Retention of Phytochemical Compounds and Antioxidative Activity in Traditional Baked Dish “proja” Made from Pigmented Maize
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Procurement
2.2. Proja Batter Preparation and Baking
2.3. Determination of Moisture and Total Titratable Acidity
2.4. Determination of Total Phenolics, Flavonoids and Anthocyanins in Maize Flour, Proja Batter and Baked Proja
2.5. Determination of Antioxidant Capacity of Proja
2.6. Colour Analysis
2.7. Texture Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Moisture Content and Acidity Degree of Proja Crumb
3.2. Content of Total Phenolics, Flavonoids and Anthocyanins in Maize Flour, Proja Batter and Baked Proja
3.3. Antioxidant Properties of Baked Proja
3.4. Effect of Baking and Acidity of Proja Formulations on the Retention of Antioxidant Compounds and Antioxidant Activity
3.4.1. Retention of Antioxidant Compounds
3.4.2. Retention of Antioxidant Activity in Baked Proja
3.5. Colour Properties of Proja Made from Red and Black Maize
3.6. Textural Properties
3.7. Principal Component Analysis (PCA)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Colombo, R.; Ferron, L.; Papetti, A. Coloured corn: An up-date on metabolites extraction, health implication, and potential use. Molecules 2021, 26, 199. [Google Scholar] [CrossRef] [PubMed]
- Magaña-Cerino, J.M.; Peniche-Pavía, H.A.; Tiessen, A.; Gurrola, C. Pigmented maize (Zea mays L.) contains anthocyanins with potential therapeutic action against oxidative stress—A review. Pol. J. Food Nutr. Sci. 2020, 70, 85–99. [Google Scholar] [CrossRef]
- Bello-Pérez, L.A.; Gustavo, A.; Camelo-Mende, G.A.; Utrilla-Coello, R.G. Nutraceutic aspects of pigmented maize: Digestibility of carbohydrates and anthocyanins. Agrociencia 2016, 50, 1041–1063. [Google Scholar]
- Navarro, A.; Torres, A.; Fernández-Aulis, F.; Peña, C. Bioactive compounds in pigmented maize. In Corn-Production and Human Health in Changing Climate; Amanullah, Shah, F., Eds.; IntechOpen: London, UK, 2018. [Google Scholar]
- Das, A.K.; Singh, V. Antioxidative free and bound phenolic constituents in botanical fractions of Indian specialty maize (Zea mays L.) genotypes. Food Chem. 2016, 201, 298–306. [Google Scholar] [CrossRef]
- Rocchetti, G.; Gregorio, R.P.; Lorenzo, J.M.; Barba, F.J.; Oliveira, P.G.; Prieto, M.A.; Simal-Gandara, J.; Mosele, J.I.; Motilva, M.; Tomas, M.; et al. Functional implications of bound phenolic compounds and phenolics–food interaction: A review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 811–842. [Google Scholar] [CrossRef]
- Salinas-Moreno, Y.; García-Salinas, C.M.; Ramírez-Díaz, J.L.; la Torre, A.-D. Phenolic compounds in maize grains and its nixtamalized products. In Phenolic Compounds-Natural Sources, Importance and Applications; Soto-Hernandez, M., Palma-Tenango, M., del Rosario Garcia-Mateos, M., Eds.; IntechOpen: London, UK, 2017. [Google Scholar]
- Salinas-Moreno, Y.; García-Salinas, C.; Coutiño-Estrada, B.; Vidal-Martínez, Y.V.A. Variabilidad en contenido tipos de antocianinas en granos de color azul/morado de poblaciones mexicanas de maíz. Rev. Fitotec. Mex. 2013, 36, 185–294. [Google Scholar] [CrossRef]
- Urias-Lugo, D.A.; Heredia, J.B.; Serna-Saldivar, S.O.; Muy-Rangel, M.D.; Valdez-Torres, J.B. Total phenolics, total anthocyanins and antioxidant capacity of native and elite blue maize hybrids (Zea mays L.). CyTA-J. Food 2015, 13, 336–339. [Google Scholar] [CrossRef]
- Dangi, P.; Chaudhary, N.; Paul, A.; Sharma, A.; Dutta, I.; Razdan, R. Pigmented Wheat: Nutrition Scenario and Health Benefits. In Pigmented Cereals and Millets: Bioactive Profile and Food Applications; Bangar, S.P., Maqsood, S., Siroha, A.K., Eds.; Royal Society of Chemistry: Cambridge, UK, 2023. [Google Scholar]
- Gamel, T.H.; Saeed, S.M.G.; Ali, R.; Abdel-Aal, E.-S.M. Purple Wheat: Food Development, Anthocyanin Stability, and Potential Health Benefits. Foods 2023, 12, 1358. [Google Scholar] [CrossRef]
- Aguayo-Rojas, J.; Mora-Rochín, S.; Cuevas-Rodríguez, E.O.; Serna-Saldivar, S.O.; Gutierrez-Uribe, J.A.; Reyes-Moreno, C.; Milán-Carrillo, J. Phytochemicals and antioxidant capacity of tortillas obtained after lime-cooking extrusion process of whole pigmented Mexican maize. Plant Foods Hum. Nutr. 2012, 67, 178–185. [Google Scholar] [CrossRef]
- Camelo-Méndez, G.A.; Tovar, J.; Bello-Pérez, L.A. Influence of blue maize flour on gluten-free pasta quality and antioxidant retention characteristics. J. Food Sci. Technol. 2018, 55, 2739–2748. [Google Scholar] [CrossRef]
- Çetin-Babaoğlu, H.; Nazlı Yalım, N.; Emine Kale, E.; Tontul, S.A. Pigmented whole maize grains for functional value added and low glycemic index snack production. Food Biosci. 2021, 44, 101349. [Google Scholar] [CrossRef]
- De la Parra, C.; Serna Saldivar, S.O.; Liu, R.H. Effect of processing on the phytochemical profiles and antioxidant activity of corn for production of massa, tortillas and tortilla chips. J. Agric. Food Chem. 2007, 55, 4177–4183. [Google Scholar] [CrossRef]
- Li, J.; Walker, C.E.; Faubion, J.M. Acidulant and oven type affect total anthocyanin content of blue corn cookies. J. Sci. Food Agric. 2011, 91, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Robles-Plata, V.T.; Serna Saldivar, S.; De Dios Figureoa-Cárdenas, J.; Rooney, W.L.; Dávila-Vega, J.P.; Chuck-Hernández, C.; Escalante-Aburto, A. Biophysical, nutraceutical, and technofunctional features of specialty cereals: Pigmented popcorn and sorghum. Foods 2023, 12, 2310. [Google Scholar] [CrossRef]
- Rodríguez, V.M.; Soengas, P.; Landa, A.; Ordás, A.; Revilla, P. Effects of selection for color intensity on antioxidant capacity in maize (Zea mays L.). Euphytica 2013, 193, 339–345. [Google Scholar] [CrossRef]
- Salvador-Rejes, R.; Sampaio, U.M.; De Menezes Alves Moro, T.; de Brito, A.D.C.; Behrens, J.; Campelo, P.H.; Clerici, M.T.P.S. Andean purple maize to produce extruded breakfast cereals: Impact on techno-functional properties and sensory acceptance. J. Sci. Food Agric. 2023, 103, 548–559. [Google Scholar] [CrossRef]
- Sánchez-Madrigal, M.Á.; Quintero-Ramos, A.; Martínez-Bustos, F.; Meléndez-Pizarro, C.O.; Ruiz-Gutiérrez, M.G. Effect of different calcium sources on the antioxidant stability of tortilla chips from extruded and nixtamalized blue corn (Zea mays L.) flours. Food Sci. Technol. 2014, 34, 143–149. [Google Scholar] [CrossRef]
- Simić, M.; Žilić, S.; Šimurina, O.; Filipčev, B.; Škrobot, D.; Vančetović, J. Effects of anthocyanin-rich popping maize flour on the phenolic profile and the antioxidant capacity of mix-bread and its physical and sensory properties. Pol. J. Food Nutr. Sci. 2018, 68, 299–308. [Google Scholar] [CrossRef]
- Žilić, S.; Kocadağlı, T.; Vančetović, J.; Gökmen, V. Effects of baking conditions and dough formulations on phenolic compound stability, antioxidant capacity and colour of cookies made from anthocyanin-rich corn flour. LWT-Food Sci. Technol. 2016, 65, 597–603. [Google Scholar] [CrossRef]
- Trehan, S.; Singh, N.; Kaur, A. Characteristics of white, yellow, purple corn accessions: Phenolic profile, textural, rheological properties and muffin making potential. J. Food Sci. Technol. 2018, 55, 2334–2343. [Google Scholar] [CrossRef]
- Ioannou, I.; Hafsa, I.; Hamdi, S.; Charbonnel, C.; Ghoul, M. Review of the effects of food processing and formulation on flavonol and anthocyanin behaviour. J. Food Eng. 2012, 111, 208–217. [Google Scholar] [CrossRef]
- Mazza, M.; Miniati, E. Anthocyanins in Fruit, Vegetables, and Grains, 1st ed.; CRC Press: Boca Raton, FL, USA, 1993; pp. 1–28. [Google Scholar]
- Stintzing, F.C.; Stintzing, A.S.; Carle, R.; Frei, B.; Wrolstad, R.E. Colour and antioxidant properties of cyanidin-based anthocyanin pigments. J. Agric. Food Chem. 2002, 50, 6172–6181. [Google Scholar] [CrossRef] [PubMed]
- Barti, P.; Albreht, A.; Skrt, M.; Tremlová, B.; Ošťádalová, M.; Šmejkal, K.; Vovk, I.; Ulrih, N.P. Anthocyanins in purple and blue wheat grains and in resulting bread: Quantity, composition, and thermal stability. Int. J. Food Sci. Nutr. 2015, 66, 514–519. [Google Scholar] [CrossRef] [PubMed]
- Revilla, P.; Alves, M.L.; Andelkovic, V.; Balconi, C.; Dinis, I.; Mendes-Moreira, P.; Redaelli, R.; de Galarreta, J.I.R.; Patto, M.C.V.; Žilić, S.; et al. Traditional foods from maize (Zea mays L.) in Europe. Front. Nutr. 2022, 8, 83399. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.P.; Siddhuraju, P.; Becker, K. Plant Secondary Metabolites; Humana Press: Totowa, NJ, USA, 2007. [Google Scholar]
- Pękal, A.; Pyrzynska, K. Evaluation of aluminium complexation reaction for flavonoid content assay. Food Anal. Methods 2014, 7, 1776–1782. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colourants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef]
- Cheng, C.W.; Chen, L.Y.; Chou, C.W.; Liang, J.-Y. Investigations of riboflavin photolysis via coloured light in the nitro blue tetrazolium assay for superoxide dismutase activity. J. Photochem. Photobiol. B Biol. 2015, 148, 262–267. [Google Scholar] [CrossRef]
- Panda, S.K. Assay guided comparison for enzymatic and non-enzymatic antioxidant activities with special reference to medicinal plants. In Antioxidant Enzyme; El-Missiry, M.A., Ed.; IntechOpen: London, UK, 2012. [Google Scholar]
- Li, X. Solvent effects and improvements in the deoxyribose degradation assay for hydroxyl radical-scavenging. Food Chem. 2013, 141, 2083–2088. [Google Scholar] [CrossRef]
- Taglieri, I.; Sanmartin, C.; Venturi, F.; Macaluso, M.; Bianchi, A.; Sgherri, C.; Quartacci, M.F.; De Leo, M.; Pistelli, L.; Palla, F.; et al. Bread fortified with cooked purple potato flour and citrus Albedo: An evaluation of its compositional and sensorial properties. Foods 2021, 10, 942. [Google Scholar] [CrossRef]
Ingredients (g) | Proja Formulations | ||||||
---|---|---|---|---|---|---|---|
Control | T1 | T2 | PIP-1 | IREX-1 | IREX-2 | IREX-3 | |
Maize flour | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Baking powder | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 |
Salt | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 |
Water | 100 | 50 | - | - | - | - | - |
Cottage cheese | - | 100 | - | - | - | - | - |
Yoghurt | - | - | 100 | - | - | - | - |
Dry wheat sourdough: PIP IREX | - - | - - | - - | 10 - | - 10 | - - | - - |
Liquid wheat sourdough: IREX | - | - | - | - | - | 7 | 4 |
Batter pH red maize black maize | 6.20 ± 0.27 c 6.11 ± 0.30 b,c | 5.54 ± 0.28 a–c 4.94 ± 0.18 a | 5.72 ± 0.19 b,c 5.96 ± 0.22 b,c | 5.89 ± 0.19 b,c 5.84 ± 0.09 b,c | 6.11 ± 0.25 b,c 6.09 ± 0.30 b,c | 5.49 ± 0.22 a,b 4.98 ± 0.28 a | 6.13 ± 0.20 b,c 5.71 ± 0.09 b,c |
Parameter | Proja Formulations | ||||||
---|---|---|---|---|---|---|---|
Control | T1 | T2 | PIP-1 | IREX-1 | IREX-2 | IREX-3 | |
Red maize | |||||||
Moisture content | 37.7 ± 3.9 a,b | 49.7 ± 5.2 c | 42.8 ± 4.4 a–c | 44.3 ± 4.6 a–c | 42.7 ± 4.4 a–c | 40.9 ± 4.2 a–c | 35.4 ± 3.7 a |
TTA | 1.6 ± 0.4 a | 2.1 ± 0.6 a | 1.8 ± 0.47 a | 3.1 ± 0.8 a | 2.3 ± 0.6 a | 3.6 ± 0.9 a | 2.9 ± 0.8 a |
Black maize | |||||||
Moisture | 42.9 ± 4.4 a–c | 47.6 ± 2.5 b,c | 38.5 ± 4.0 a–c | 42.1 ± 4.4 a–c | 41.0 ± 4.2 a–c | 46.0 ± 2.4 a–c | 44.3 ± 2.3 a–c |
TTA | 2.4 ± 0.6 a | 4.1 ± 1.1 a,b | 4.2 ± 1.1 a,b | 3.4 ± 0.9 a | 3.8 ± 1.0 a | 6.6 ± 1.7 b | 4.03 ± 1.1 a,b |
Maize | Sample/Product | Total Phenolics (mg GAE/g d.m.) | Total Flavonoids (mg rutin/g d.m.) | Total Anthocyanins (mg CGE/g d.m.) | |
---|---|---|---|---|---|
Red | Raw flour | 2.59 ± 0.13 b | 0.05 ± 0.00 a | 0.09 ± 0.02 a,b | |
Control | batter | 1.95 ± 0.11 | 0.11 ± 0.01 | 0.04 ± 0.07 | |
baked | 1.67 ± 0.11 a | 0.12 ± 0.01 a | 0.04 ± 0.01 a,b | ||
T1 | batter | 2.46 ± 0.12 | 0.09 ± 0.01 * | 0.10 ± 0.01 | |
baked | 1.90 ± 0.20 a | 0.03 ± 0.01 a | 0.07 ± 0.01 a,b | ||
T2 | batter | 2.61 ± 0.11 * | 0.13 ± 0.00 * | 0.10 ± 0.00 | |
baked | 1.77 ± 0.18 a | 0.10 ± 0.00 a | 0.10 ± 0.01 b | ||
PIP-1 | batter | 2.48 ± 0.23 | 0.07 ± 0.03 | 0.07 ± 0.00 * | |
baked | 1.69 ± 0.15 a | 0.05 ± 0.00 a | 0.04 ± 0.01 a,b | ||
IREX-1 | batter | 2.16 ± 0.04 * | 0.12 ± 0.02 | 0.06 ± 0.00 | |
baked | 1.51 ± 0.04 a | 0.10 ± 0.01 a | 0.06 ± 0.01 a,b | ||
IREX-2 | batter | 2.24 ± 0.08 * | 0.12 ± 0.02 | 0.09 ± 0.00 * | |
baked | 1.76 ± 0.07 a | 0.10 ± 0.00 a | 0.02 ± 0.01 a | ||
IREX-3 | batter | 2.28 ± 0.22 | 0.07 ± 0.02 | 0.09 ± 0.00 | |
baked | 1.83 ± 0.21 a | 0.09 ± 0.04 a | 0.09 ± 0.02 b | ||
Black | Raw flour | 4.34 ± 0.25 d | 0.50 ± 0.06 c | 0.70 ± 0.03 f | |
Control | batter | 4.15 ± 0.53 | 0.45 ± 0.05 | 0.51 ± 0.02 * | |
baked | 2.88 ± 0.02 b,c | 0.33 ± 0.06 b | 0.37 ± 0.00 c | ||
T1 | batter | 3.64 ± 0.29 | 0.30 ± 0.02 | 0.38 ± 0.00 | |
baked | 3.10 ± 0.01 b,c | 0.27 ± 0.05 b | 0.38 ± 0.01 c | ||
T2 | batter | 4.22 ± 0.14 * | 0.38 ± 0.00 | 0.53 ± 0.01 * | |
baked | 3.31 ± 0.04 c | 0.30 ± 0.04 b | 0.47 ± 0.01 e | ||
PIP-1 | batter | 3.94 ± 0.55 | 0.42 ± 0.01 * | 0.53 ± 0.01 * | |
baked | 3.23 ± 0.03 c | 0.32 ± 0.00 b | 0.40 ± 0.03 c,d | ||
IREX-1 | batter | 4.48 ± 0.25 | 0.44 ± 0.01 * | 0.53 ± 0.03 | |
baked | 3.49 ± 0.29 c | 0.32 ± 0.02 b | 0.49 ± 0.00 e | ||
IREX-2 | batter | 3.63 ± 0.28 | 0.34 ± 0.00 | 0.52 ± 0.01 | |
baked | 2.98 ± 0.09 b,c | 0.35 ± 0.04 b | 0.46 ± 0.02 d,e | ||
IREX-3 | batter | 4.09 ± 0.06 * | 0.44 ± 0.05 | 0.52 ± 0.01 * | |
baked | 3.20 ± 0.22 b,c | 0.29 ± 0.05 b | 0.40 ± 0.02 c,d |
Proja Formulation | Colour Parameters | ||||
---|---|---|---|---|---|
L* | a* | b* | WI | ΔE* | |
Red maize | |||||
Control | 35.20 ± 1.14 b | 2.93 ± 0.51 a–c | 9.29 ± 0.96 d,e | 34.46 ± 1.03 b | - |
T1 | 35.55 ± 1.80 b | 3.25 ± 0.43 c | 7.04 ± 0.70 c | 35.08 ± 1.73 b | 2.87 ± 0.75 c–e |
T2 | 38.81 ± 1.80 c | 4.05 ± 0.30 d | 8.89 ± 0.93 d,e | 38.02 ± 1.67 c | 4.09 ± 1.27 f |
PIP-1 | 38.62 ± 1.14 c | 3.14 ± 0.30 b,c | 8.86 ± 0.92 d,e | 37.90 ± 1.01 c | 3.63 ± 0.92 e,f |
IREX-1 | 36.38 ± 1.82 b | 2.60 ± 0.41 a,b | 8.27 ± 1.03 d | 35.78 ± 1.69 c | 2.41 ± 0.91 a–d |
IREX-2 | 40.03 ± 1.60 c | 5.97 ± 0.37 f | 9.72 ± 1.08 e | 38.95 ± 1.44 c | 5.90 ± 1.28 g |
IREX-3 | 35.75 ± 1.86 b | 2.48 ± 0.31 a | 8.31 ± 0.91 d | 35.15 ± 1.73 b | 2.21 ± 0.75 a–d |
Black maize | |||||
Control | 23.92 ± 0.86 a | 4.49 ± 0.30 d,e | 2.68 ± 0.35 b | 23.74 ± 0.84 a | - |
T1 | 24.69 ± 0.83 a | 6.59 ± 0.46 g | 1.72 ± 0.50 a,b | 24.38 ± 0.79 a | 2.59 ± 0.51 b–e |
T2 | 24.30 ± 0.84 a | 6.84 ± 0.29 g | 0.98 ± 0.45 a | 23.86 ± 1.09 a | 3.07 ± 0.21 d–f |
PIP-1 | 24.18 ± 0.70 a | 4.68 ± 0.42 e | 1.10 ± 0.52 a | 24.03 ± 0.68 a | 1.79 ± 0.50 a–c |
IREX-1 | 23.89 ± 0.74 a | 4.25 ± 0.21 d,e | 1.37 ± 0.34 a | 23.76 ± 0.72 a | 1.49 ± 0.43 a,b |
IREX-2 | 23.65 ± 0.83 a | 6.95 ± 0.42 g | 1.45 ± 0.43 a | 23.31 ± 0.79 a | 2.91 ± 0.30 c–e |
IREX-3 | 23.44 ± 0.68 a | 4.40 ± 0.25 d,e | 1.60 ± 0.45 a,b | 23.30 ± 0.66 a | 1.37 ± 0.46 a |
Proja Formulation | Crumb Texture Properties | |
---|---|---|
Hardness (g) | Resilience (%) | |
Red maize | ||
Control | 2053.48 ± 251.63 a | 25.42 ± 1.13 b–d |
T1 | 2110.63 ± 323.25 a | 23.19 ± 1.41 b,c |
T2 | 9161.56 ± 431.71 g | 16.90 ± 0.99 a |
PIP-1 | 4551.29 ± 169.15 c,d | 24.62 ± 0.97 b–d |
IREX-1 | 3446.88 ± 51.42 b | 24.91 ± 0.33 b–d |
IREX-2 | 4951.63 ± 42.91 d,e | 17.16 ± 0.99 a |
IREX-3 | 5763.36 ± 15.10 e,f | 25.63 ± 1.62 b–d |
Black maize | ||
Control | 3713.54 ± 115.34 b,c | 27.18 ± 0.84 d |
T1 | 3969.13 ± 236.24 b,c | 23.03 ± 1.39 b |
T2 | 6173.92 ± 348.57 f | 15.78 ± 1.21 a |
PIP-1 | 5109.18 ± 537.74 d,e | 26.57 ± 2.15 c,d |
IREX-1 | 3383.20 ± 273.46 b | 23.25 ± 0.25 b,c |
IREX-2 | 3749.82 ± 334.43 b,c | 17.12 ± 0.73 a |
IREX-3 | 3489.25 ± 340.18 b | 23.94 ± 0.62 b–d |
Variable | PC 1 | PC 2 | PC 3 | PC 4 |
---|---|---|---|---|
Moisture | −0.195488 | 0.386069 | −0.757916 | −0.124298 |
CIE L* | 0.972581 | 0.194805 | 0.038914 | 0.100618 |
CIE a* | −0.700153 | 0.598311 | 0.180155 | 0.046076 |
CIE b* | 0.979018 | 0.056842 | 0.050564 | 0.139616 |
D E* | 0.320088 | 0.857348 | 0.223341 | 0.090444 |
Tot. anthocyan. | −0.968970 | −0.042776 | 0.081670 | −0.195823 |
Tot. phenol. | −0.963911 | −0.053878 | 0.039666 | −0.145032 |
Tot. flav. | −0.941568 | −0.128764 | 0.188236 | −0.115592 |
pH | 0.366531 | −0.736491 | 0.300076 | −0.135616 |
TTA | −0.725543 | 0.438184 | 0.207404 | 0.264336 |
%RetentPhenol. | −0.455403 | 0.053145 | −0.121501 | 0.524467 |
%RetentFlav | 0.155140 | −0.162705 | 0.659243 | 0.319850 |
% RetentAnthocy | −0.202143 | −0.226559 | −0.103077 | −0.528551 |
AOx-DPPH | −0.968464 | −0.094679 | 0.198341 | −0.086478 |
AOx-OH | 0.362708 | −0.038254 | 0.126948 | −0.855088 |
AOx-O2 | 0.220316 | −0.183760 | 0.637970 | 0.396418 |
%RetentDPPH | 0.921358 | 0.104600 | −0.178629 | −0.023985 |
%RetentOH | 0.324338 | −0.200808 | 0.301355 | −0.252500 |
%RetentO2 | −0.408402 | −0.689490 | 0.054466 | 0.133201 |
Firmness | 0.155954 | 0.386127 | 0.587324 | −0.539277 |
Resilience | 0.068670 | −0.854084 | −0.309196 | 0.167662 |
Proportion of explained variance (%) | 40.43 | 17.00 | 11.08 | 10.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šimurina, O.; Filipčev, B.; Kiprovski, B.; Nježić, Z.; Janić Hajnal, E.; Đalović, I. Retention of Phytochemical Compounds and Antioxidative Activity in Traditional Baked Dish “proja” Made from Pigmented Maize. Foods 2024, 13, 2799. https://doi.org/10.3390/foods13172799
Šimurina O, Filipčev B, Kiprovski B, Nježić Z, Janić Hajnal E, Đalović I. Retention of Phytochemical Compounds and Antioxidative Activity in Traditional Baked Dish “proja” Made from Pigmented Maize. Foods. 2024; 13(17):2799. https://doi.org/10.3390/foods13172799
Chicago/Turabian StyleŠimurina, Olivera, Bojana Filipčev, Biljana Kiprovski, Zvonko Nježić, Elizabet Janić Hajnal, and Ivica Đalović. 2024. "Retention of Phytochemical Compounds and Antioxidative Activity in Traditional Baked Dish “proja” Made from Pigmented Maize" Foods 13, no. 17: 2799. https://doi.org/10.3390/foods13172799
APA StyleŠimurina, O., Filipčev, B., Kiprovski, B., Nježić, Z., Janić Hajnal, E., & Đalović, I. (2024). Retention of Phytochemical Compounds and Antioxidative Activity in Traditional Baked Dish “proja” Made from Pigmented Maize. Foods, 13(17), 2799. https://doi.org/10.3390/foods13172799