0.10 a | 23.55 ± 0.72 f | 6.63 ± 0.48 b | |
Descriptive Sensory Analysis Responses | Chemical Composition Responses | |||||||||||
Sample No: | Color Intensity | Surface Appearance | Taste | Odor | Hardness | Fractur-ability | Proteins (% d.m.) | Starch (% d.m.) | Total Sugars (% d.m.) | Cellulose (% d.m.) | Lipids (% d.m.) | Ash (% d.m.) |
5 * | 5.6 ± 0.2 ef | 3.5 ± 0.4 bc | 3.3 ± 0.5 b | 3.5 ± 0.4 c | 5.0 ± 0.5 cd | 6.1 ± 0.1 cd | 9.67 ± 0.07 c | 38.06 ± 0.39 c | 6.84 ± 0.04 f | 0.59 ± 0.01 a | 18.43 ± 0.21 c | 1.35 ± 0.01 f |
8 | 5.0 ± 0.2 de | 5.0 ± 0.0 de | 6.5 ± 0.4 c | 6.3 ± 0.0 d | 5.3 ± 0.8 cd | 6.4 ± 0.6 cd | 8.84 ± 0.12 a | 38.03 ± 0.63 c | 2.78 ± 0.02 b | 0.79 ± 0.01 b | 18.53 ± 0.10 c | 0.49 ± 0.01 b |
9 | 3.3 ± 0.3 a | 5.6 ± 0.3 e | 6.3 ± 0.3 c | 6.1 ± 0.2 d | 5.2 ± 0.7 cd | 5.9 ± 0.2 c | 8.95 ± 0.09 ab | 38.09 ± 0.42 c | 2.81 ± 0.01 b | 0.82 ± 0.01 c | 18.47 ± 0.06 c | 0.48 ± 0.00 b |
Mineral Content Responses | Phenol Content and Antioxidative Activity Responses | |||||||||||
Sample No: | K (mg/100 g d.m.) | Mg (mg/100 g d.m.) | Ca (mg/100 g d.m.) | Fe (mg/100 g d.m.) | Zn (mg/100 g d.m.) | Cu (mg/100 g d.m.) | Total Phenolic Content (mg GAE/100 g d.m.) | Antioxidative Activity by DPPH (µmol TE/100 g d.m.) | Antioxidative Activity by ABTS (µmol TE/100 g d.m.) | |||
5 * | 438.46 ± 3.14 f | 21.99 ± 0.13 e | 43.60 ± 0.26 e | 2.11 ± 0.02 f | 0.59 ± 0.00 e | 0.36 ± 0.00 f | 189.41 ± 2.54 f | 33.97 ± 0.12 f | 119.71 ± 1.02 g | |||
8 | 135.46 ± 0.29 b | 18.24 ± 0.11 b | 34.01 ± 0.17 c | 1.13 ± 0.01 a | 0.48 ± 0.00 b | 0.27 ± 0.00 c | 51.76 ± 0.49 b | 8.43 ± 0.06 b | 35.70 ± 0.32 c | |||
9 | 134.13 ± 1.75 b | 18.23 ± 0.09 b | 34.15 ± 0.17 c | 1.14 ± 0.01 a | 0.49 ± 0.01 b | 0.29 ± 0.00 d | 170.94 ± 0.88 e | 29.73 ± 0.22 e | 115.09 ± 0.82 f |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nićetin, M.; Filipović, J.; Djalović, I.; Stanković, D.; Trivan, G.; Košutić, M.; Živančev, D.; Filipović, V. Quality Optimization and Evaluation of New Cookie Product with Celery Root Powder Addition. Foods 2024, 13, 2712. https://doi.org/10.3390/foods13172712
Nićetin M, Filipović J, Djalović I, Stanković D, Trivan G, Košutić M, Živančev D, Filipović V. Quality Optimization and Evaluation of New Cookie Product with Celery Root Powder Addition. Foods. 2024; 13(17):2712. https://doi.org/10.3390/foods13172712
Chicago/Turabian StyleNićetin, Milica, Jelena Filipović, Ivica Djalović, Dragica Stanković, Goran Trivan, Milenko Košutić, Dragan Živančev, and Vladimir Filipović. 2024. "Quality Optimization and Evaluation of New Cookie Product with Celery Root Powder Addition" Foods 13, no. 17: 2712. https://doi.org/10.3390/foods13172712
APA StyleNićetin, M., Filipović, J., Djalović, I., Stanković, D., Trivan, G., Košutić, M., Živančev, D., & Filipović, V. (2024). Quality Optimization and Evaluation of New Cookie Product with Celery Root Powder Addition. Foods, 13(17), 2712. https://doi.org/10.3390/foods13172712