Quality Evaluation and Heat and Mass Transfer Mechanism of Microwave Vacuum Drying of Astragalus Roots
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Material
2.2. Test Equipment
2.3. Experimental Methods
2.4. Test Index Determination
2.4.1. Determination of Moisture Content
2.4.2. Determination of Drying Rate
2.4.3. Determination of Moisture Ratio
2.5. Numerical Simulation and Verification
2.5.1. Microwave Drying Characteristics
2.5.2. The Characteristic of the Electromagnetic Wave Propagates
2.5.3. Heat and Mass Transfer Control Equation
2.5.4. Dielectric Properties of Samples
2.5.5. Construction of Numerical Model
- (1)
- The initial temperature and medium of Astragalus are uniform and isotropic in its interior;
- (2)
- Electromagnetic wave is transverse wave or flat wave without omission;
- (3)
- The gas phase in the microwave drying equipment is in an ideal state;
- (4)
- It is assumed that Astragalus did not deform during microwave drying;
- (5)
- Astragalus conforms to the linear constitutive relationship.
2.6. Quality Index Measurement
2.6.1. Preparation of Extracts
2.6.2. Determination of Polysaccharide Content
2.6.3. Determination of Total Phenolic Content
2.6.4. Determination of Total Flavonoid Content
2.6.5. Determination of Antioxidant Properties
2.7. Determination of Active Ingredients
2.7.1. Chromatographic Conditions
2.7.2. Preparation of Control
2.7.3. Preparation of Test Samples
2.8. Data Analysis
3. Results and Analysis
3.1. Analysis of Microwave Vacuum Drying Characteristics of Astragalus
3.1.1. Effect of Drying Temperature on the Microwave Vacuum Drying Characteristics of Astragalus
3.1.2. Effect of Slicing Thickness on the Microwave Vacuum Drying Characteristics of Astragalus
3.2. Analysis of Simulation Results
3.2.1. Effect of Microwave on Sample Temperature
3.2.2. Study on Heat and Mass Transfer Mechanism of Astragalus Microwave Drying
3.3. Analysis of Quality Indicators
3.3.1. Polysaccharide
3.3.2. Total Phenols
3.3.3. Total Flavonoids
3.3.4. Antioxidant Capacity
3.3.5. Active Ingredients
3.3.6. Microstructure
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- National Pharmacopoeia Committee. Chinese Pharmacopoeia; China Pharmaceutical Science and Technology Press: Beijing, China, 2020. [Google Scholar]
- Li, Y.; Guo, S.; Zhu, Y.; Yan, H.; Qian, D.; Wang, H.; Yu, J.; Duan, J. Comparative analysis of twenty-five compounds in different parts of Astragalus membranaceus var. mongholicus and Astragalus membranaceus By UPLC-MS/MS. J. Pharm. Anal. 2019, 9, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Sheik, A.; Kim, K.; Varaprasad, G.L.; Lee, H.; Kim, S.; Kim, E.; Shin, J.Y.; Oh, S.Y.; Huh, Y.S. The anti-cancerous activity of adaptogenic herb Astragalus membranaceus. Phytomedicine 2021, 91, 153698. [Google Scholar] [CrossRef] [PubMed]
- Auyeung, K.K.; Han, Q.B.; Ko, J.K. Astragalus membranaceus: A Review of its Protection Against Inflammation and Gastrointestinal Cancers. Am. J. Chin. Med. 2016, 44, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Jiang, N.; Zheng, J.; Hu, H.; Yang, H.; Lin, A.; Hu, B.; Liu, H. Structural characterization and anti-inflammatory activity of polysaccharides from Astragalus membranaceus. Int. J. Biol. Macromol. 2023, 241, 124386. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Ji, H.Y.; Liu, A.J. Alcohol-soluble polysaccharide from Astragalus membranaceus: Preparation, characteristics and antitumor activity. Int. J. Biol. Macromol. 2018, 118, 2057–2064. [Google Scholar] [CrossRef]
- Li, Z.; Qi, J.; Guo, T.; Li, J. Research progress of Astragalus membranaceus in treating peritoneal metastatic cancer. J. Ethnopharmacol. 2023, 305, 116086. [Google Scholar] [CrossRef]
- Sun, Q.Y.; Wang, G.H.; Wang, D.H. Research on vacuum drying characteristics and moisture absorption characteristics of Astragalus slices. Food Ind. Sci. Technol. 2017, 38, 76–81+89. [Google Scholar]
- Wan, L.J.; He, H.j.; Li, J.T.; Feng, X.L.; Liu, X.X.; Wei, S.C. Study on the effect of different drying methods on the concentrated solution of Astragalus membranaceus. Chin.J. Phar. 2024, 59, 172–178. [Google Scholar]
- Wei, Q.X. Experimental Study on Vacuum Freeze Drying of Astragalus membranaceus. Master’s Thesis, Shanxi Agricultural University, Jinzhong, China, 2015. [Google Scholar]
- Ricardo, L.M.; Jade, V.L.; Giustino, T.; Bruno, A.M.C.; João, B.L. Microwave vacuum drying and multi-flash drying of pumpkin slices. J. Food Eng. 2018, 232, 1–10. [Google Scholar]
- Lin, X.; Xu, J.L.; Sun, D.W. Evaluating Drying Feature Differences between Ginger Slices and Splits during Microwave-Vacuum Drying by Hyperspectral Imaging Technique. Food Chem. 2020, 332, 127407. [Google Scholar] [CrossRef]
- Çelen, S. Effect of Microwave Drying on the Drying Characteristics, Color, Microstructure, and Thermal Properties of Trabzon Persimmon. Foods 2019, 8, 84. [Google Scholar] [CrossRef] [PubMed]
- Marzuki, S.U.; Pranoto, Y.; Khumsap, T.; Nguyen, L.T. Effect of blanching pretreatment and microwave-vacuum drying on drying kinetics and physicochemical properties of purple-fleshed sweet potato. J. Food Sci. Technol. 2021, 58, 2884–2895. [Google Scholar] [CrossRef] [PubMed]
- Ricardo, L.M.; Jaqueline, O.D.M.; Jéssica, D.D.; Bruno, A.M.C.; João, B.L. Evolution of the physicochemical properties of oil-free sweet potato chips during microwave vacuum drying. Innov. Food Sci. Emerg. Technol. 2020, 63, 102317. [Google Scholar]
- Dewi, S.; Carter, C.; Frank, Y.; Barbara, A.R. Optimizing Drying Conditions for Microwave-Vacuum (MIVAC®) Drying of Russet Potatoes (Solanum tuberosum). Dry. Technol. 2007, 25, 1483–1489. [Google Scholar]
- Nidhal, M.; Mohammed, F. Microwave vacuum drying of banana slices. Dry. Technol. 2020, 20, 2055–2066. [Google Scholar]
- Hamza, B. Effects of hot air, vacuum infrared, and vacuum microwave dryers on the drying kinetics and quality characteristics of orange slices. J. Food Process Eng. 2020, 43, e13485. [Google Scholar]
- Lin, H. Research on Microwave Vacuum Drying Characteristics and Process Optimization of Dendrobium Officinale. Master’s Thesis, Fujian Agriculture and Forestry University, Fuzhou, China, 2020. [Google Scholar]
- Ning, X.F.; Feng, Y.L.; Gong, Y.J.; Chen, Y.L.; Qin, J.W.; Wang, D.Y. Drying features of microwave and far-infrared combination drying on white ginseng slices. Food Sci. Biotechnol. 2019, 28, 1065–1072. [Google Scholar] [CrossRef]
- Zang, Z.P.; Huang, X.P.; He, C.C.; Zhang, Q.; Jiang, C.H.; Wan, F.X. Improving Drying Characteristics and Physicochemical Quality of Angelica sinensis by Novel Tray Rotation Microwave Vacuum Drying. Foods 2023, 12, 1202. [Google Scholar] [CrossRef]
- AOAC. Official Method of Analysis; no. 934.06; Association of Official Analytical Chemists: Washington, WA, USA, 1990. [Google Scholar]
- Yue, Y.M.; Zhang, Q.; Wan, F.X.; Ma, G.J.; Zang, Z.P.; Xu, Y.R.; Jiang, C.H.; Huang, X.P. Effects of Different Drying Methods on the Drying Characteristics and Quality of Codonopsis pilosulae Slices. Foods 2023, 12, 1323. [Google Scholar] [CrossRef]
- Zang, Z.P.; Zhang, Q.; Huang, X.P.; Jiang, C.H.; He, C.C.; Wan, F.X. Effect of Ultrasonic Combined with Vacuum Far-infrared on the Drying Characteristics and Physicochemical Quality of Angelica sinensis. Food Bioprocess Technol. 2023, 103, 2455–2470. [Google Scholar] [CrossRef]
- Beato, V.M.; Orgaz, F.; Mansilla, F.; Montaño, A. Changes in phenolic compounds in garlic (Allium sativum L.) owing to the cultivar and location of growth. Plant Foods Hum. Nutr. 2011, 66, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Lay, M.; Karsani, S.; Mohajer, S.; Malek, S.A. Phytochemical constituents, nutritional values, phenolics, flavonols, flavonoids, antioxidant and cytotoxicity studies on Phaleria macrocarpa (scheff.) boerl fruits. BMC Complement. Altern. Med. 2014, 14, 152. [Google Scholar] [CrossRef] [PubMed]
- Nencini, C.; Menchiari, A.; Franchi, G.G.; Micheli, L. In vitro antioxidant activity of aged extracts of some Italian allium species. Plant Foods Hum. Nutr. 2011, 66, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.H. Research on Non-Stationary Physical Property Parameters and Drying Characteristics of Porous Materials. Master’s Thesis, Kunming University of Science and Technology, Kunming, China, 2015. [Google Scholar]
- Fen, Y.; Wan, N.; Li, Y.H.; Wang, X.C.; Wu, Z.F.; Liu, Z.F.; Yang, M. Analysis of the laws and mechanisms of physical and chemical property changes during drying of Chinese herbal medicines. Chin. Herb. Med. 2021, 52, 2144–2153. [Google Scholar]
- Li, S.S.; Tong, L.H.; Ren, Z.Y.; Dong, H.; Liang, J.; Li, N.Y. Study on the suitability of processing black garlic from different origins of garlic. Chin. Fruit Veg. 2018, 38, 5–9. [Google Scholar]
- Yue, Y.M.; Zang, Z.P.; Wan, F.X.; Zhang, Q.; Shang, J.W.; Xu, Y.R.; Jiang, C.H.; Wang, T.X.; Huang, X.P. Effect of ultrasonic pretreatment on radio frequency vacuum drying characteristics and quality of Codonopsis pilosula slices. Agriculture 2023, 13, 72. [Google Scholar] [CrossRef]
- Liao, C.R.; Luo, Y.F.; He, X. Investigation of microwave penetration depth of poplar wood with different moisture content. J. Cent. South For. Univ. Sci. Technol. 2017, 37, 133–138. [Google Scholar]
- Luo, Y. Vacuum Far-Infrared Drying Characteristics and Heat and Mass Transfer Mechanism of Angelica Sinensis Slices. Master’s Thesis, Gansu Agricultural University, Lanzhou, China, 2021. [Google Scholar]
- Zhang, Q.; Wan, F.X.; Zang, Z.P.; Jiang, C.H.; Xu, Y.R.; Huang, X.P. Effect of ultrasonic far-infrared synergistic drying on the characteristics and qualities of wolfberry (Lycium barbarum L.). Ultrason. Sonochem. 2022, 89, 106134. [Google Scholar] [CrossRef]
- Zang, Z.P.; Huang, X.P.; Zhang, Q.; Jiang, C.H.; Wang, T.X.; Shang, J.W.; He, C.C.; Wan, F.X. Evaluation of the effect of ultrasonic pretreatment on vacuum far-infrared drying characteristics. J. Food Sci. 2023, 88, 1905–1923. [Google Scholar] [CrossRef]
- Ricardo, L.M.; Jade, V.L.; Giustino, T.; Bruno, A.M.C.; João, B.L. Effect of multi-flash drying and microwave vacuum drying on the microstructure and texture of pumpkin slices. LWT 2018, 96, 612–619. [Google Scholar]
- Dong, W.J.; Cheng, K.; Hu, R.S.; Chu, Z.; Zhao, J.P.; Long, Y.Z. Effect of Microwave Vacuum Drying on the Drying Characteristics, Color, Microstructure, and Antioxidant Activity of Green Coffee Beans. Molecules 2018, 23, 1146. [Google Scholar] [CrossRef] [PubMed]
- Nantawan, T.; Zhou, W.B. Characterization of microwave vacuum drying and hot air drying of mint leaves (Mentha cordifolia Opiz ex Fresen). J. Food Eng. 2009, 91, 482–489. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, Y.; Zhang, Q.; Ma, G.; Wan, F.; Zang, Z.; Xu, Y.; Kang, F.; Huang, X. Quality Evaluation and Heat and Mass Transfer Mechanism of Microwave Vacuum Drying of Astragalus Roots. Foods 2024, 13, 3075. https://doi.org/10.3390/foods13193075
Yue Y, Zhang Q, Ma G, Wan F, Zang Z, Xu Y, Kang F, Huang X. Quality Evaluation and Heat and Mass Transfer Mechanism of Microwave Vacuum Drying of Astragalus Roots. Foods. 2024; 13(19):3075. https://doi.org/10.3390/foods13193075
Chicago/Turabian StyleYue, Yuanman, Qian Zhang, Guojun Ma, Fangxin Wan, Zepeng Zang, Yanrui Xu, Futai Kang, and Xiaopeng Huang. 2024. "Quality Evaluation and Heat and Mass Transfer Mechanism of Microwave Vacuum Drying of Astragalus Roots" Foods 13, no. 19: 3075. https://doi.org/10.3390/foods13193075
APA StyleYue, Y., Zhang, Q., Ma, G., Wan, F., Zang, Z., Xu, Y., Kang, F., & Huang, X. (2024). Quality Evaluation and Heat and Mass Transfer Mechanism of Microwave Vacuum Drying of Astragalus Roots. Foods, 13(19), 3075. https://doi.org/10.3390/foods13193075