Inhibitory Effect of Phenethyl Isothiocyanate on the Adhesion and Biofilm Formation of Staphylococcus aureus and Application on Beef
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Culture Media
2.2. MIC and Growth Curves
2.3. Biofilm Formation
2.4. Protein Leakage
2.5. Total ATP Content
2.6. ROS Production
2.7. Scanning Electron Microscopy (SEM)
2.8. Adherence of S. aureus
2.9. Quantitative Real-Time Polymerase Chain Reaction (qRT–PCR)
2.10. Application of PEITC in Beef Stored at 25 and 4 °C
2.11. Statistical Analysis
3. Results and Discussion
3.1. Effects of PEITC on the Growth of S. aureus
3.2. Effects of PEITC on S. aureus Biofilm Formation
3.3. Effects of PEITC on Protein Leakage by S. aureus
3.4. Effects of PEITC on Total ATP and ROS Production in S. aureus
3.5. Effects of PEITC on the Morphology of S. aureus
3.6. Effects of PEITC on the Adhesion of S. aureus
3.7. Relative Expression of Genes
3.8. Effects of PEITC on Beef Stored at 25 and 4 °C
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, K.; Chen, S.; Sysoeva, T.A.; You, L. Universal antibiotic tolerance arising from antibiotic-triggered accumulation of pyocyanin in Pseudomonas aeruginosa. PLoS Biol. 2019, 17, e3000573. [Google Scholar] [CrossRef] [PubMed]
- Siala, W.; Kucharikova, S.; Braem, A.; Vleugels, J.; Tulkens, P.M.; Mingeot-Leclercq, M.P.; Van Dijck, P.; Van Bambeke, F. The antifungal caspofungin increases fluoroquinolone activity against Staphylococcus aureus biofilms by inhibiting N-acetylglucosamine transferase. Nat. Commun. 2016, 7, 13286. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, D.J.; Azlin-Hasim, S.; Cruz-Romero, M.; Cummins, E.; Kerry, J.P.; Morris, M.A. Antimicrobial effect of benzoic and sorbic acid salts and nano-solubilisates against Staphylococcus aureus, Pseudomonas fluorescens and chicken microbiota biofilms. Food Control 2020, 107, 106786. [Google Scholar] [CrossRef]
- Li, M.; Muthaiyan, A.; O’Bryan, C.A.; Gustafson, J.E.; Li, Y.; Crandall, P.G.; Ricke, S.C. Use of natural antimicrobials from a food safety perspective for control of Staphylococcus aureus. Curr. Pharm. Biotechnol. 2011, 12, 1240–1254. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, V.K.; Bahuguna, A.; Kumar, V.; Khan, I.; Alrokayan, S.H.; Khan, H.A.; Simal-Gandara, J.; Xiao, J.; Na, M.; Sonwal, S.; et al. Cellular antioxidant potential and inhibition of foodborne pathogens by a sesquiterpene ilimaquinone in cold storaged ground chicken and under temperature-abuse condition. Food Chem. 2022, 373, 131392. [Google Scholar] [CrossRef]
- DeLeo, F.R.; Chambers, H.F. Reemergence of antibiotic-resistant Staphylococcus aureus in the genomics era. J. Clin. Investig. 2009, 119, 2464–2474. [Google Scholar] [CrossRef]
- Nagasawa, Y.; Kiku, Y.; Sugawara, K.; Hirose, A.; Kai, C.; Kitano, N.; Takahashi, T.; Nochi, T.; Aso, H.; Sawada, S.I.; et al. Staphylococcus aureus-specific IgA antibody in milk suppresses the multiplication of S. aureus in infected bovine udder. BMC Vet. Res. 2019, 15, 286. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Liu, Y.; Yang, F.; Xie, Y.; Guo, Y.; Cheng, Y.; Yao, W. Synergistic efficacy of high-intensity ultrasound and chlorine dioxide combination for Staphylococcus aureus biofilm control. Food Control 2021, 122, 107822. [Google Scholar] [CrossRef]
- Yuan, L.; Sadiq, F.A.; Wang, N.; Yang, Z.; He, G. Recent advances in understanding the control of disinfectant-resistant biofilms by hurdle technology in the food industry. Crit. Rev. Food Sci. Nutr. 2021, 61, 3876–3891. [Google Scholar] [CrossRef]
- Avila-Novoa, M.-G.; Iñíguez-Moreno, M.; Solís-Velázquez, O.-A.; González-Gómez, J.-P.; Guerrero-Medina, P.-J.; Gutiérrez-Lomelí, M. Biofilm Formation by Staphylococcus aureus Isolated from Food Contact Surfaces in the Dairy Industry of Jalisco, Mexico. J. Food Qual. 2018, 2018, 1746139. [Google Scholar] [CrossRef]
- Lai, C.H.; Wong, M.Y.; Huang, T.Y.; Kao, C.C.; Lin, Y.H.; Lu, C.H.; Huang, Y.K. Exploration of agr types, virulence-associated genes, and biofilm formation ability in Staphylococcus aureus isolates from hemodialysis patients with vascular access infections. Front. Cell Infect. Microbiol. 2024, 14, 1367016. [Google Scholar] [CrossRef] [PubMed]
- Le, K.Y.; Park, M.D.; Otto, M. Immune Evasion Mechanisms of Staphylococcus epidermidis Biofilm Infection. Front. Microbiol. 2018, 9, 359. [Google Scholar] [CrossRef] [PubMed]
- Ahn, K.B.; Baik, J.E.; Yun, C.H.; Han, S.H. Lipoteichoic Acid Inhibits Staphylococcus aureus Biofilm Formation. Front. Microbiol. 2018, 9, 327. [Google Scholar] [CrossRef]
- Lebeaux, D.; Ghigo, J.M.; Beloin, C. Biofilm-related infections: Bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol. Mol. Biol. Rev. 2014, 78, 510–543. [Google Scholar] [CrossRef]
- Koo, H.; Allan, R.N.; Howlin, R.P.; Stoodley, P.; Hall-Stoodley, L. Targeting microbial biofilms: Current and prospective therapeutic strategies. Nat. Rev. Microbiol. 2017, 15, 740–755. [Google Scholar] [CrossRef]
- Lee, A.S.; de Lencastre, H.; Garau, J.; Kluytmans, J.; Malhotra-Kumar, S.; Peschel, A.; Harbarth, S. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Primers 2018, 4, 18033. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Li, L.; Chen, C.H.; Zhang, Y.Y.; Yang, Y.; Zhang, P.; Bao, G.H. Chemical composition and antibacterial activity of 12 medicinal plant ethyl acetate extracts using LC-MS feature-based molecular networking. Phytochem. Anal. 2022, 33, 473–489. [Google Scholar] [CrossRef]
- Kang, J.; Jin, W.; Wang, J.; Sun, Y.; Wu, X.; Liu, L. Antibacterial and anti-biofilm activities of peppermint essential oil against Staphylococcus aureus. LWT 2019, 101, 639–645. [Google Scholar] [CrossRef]
- Bai, J.R.; Zhong, K.; Wu, Y.P.; Elena, G.; Gao, H. Antibiofilm activity of shikimic acid against Staphylococcus aureus. Food Control 2019, 95, 327–333. [Google Scholar] [CrossRef]
- Li, H.; Li, C.; Ye, Y.; Cui, H.; Lin, L. Inhibition mechanism of cyclo (L-Phe-L-Pro) on early stage Staphylococcus aureus biofilm and its application on food contact surface. Food Biosci. 2022, 49, 101968. [Google Scholar] [CrossRef]
- Prateeksha; Barik, S.K.; Singh, B.N. Nanoemulsion-loaded hydrogel coatings for inhibition of bacterial virulence and biofilm formation on solid surfaces. Sci. Rep. 2019, 9, 6520. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Xia, L.; Wei, L.; Li, D.; Jiang, W. Artesunate inhibits Staphylococcus aureus biofilm formation by reducing alpha-toxin synthesis. Arch. Microbiol. 2021, 203, 707–717. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.; Li, C.; Cui, H.; Lin, L. Preparation of self-assembling Litsea cubeba essential oil/ diphenylalanine peptide micro/nanotubes with enhanced antibacterial properties against Staphylococcus aureus biofilm. LWT 2021, 146, 111394. [Google Scholar] [CrossRef]
- Genovese, C.; D’Angeli, F.; Bellia, F.; Distefano, A.; Spampinato, M.; Attanasio, F.; Nicolosi, D.; Di Salvatore, V.; Tempera, G.; Lo Furno, D.; et al. In Vitro Antibacterial, Anti-Adhesive and Anti-Biofilm Activities of Krameria lappacea (Dombey) Burdet & B.B. Simpson Root Extract against Methicillin-Resistant Staphylococcus aureus Strains. Antibiotics 2021, 10, 428. [Google Scholar] [CrossRef]
- Gupta, P.; Wright, S.E.; Kim, S.H.; Srivastava, S.K. Phenethyl isothiocyanate: A comprehensive review of anti-cancer mechanisms. Biochim. Biophys. Acta 2014, 1846, 405–424. [Google Scholar] [CrossRef]
- Mi, L.; Di Pasqua, A.J.; Chung, F.L. Proteins as binding targets of isothiocyanates in cancer prevention. Carcinogenesis 2011, 32, 1405–1413. [Google Scholar] [CrossRef]
- Nakamura, T.; Murata, Y.; Nakamura, Y. Characterization of benzyl isothiocyanate extracted from mashed green papaya by distillation. Food Chem. 2019, 299, 125118. [Google Scholar] [CrossRef]
- Wang, X.; Wu, H.; Niu, T.; Bi, J.; Hou, H.; Hao, H.; Zhang, G. Downregulated Expression of Virulence Factors Induced by Benzyl Isothiocyanate in Staphylococcus Aureus: A Transcriptomic Analysis. Int. J. Mol. Sci. 2019, 20, 5441. [Google Scholar] [CrossRef]
- Kaiser, S.J.; Mutters, N.T.; Blessing, B.; Gunther, F. Natural isothiocyanates express antimicrobial activity against developing and mature biofilms of Pseudomonas aeruginosa. Fitoterapia 2017, 119, 57–63. [Google Scholar] [CrossRef]
- Borges, A.; Simões, L.C.; Saavedra, M.J.; Simões, M. The action of selected isothiocyanates on bacterial biofilm prevention and control. Int. Biodeterior. Biodegrad. 2014, 86, 25–33. [Google Scholar] [CrossRef]
- Borges, A.; Abreu, A.C.; Ferreira, C.; Saavedra, M.J.; Simoes, L.C.; Simoes, M. Antibacterial activity and mode of action of selected glucosinolate hydrolysis products against bacterial pathogens. J. Food Sci. Technol. 2015, 52, 4737–4748. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yang, N.; Yu, L.; Li, J.; Zhang, H.; Zheng, Y.; Xu, M.; Liu, Y.; Yang, Y.; Li, J. Synergistic Microbicidal Effect of AUR and PEITC Against Staphylococcus aureus Skin Infection. Front. Cell. Infect. Microbiol. 2022, 12, 927289. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wu, H.; Ao, X.; Hao, H.; Bi, J.; Hou, H.; Zhang, G. Characterization of the Inclusion Complexes of Isothiocyanates with gamma-Cyclodextrin for Improvement of Antibacterial Activities against Staphylococcus aureus. Foods 2021, 11, 60. [Google Scholar] [CrossRef]
- Miladi, H.; Zmantar, T.; Kouidhi, B.; Chaabouni, Y.; Mahdouani, K.; Bakhrouf, A.; Chaieb, K. Use of carvacrol, thymol, and eugenol for biofilm eradication and resistance modifying susceptibility of Salmonella enterica serovar Typhimurium strains to nalidixic acid. Microb. Pathog. 2017, 104, 56–63. [Google Scholar] [CrossRef]
- Zekanović, M.S.; Begić, G.; Mežnarić, S.; Jelovica Badovinac, I.; Krištof, R.; Tomić Linšak, D.; Gobin, I. Effect of UV Light and Sodium Hypochlorite on Formation and Destruction of Pseudomonas fluorescens Biofilm In Vitro. Processes 2022, 10, 1901. [Google Scholar] [CrossRef]
- Li, Z.; Wu, H.; Liu, J.; Hao, H.; Bi, J.; Hou, H.; Zhang, G. Synergistic effects of benzyl isothiocyanate and resveratrol against Listeria monocytogenes and their application in chicken meat preservation. Food Chem. 2023, 419, 135984. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Wang, D.; Wen, X.; Li, X.; Fang, F.; Richel, A.; Xiao, N.; Fauconnier, M.-L.; Hou, C.; Zhang, D. Incorporation of cinnamon essential oil-loaded Pickering emulsion for improving antimicrobial properties and control release of chitosan/gelatin films. Food Hydrocoll. 2023, 138, 108438. [Google Scholar] [CrossRef]
- Altamimi, M.; Abdelhay, O.; Rastall, R.A. Effect of oligosaccharides on the adhesion of gut bacteria to human HT-29 cells. Anaerobe 2016, 39, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.-X.; Wu, H.-T.; Li, X.-X.; Wu, H.-Y.; Niu, T.-X.; Wang, X.-N.; Lian, R.; Zhang, G.-L.; Hou, H.-M. Comparison of the inhibitory potential of benzyl isothiocyanate and phenethyl isothiocyanate on Shiga toxin-producing and enterotoxigenic Escherichia coli. LWT 2020, 118, 108806. [Google Scholar] [CrossRef]
- Soyucok, A.; Kilic, B.; Kilic, G.B.; Yalcin, H. In vitro antimicrobial activity of ginseng extract against Staphylococcus aureus, Salmonella Typhimurium and Listeria monocytogenes and its inhibitory effects on these pathogens in cooked ground beef. Meat Sci. 2024, 216, 109559. [Google Scholar] [CrossRef]
- Li, S.; Wang, Y.; Xu, G.; Xu, Y.; Fu, C.; Zhao, Q.; Xu, L.; Jia, X.; Zhang, Y.; Liu, Y.; et al. The combination of allicin with domiphen is effective against microbial biofilm formation. Front. Microbiol. 2024, 15, 1341316. [Google Scholar] [CrossRef] [PubMed]
- Guo, N.; Bai, X.; Shen, Y.; Zhang, T. Target-based screening for natural products against Staphylococcus aureus biofilms. Crit. Rev. Food Sci. Nutr. 2021, 63, 2216–2230. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, S.; Xing, Z.; Niu, Y.; Liao, Z.; Lu, Y.; Qiu, J.; Zhang, J.; Wang, C.; Dong, L. Destructing biofilms by cationic dextran through phase transition. Carbohydr. Polym. 2022, 279, 118778. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Zhang, C.; Li, C.; Lin, L. Inhibition mechanism of cardamom essential oil on methicillin-resistant Staphylococcus aureus biofilm. LWT 2020, 122, 109057. [Google Scholar] [CrossRef]
- Shen, S.; Zhang, T.; Yuan, Y.; Lin, S.; Xu, J.; Ye, H. Effects of cinnamaldehyde on Escherichia coli and Staphylococcus aureus membrane. Food Control 2015, 47, 196–202. [Google Scholar] [CrossRef]
- Yang, H.; Gao, Y.; Long, L.; Cai, Y.; Liao, J.; Peng, J.; Wang, L. Antibacterial effect of Blumea balsamifera (L.) DC. essential oil against Staphylococcus aureus. Arch. Microbiol. 2021, 203, 3981–3988. [Google Scholar] [CrossRef]
- Kirazli, S.; Tunca, S. NISIN and gilaburu (Viburnum opulus L.) combination is a cost-effective way to control foodborne Staphylococcus aureus. Food Control 2022, 142, 109213. [Google Scholar] [CrossRef]
- Liu, L.; Lan, W.; Wang, Y.; Xie, J. Antibacterial activity and mechanism of slightly acidic electrolyzed water against Shewanella putrefaciens and Staphylococcus saprophytic. Biochem. Biophys. Res. Commun. 2022, 592, 44–50. [Google Scholar] [CrossRef]
- Zeng, C.; Sun, Y.; Lin, H.; Li, Z.; Zhang, Q.; Cai, T.; Xiang, W.; Tang, J.; Yasurin, P. D-Limonene Inhibits Pichia kluyveri Y-11519 in Sichuan Pickles by Disrupting Metabolism. Molecules 2024, 29, 3561. [Google Scholar] [CrossRef]
- El Haj, C.; Lichtenberg, M.; Nielsen, K.L.; Bjarnsholt, T.; Jensen, P.O. Catalase Protects Biofilm of Staphylococcus aureus against Daptomycin Activity. Antibiotics 2021, 10, 511. [Google Scholar] [CrossRef]
- Zhang, B.; Zang, Y.; Mo, Q.; Sun, L.; Tu, M.; Shu, D.; Li, Y.; Xue, F.; Wu, G.; Zhao, X. Antibacterial activity and mechanism of slightly acidic electrolyzed water (SAEW) combined with ultraviolet light against Staphylococcus aureus. LWT 2023, 182, 114746. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Z.; Chan, Y.K.; Yang, Y.; Jiao, Z.; Li, L.; Li, J.; Liang, K.; Deng, Y. Infection Micromilieu-Activated Nanocatalytic Membrane for Orchestrating Rapid Sterilization and Stalled Chronic Wound Regeneration. Adv. Funct. Mater. 2021, 32, 2109469. [Google Scholar] [CrossRef]
- Zhang, L.-L.; Zhang, L.-F.; Hu, Q.-P.; Hao, D.-L.; Xu, J.-G. Chemical composition, antibacterial activity of Cyperus rotundus rhizomes essential oil against Staphylococcus aureus via membrane disruption and apoptosis pathway. Food Control 2017, 80, 290–296. [Google Scholar] [CrossRef]
- Cao, Y.; Zhou, D.; Zhang, X.; Xiao, X.; Yu, Y.; Li, X. Synergistic effect of citral and carvacrol and their combination with mild heat against Cronobacter sakazakii CICC 21544 in reconstituted infant formula. LWT 2021, 138, 110617. [Google Scholar] [CrossRef]
- Pinto, L.; Tapia-Rodríguez, M.R.; Baruzzi, F.; Ayala-Zavala, J.F. Plant Antimicrobials for Food Quality and Safety: Recent Views and Future Challenges. Foods 2023, 12, 2315. [Google Scholar] [CrossRef]
- Zeng, J.; Chen, D.; Lv, C.; Qin, K.; Zhou, Q.; Pu, N.; Song, S.; Wang, X. Antimicrobial and anti-biofilm activity of Polygonum chinense L.aqueous extract against Staphylococcus aureus. Sci. Rep. 2022, 12, 21988. [Google Scholar] [CrossRef] [PubMed]
- Sinha, B.; Francois, P.P.; Nusse, O.; Foti, M.; Hartford, O.M.; Vaudaux, P.; Foster, T.J.; Lew, D.P.; Herrmann, M.; Krause, K.H. Fibronectin-binding protein acts as Staphylococcus aureus invasin via fibronectin bridging to integrin alpha5beta1. Cell Microbiol. 1999, 1, 101–117. [Google Scholar] [CrossRef]
- Yuan, Q.; Feng, W.; Wang, Y.; Wang, Q.; Mou, N.; Xiong, L.; Wang, X.; Xia, P.; Sun, F. Luteolin attenuates the pathogenesis of Staphylococcus aureus by interfering with the agr system. Microb. Pathog. 2022, 165, 105496. [Google Scholar] [CrossRef]
- Mao, Y.; Liu, P.; Chen, H.; Wang, Y.; Li, C.; Wang, Q. Baicalein Inhibits the Staphylococcus aureus Biofilm and the LuxS/AI-2 System in vitro. Infect. Drug Resist. 2023, 16, 2861–2882. [Google Scholar] [CrossRef]
- Clarke, S.R.; Wiltshire, M.D.; Foster, S.J. IsdA of Staphylococcus aureus is a broad spectrum, iron-regulated adhesin. Mol. Microbiol. 2004, 51, 1509–1519. [Google Scholar] [CrossRef]
- Clarke, S.R.; Foster, S.J. IsdA protects Staphylococcus aureus against the bactericidal protease activity of apolactoferrin. Infect. Immun. 2008, 76, 1518–1526. [Google Scholar] [CrossRef]
- Clarke, S.R.; Harris, L.G.; Richards, R.G.; Foster, S.J. Analysis of Ebh, a 1.1-megadalton cell wall-associated fibronectin-binding protein of Staphylococcus aureus. Infect. Immun. 2002, 70, 6680–6687. [Google Scholar] [CrossRef]
Gene Name | Primer | Sequence (5′–3′) |
---|---|---|
16 s rRNA | 16 s rRNA-F | CGTGCTACAATGGACAATACA |
16 s rRNA-R | ACAATCCGAACTGAGAACAAC | |
isdA | isdA-F | GTTGCAACAGCGAAATCTGA |
isdA-R | ATGCTTGTTTAGGCGTTTCG | |
icaR | icaR-F | TGCTTTCAAATACCAACTTTCAAG |
icaR-R | ACGTTCAATTATCTAATACGCCTGA | |
fnbA | fnbA-F | ATAGCGAAGCAGGTCACGTT |
fnbA-R | CCACCACCTGGGTTTGTATC | |
luxS | luxS-F | TAGATTAGCGGGAACGATGG |
luxS-R | ATGTAGTCCGGGCATATCCA | |
ebh | ebh-F | TTCCCAGCAGGTAATGGTTC |
ebh-R | GTTTTCGTAATCGGCGTTGT | |
clfA | clfA-F | TGCTGCACCTAAAACAGACG |
clfB | clfA-R clfB-F clfB-R | TCCTGTTGTGCTGGATTTTG GCTGTTGCTGAACCGGTAGT GCCGCCATAAATGTGTTACC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Ma, J.; Liu, J.; Hao, H.; Hou, H.; Zhang, G. Inhibitory Effect of Phenethyl Isothiocyanate on the Adhesion and Biofilm Formation of Staphylococcus aureus and Application on Beef. Foods 2024, 13, 3362. https://doi.org/10.3390/foods13213362
Ma X, Ma J, Liu J, Hao H, Hou H, Zhang G. Inhibitory Effect of Phenethyl Isothiocyanate on the Adhesion and Biofilm Formation of Staphylococcus aureus and Application on Beef. Foods. 2024; 13(21):3362. https://doi.org/10.3390/foods13213362
Chicago/Turabian StyleMa, Xiaojing, Jinle Ma, Jianan Liu, Hongshun Hao, Hongman Hou, and Gongliang Zhang. 2024. "Inhibitory Effect of Phenethyl Isothiocyanate on the Adhesion and Biofilm Formation of Staphylococcus aureus and Application on Beef" Foods 13, no. 21: 3362. https://doi.org/10.3390/foods13213362