Nutritional Value, Fatty Acid and Phytochemical Composition, and Antioxidant Properties of Mysore Fig (Ficus drupacea Thunb.) Fruits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Sample Preparation
2.2. Chemicals
2.3. Proximate Analysis
2.4. Analysis of Mineral Composition
2.5. Physicochemical Estimation of Seed Oil
2.6. Fatty Acid Profiling
2.7. Analysis of Anti-Nutritional Factors
2.7.1. Estimation of Phytate
2.7.2. Estimation of Oxalate
2.8. Quantitative Phytochemical Analysis
2.8.1. Extraction Procedure
2.8.2. Quantification of Phenolics
2.8.3. Quantification of Flavonoids
2.8.4. Quantification of Alkaloids
2.9. Antioxidant Activity
2.9.1. Determination of Antioxidant Activity Using 2,2′-Diphenyl-1-Picrylhydrazyl (DPPH) Radical Scavenging Method
2.9.2. Total Antioxidant Activity (TAA)
2.9.3. Ferric Reducing Antioxidant Power (FRAP)
2.10. Analysis of Data and Statistical Treatment
3. Results and Discussion
3.1. Nutritional Value
3.2. Mineral Composition
3.3. Antinutrient Composition
3.4. Characterization of Fruit and Seed Oil
3.5. Phytochemical Composition
3.6. Antioxidant Activities
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- POWO Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Available online: https://powo.science.kew.org (accessed on 13 August 2024).
- Tropical Plants Database, Ken Fern. Available online: http://tropical.theferns.info/viewtropical.php?id=Ficus+drupacea (accessed on 13 August 2024).
- Yessoufou, K.; Elansary, H.O.; Mahmoud, E.A.; Skalicka-Wozniak, K. Antifungal, antibacterial and anticancer activities of Ficus drupacea L. stem bark extract and biologically active isolated compounds. Ind. Crops Prod. 2015, 74, 752–758. [Google Scholar] [CrossRef]
- Manjuprasanna, V.N.; Rudresha, G.V.; Urs, A.P.; Milan Gowda, M.D.; Rajaiah, R.; Vishwanath, B.S. Drupin, a cysteine protease from Ficus durpacea latex accelerates excision would healing n mice. Int. J. Biol. Macromol. 2020, 165, 691–700. [Google Scholar] [CrossRef]
- Alzaharni, A.Y.; Alshaikhi, A.I.; Hazzazi, J.S.; Kurdi, J.R.; Ramadan, M.F. Recent insight on nutritional value, active phytochemicals, and health-enhancing characteristics of fig (Ficus carica). Food Safe Health 2024, 2, 179–195. [Google Scholar] [CrossRef]
- Mawa, S.; Husain, K.; Jantan, I. Ficus carica L. (Moraceae): Phytochemistry, traditional uses and biological activities. Evid. Based Complement. Altern. Med. 2013, 2013, 974256. [Google Scholar] [CrossRef]
- Wojdyło, A.; Nowicka, P.; Carbonell-Barrachina, Á.A.; Hernández, F. Phenolic compounds, antioxidant and antidiabetic activity of different cultivars of Ficus carica L. fruits. J. Funct. Foods 2016, 25, 421–432. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Analytical Chemists, 22nd ed.; Association of Official Analytical Chemists, Inc.: Rockville, MD, USA, 2023. [Google Scholar]
- FAO. Food Energy-Methods of Analysis and Conversion Factors; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003. [Google Scholar]
- Koistinen, J.; Sjoblom, M.; Spilling, K. Total nitrogen determination by spectrophotometric method. Methods Mol. Biol. 2020, 1980, 81–86. [Google Scholar] [CrossRef]
- AOCS. Official Methods and Recommended Practices of the American Oil Chemist’s Society; American Oil Chemist’s Society: Champaign, IL, USA, 2017. [Google Scholar]
- Manasa, V.; Vaishnav, S.R.; Tumaney, A.W. Physicochemical characterization and nutraceutical compounds of the selected spice fixed oils. J. Food Sci. Technol. 2021, 58, 3094–3105. [Google Scholar] [CrossRef] [PubMed]
- Kahriman, F.; Songur, U.; Serment, M.; Akbulut, S.; Egesel, C.O. Comparision of colorimetric methods for determination of phytic acid content in raw and oil extracted flour samples of maize. J. Food Compos. Anal. 2020, 86, 103380. [Google Scholar] [CrossRef]
- Salgado, N.; Silva, M.A.; Figueira, M.E.; Costa, H.S.; Albuquerque, T.G. Oxalate in foods: Extraction conditions, analytical methods, occurance, and health implications. Foods 2023, 12, 3201. [Google Scholar] [CrossRef]
- Murthy, H.N.; Dalawai, D.; Arer, I.; Karadakatti, P.; Hafiz, K. Nutritional value of underutilized fruit: Diospyros chloroxylon Roxb. (green ebony persimmon). Int. J. Fruit Sci. 2022, 22, 249–263. [Google Scholar] [CrossRef]
- Dalawai, D.; Murthy, H.N.; Dewir, Y.H.; Sebastian, J.K.; Nag, A. Phytochemical composition, bioactive compounds, and antioxidant properties of different parts of Andrographis macrobotrys Nees. Life 2023, 13, 1166. [Google Scholar] [CrossRef] [PubMed]
- Yadav, G.G.; Murthy, H.N.; Dewir, Y.H. Nutritional composition and in vitro antioxidant activities of seed kernel and seed oil of Balanites roxburghii: An underutilized species. Horticulturae 2022, 8, 798. [Google Scholar] [CrossRef]
- Murthy, H.N.; Yadav, G.G.; Kadapati, S.S.; Lamani, S.; Desai, A.S.; Sumbad, M.M.; Aslshahrami, T.S.; Deweri, Y.H. Bioacitve constituents and antioxidant activities of Erythrina strica Roxb. seeds. Appl. Ecol. Environ. Res. 2024, 22, 3275–3284. [Google Scholar] [CrossRef]
- Viuda-Martos, M.; Barber, X.; Perez-Alvarez, J.A.; Fernandez-Lopez, J. Assessment of chemical, physico-chemical, techno-functional and antioxidant properties of fig (Ficus carica L.) powder co-products. Ind. Corps Prod. 2015, 69, 472–479. [Google Scholar] [CrossRef]
- Rusmadi, N.N.N.N.; Shahari, R.; Amri, C.N.A.C.; Tajudin, N.S.; Mispan, M.R. Nutritional value of selected edible Ficus fruits in Kuntan. J. Trop. Life Sci. 2020, 10, 11–14. [Google Scholar]
- Aurnachalam, K.; Murugan, R.; Primelazhagan, T. Evaluation of antioxidant activity, and nutritional and chemical composition of Ficus amplissima Smit fruit. Int. J. Food Prop. 2014, 17, 454–468. [Google Scholar] [CrossRef]
- Weyh, C.; Krüger, K.; Peeling, P.; Castell, L. The role of minerals in the optimal functioning of the immune system. Nutrients 2022, 14, 644. [Google Scholar] [CrossRef]
- Pal, I. A comprehensive review on Ficus carica L. an unexploited medicinal plant. Int. J. Adv. Res. 2020, 8, 876–881. [Google Scholar] [CrossRef]
- Khan, K.K.; Khan, M.A.; Niamat, R.; Munir, M.; Fazal, H.; Mazari, P.; Seema, N.; Bashir, T.; Kanwal, A.; Ahamed, S.N. Element content analysis of plants of genus Ficus using atomic absorption spectrophotometer. Afr. J. Pharm. Pharmacol. 2011, 5, 317–321. [Google Scholar] [CrossRef]
- Man, Y.; Xu, T.; Adhikari, B.; Zhou, C.; Wang, Y.; Wang, B. Iron supplementation and iron-fortified foods: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 4504–4525. [Google Scholar] [CrossRef]
- Mehri, A. Trace elements in human nutrition (II)—An update. Int. J. Prev. Med. 2020, 11, 2. [Google Scholar] [CrossRef] [PubMed]
- Murthy, H.N.; Yadav, G.G.; Kadapatti, S.S.; Pote, A.H.; Jagali, R.; Yarashi, V.; Dewir, Y.H. Evaluation of nutritional, phytochemical, and antioxidant potential of Rourea minor fruits: An underutilized species. Horticulturae 2023, 9, 606. [Google Scholar] [CrossRef]
- Achaglinkame, M.A.; Aderibigbe, R.O.; Hensel, O.; Sturm, B.; Korese, J.K. Nutritional characteristics of four underutilized edible wild fruits of dietary interest in Ghana. Foods 2019, 8, 104. [Google Scholar] [CrossRef]
- Pujol, A.; Sanchis, P.; Grases, F.; Masmiquel, L. Phytate intake, health and disease: “Let thy food be thy medicine and medicine be thy food. Antioxidants 2023, 12, 146. [Google Scholar] [CrossRef]
- Huynh, N.K.; Nguyen, D.H.M.; Nguyen, H.V.H. Effects of processing on oxalate contents in plant foods: A review. J. Food Compos. Anal. 2022, 112, 104685. [Google Scholar] [CrossRef]
- Choe, U.; Childs, H.; Zeng, M.; Zheng, W.; Zhu, H.; Zhu, L.; Xie, Z.; Gao, B.; Yu, L. Value-added utilization of fruit seed oils for improving human health: A progress review. ACS Food Sci. Technol. 2023, 3, 528–538. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, W.; Lai, Y.; Zhang, B.; Zhang, D. Edible plant oil: Global status, health issues, and perspectives. Front. Plant Sci. 2020, 11, 1315. [Google Scholar] [CrossRef]
- Endo, Y. Analytical methods to evaluate the quality of edible fats and oils: The JOCS standard methods for analysis of fats, oils and related materials (2013) and advanced methods. J. Oleo Sci. 2018, 67, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lamani, S.; Anu-Appaiah, K.A.; Murthy, H.N.; Dewir, Y.H.; Rihan, H.Z. Fatty acid profile, tocopherol content of seed oil, and nutritional analysis of seed cake of wood apple (Limonia acidissima L.), an underutilized fruit-yielding tree species. Horticulturae 2021, 7, 275. [Google Scholar] [CrossRef]
- Murthy, H.N.; Yadav, G.G.; Kadapatti, S.S.; Lamani, S.; Desai, A.S.; Sumbad, M.M.; Dewir, Y.S.; Magyar-Tabori, K. Nutritional and oil characterization of Erythrina stricta Roxb. seeds: A potential resource for functional foods. Cogent Food Agric. 2024, 10, 2337770. [Google Scholar] [CrossRef]
- Neme, K.; Tola, Y.B.; Mohammed, A.; Tadesse, E.; Shaheen, F.; Ahmed, S.; Jahan, H.; Qaiser, S.; Muller, F. Effect of seed processing treatments on oil quality of Ethiopian sesame varieties. CyTA-J. Food 2023, 21, 31–40. [Google Scholar] [CrossRef]
- Konuskan, D.B.; Arslan, M.; Oksuz, A. Physicochemical properties of cold pressed sunflower, peanut, rapeseed, mustard and olive oils grown in the Eastern Mediterranean region. Saudi J. Biol. Sci. 2019, 26, 340–344. [Google Scholar] [CrossRef]
- Eggersdorfer, M.; Wyss, A. Carotenoids in human nutrition and health. Arch. Biochem. Biophys. 2018, 652, 18–25. [Google Scholar] [CrossRef]
- Kanopka, I.; Tanska, M.; Dabrowski, G.; Ogrodowska, D.; Czaplicki, S. Edibile oils from selected unconventional sources-a comprehensive review of fatty acid composition and phytochemical content. Appl. Sci. 2023, 13, 12829. [Google Scholar] [CrossRef]
- Soleymani, S.; Habtemariam, S.; Rahimi, R.; Nabavi, S.M. The what and who of dietary lignans in human health: Special focus on prooxidant and antioxidant effects. Trends Food Sci. Technol. 2020, 106, 382–390. [Google Scholar] [CrossRef]
- Bello, M.O.; Abdul-Hammed, M.; Adepoju, A.J.; Esan, O.A.; Tiamiyu, A.A. Nutritional composition and fatty acid profile of Ficus exasperata fruit and fruit oil. J. Nat. Sci. Res. 2014, 4, 25–29. [Google Scholar]
- Tas, E.N. Biochemical characteristics of fig (Ficus carica L.) seeds. J. Agric. Sci. 2019, 25, 232–237. [Google Scholar]
- Baygeldi, N.; Kucukerdonmez, O.; Akder, R.N.; Cagindi, O. Medicinal and nutritional analysis of fig (Ficus carica) seed oil: A new gamma-tocopherol and omega-3 source. Prog. Nutr. 2021, 23, e2021052. [Google Scholar]
- Rahman, M.M.; Rahman, M.S.; Islam, M.R.; Rahman, F.; Mithi, F.M.; Alqahtani, T.; Almikhlafi, M.A.; Alghamdi, S.Q.; Alruwali, A.S.; Hossain, M.S.; et al. Role of phenolic compounds in human disease: Current knowledge and future prospects. Molecules 2022, 27, 233. [Google Scholar] [CrossRef]
- Perera, S.; Silva, A.B.G.; Amarathung, Y.; De Silva, S.; Jayatissa, R.; Gamage, A.; Merah, O.; Madhujith, T. Nutritional composition and antioxidant activity of selected underutilized fruits grown in Sri Lanka. Agronomy 2022, 12, 1073. [Google Scholar] [CrossRef]
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Important flavonoids and their roles as a therapeutic agent. Molecules 2020, 25, 5243. [Google Scholar] [CrossRef] [PubMed]
- Rymbai, H.; Verma, V.K.; Talang, H.; Assumi, S.R.; Devi, M.B.; Vanlalruati; Sangma, R.H.C.H.; Biam, K.P.; Chanu, L.J.; Makdoh, B.; et al. Biochemical and antioxidant activity of wild edible fruits of eastern Himalaya, India. Front. Nutr. 2023, 10, 1039965. [Google Scholar] [CrossRef] [PubMed]
- Debnath, B.; Singh, W.S.; Das, M.; Goswami, S.; Singh, M.K.; Maiti, D.; Manna, K. Role of plant alkaloids on human health: A review of biological activities. Mater. Today Chem. 2018, 9, 56–72. [Google Scholar] [CrossRef]
- Tang, Y.Y.; He, X.M.; Sun, J.; Li, C.B.; Li, L.; Sheng, J.F.; Xin, M.; Li, Z.C.; Zheng, F.J.; Liu, G.M.; et al. Polyphenols and alkaloid byproducts of Longan fruits (Dimocarpus longan Lour.) and their bioactivities. Molecules 2019, 24, 1186. [Google Scholar] [CrossRef]
- Rajesh, M.; Anusuya, N.; Siddhuraj, P.; Manian, S. The antioxidant activity and free radical scavenging potential of two different solvent extracts of Cammelia sinensis (L.) O. Kuntz, F. bengalensis L. and F. racemosa L. Food Chem. 2008, 107, 1000–1007. [Google Scholar]
- Zhang, M.Q.; Zhang, J.; Zhang, Y.T.; Sun, J.Y.; Prieto, M.A.; Simal-Gandara, J.; Putnik, P.; Li, N.Y.; Liu, C. The link between phenolic composition and the antioxidant activity in different small berries: A metabolic approach. LWT-Food Sci. Technol. 2023, 182, 114853. [Google Scholar] [CrossRef]
Component | Composition (%) |
---|---|
Moisture | 87.99 ± 0.20 z |
Carbohydrate | 3.21 ± 0.15 |
Protein | 3.25 ± 0.26 |
Fat | 0.92 ± 0.15 |
Ash | 1.47 ± 0.04 |
Fiber | 2.20 ± 0.25 |
Energy (kcal/100 g) | 30.18 |
Mineral | Composition |
---|---|
Microelements (mg/g DW) | |
Nitrogen | 4.13 ± 0.06 z |
Phosphorous | 1.64 ± 0.02 |
Potassium | 21.03 ± 0.12 |
Sulphur | 1.02 ± 0.03 |
Sodium | 0.54 ± 0.01 |
Calcium | 11.07 ± 0.12 |
Magnesium | 13.24 ± 0.09 |
Microelements (µg/g DW) | |
Boron | 35.78 ± 0.44 |
Zinc | 124.33 ± 0.88 |
Iron | 686.67 ± 8.82 |
Manganese | 114.40 ± 0.29 |
Copper | 13.93 ± 0.20 |
Factor | Composition (mg/g FW) |
---|---|
Phytate | 2.80 ± 0.01 z |
Oxalate | 14.44 ± 0.06 |
Parameter | Fruit Oil z | Seed Oil z |
---|---|---|
Oil yield (%) | 0.67 ± 0.15 b | 8.07 a |
Color | Blood red | Crimson yellow |
State at room temperature | Solid | Liquid |
Refractive index | 1.510 ± 0.01 a | 1.498 ± 0.01 a |
Density (g/cm3) | 0.921 ± 0.01 a | 0.931 ± 0.01 a |
Free fatty acid content (%) | 1.03 ± 0.02 a | 1.55 ± 0.08 a |
Peroxide value (meq O2/kg) | 19.79 ± 1.46 a | 19.92 ± 0.77 a |
Iodine value (I2/100 g) | 88.21 ± 0.12 b | 154.03 ± 2.30 a |
Unsaponification value (%) | 15.28 ± 0.10 a | 2.80 ± 0.06 b |
Carotenoids (mg/kg) | 1048.73 ± 39.87 a | 36.64 ± 3.32 b |
Lignans (% SE) | 0.59 ± 0.02 a | 0.83 ± 0.10 a |
Fatty Acid | Chain Length | Pulp Oil | Seed Oil | ||
---|---|---|---|---|---|
RT (in min) | % Composition z | RT (in min) | % Composition z | ||
Lauric acid | 12:0 | 10.733 | 0.25 ± 0.02 a | ND | ND |
Myristic acid | 14:0 | 12.251 | 0.61 ± 0.02 a | 12.251 | 0.12 ± 0.01 b |
Pentadecanoic acid | 15:0 | 13.082 | 0.46 ± 0.01 a | 13.072 | 0.08 ± 0.01 b |
Palmitic acid | 16:0 | 13.954 | 46.08 ± 0.29 a | 13.964 | 18.16 ± 0.12 b |
Palmitelaidic | 16:1n9 | 14.384 | 0.52 ± 0.01 a | 14.384 | 0.14 ± 0.01 b |
Hexadecanoic acid, 14-methyl | 14Me-16:0 | 14.877 | 0.59 ± 0.02 a | ND | ND |
Stearic acid | 18:0 | 15.923 | 2.81 ± 0.06 b | 15.943 | 3.73 ± 0.09 a |
Oleic acid | 18:1n9 | 16.395 | 7.07 ± 0.09 b | 16.426 | 12.63 ± 0.17 a |
Vaccenic acid | 18:1n11 | 16.497 | 1.09 ± 0.02 a | 16.518 | 0.99 ± 0.06 a |
Linoleic acid | C18:2n9,12 | 17.256 | 28.61 ± 0.17 a | 17.297 | 26.81 ± 0.17 a |
Linolenic acid | 18:3n9,12,15 | 18.426 | 11.91 ± 0.12 b | 18.487 | 36.87 ± 0.18 a |
Paullinic acid | 20:1n13 | ND | ND | 19.195 | 0.11 ± 0.01 a |
Behenic acid | 22:0 | ND | ND | 21.236 | 0.37 ± 0.01 a |
Total saturated fatty acids | NRV | 50.80 | - | 22.46 | |
Total monounsaturated fatty acids | NRV | 8.68 | - | 13.87 | |
Total polyunsaturated fatty acids | NRV | 40.52 | - | 63.68 |
Activity | Acetone (mg/g Extract) z | Methanol (mg/g Extract) z | Water (mg/g Extract) z |
---|---|---|---|
Extract yield (mg/100 g DW) | 20.86 | 259.98 | 3.96 |
Total phenolics (GAE) | 60.12 ± 2.69 b | 25.78 ± 1.46 c | 70.50 ± 2.04 a |
Flavonoids (QE) | 16.53 ± 1.03 a | 5.88 ± 0.53 b | 7.12 ± 0.37 b |
Alkaloids (AE) | 3.76 ± 0.62 a | 1.37 ± 0.08 b | 0.04 ± 0.01 c |
Activity | Acetone (mg/g Extract) z | Methanol (mg/g Extract) z | Water (mg/g Extract) z |
---|---|---|---|
DPPH (mg GAE) | 3.81 ± 0.87 a | 2.54 ± 1.09 a | 4.82 ± 0.59 a |
TAA (mg AAE) | 3103 ± 3.20 a | 97.99 ± 13.68 b | 139.15 ± 0.95 b |
FRAP (mg AAE) | 965.21 ± 25.20 a | 10.66 ± 0.35 b | 38.14 ± 0.85 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murthy, H.N.; Yadav, G.G.; Joseph, K.S.; H. S., S.K.; Magi, S.M.; Dewir, Y.H.; Mendler-Drienyovszki, N. Nutritional Value, Fatty Acid and Phytochemical Composition, and Antioxidant Properties of Mysore Fig (Ficus drupacea Thunb.) Fruits. Foods 2024, 13, 2845. https://doi.org/10.3390/foods13172845
Murthy HN, Yadav GG, Joseph KS, H. S. SK, Magi SM, Dewir YH, Mendler-Drienyovszki N. Nutritional Value, Fatty Acid and Phytochemical Composition, and Antioxidant Properties of Mysore Fig (Ficus drupacea Thunb.) Fruits. Foods. 2024; 13(17):2845. https://doi.org/10.3390/foods13172845
Chicago/Turabian StyleMurthy, Hosakatte Niranjana, Guggalada Govardhana Yadav, Kadanthottu Sebastian Joseph, Sabha Khan H. S., Snehalata M. Magi, Yaser Hassan Dewir, and Nóra Mendler-Drienyovszki. 2024. "Nutritional Value, Fatty Acid and Phytochemical Composition, and Antioxidant Properties of Mysore Fig (Ficus drupacea Thunb.) Fruits" Foods 13, no. 17: 2845. https://doi.org/10.3390/foods13172845
APA StyleMurthy, H. N., Yadav, G. G., Joseph, K. S., H. S., S. K., Magi, S. M., Dewir, Y. H., & Mendler-Drienyovszki, N. (2024). Nutritional Value, Fatty Acid and Phytochemical Composition, and Antioxidant Properties of Mysore Fig (Ficus drupacea Thunb.) Fruits. Foods, 13(17), 2845. https://doi.org/10.3390/foods13172845