Probiotic, Postbiotic, and Paraprobiotic Effects of Lactobacillus rhamnosus as a Modulator of Obesity-Associated Factors
Abstract
:1. Introduction
2. Adiposity
3. Adipokines
4. Oxidative Stress (OS)
5. Inflammation
6. Gut Environment Disturbance
7. Hunger–Satiety Pathway
8. Perspectives
- (1)
- The energy source and nutrients used for bacterial growth and supernatant production are the cause of different results between studies [148]. This considers the properties of the culture, such as whether it is a standardized culture medium, a food, or a combination of both. Even though there is ample variability and availability of standardized culture media (e.g., MRS), the products used in fermentation and the production of postbiotics (e.g., supernatants), are generally of plant origin [177] that are rich in bioactive compounds like anthocyanins, polyphenols, flavonoids, anthocyanins, organic acids, and amino acids, in addition to macronutrients like carbohydrates, proteins, and lipids, as well as micronutrients like vitamins and minerals [178]. The process of bacterial food fermentation can modify its nutrient and metabolite profile [179], resulting in changes in the total phenolic content [59,178]. This could indicate an increase in the bioactivity and bioaccessibility of these compounds [180], as demonstrated in supernatants derived from ferments with a high content of compounds that may positively influence the benefits observed in obesity [181].Further studies are needed to evaluate the supplementation of a standardized culture medium with food of plant origin in order to potentially improve the biological activities of the probiotic, paraprobiotic, and postbiotic forms [182]. This could allow the development of new standardized media and suitable experimental models for specific paraprobiotic and postbiotic therapeutic research. However, the fermentation process is not always accompanied by an increase in total phenolic content or other compounds, which could influence the expected beneficial effects [183].
- (2)
- Environmental factors: Other than nutrient content, identifying other culture conditions that can enhance the concentration of metabolites or postbiotic components of interest. In this regard, pH and inoculum size significantly affected exopolysaccharide (EPS) production from L. plantarum R301 (p < 0.05), as well as MgSO4 concentration (p = 0.2576). Furthermore, glucose was found to be the most favorable source for EPS production by L. plantarum R301. After providing the appropriate media, the strain increased EPS production by 84.70% [184].Additionally, the evaluation of butyrate production capacity by different Lactobacillus strains revealed that the production of this SCFA was highest in different time frames for different strains (24 vs. 48 h) and increased with temperature, with the highest production observed at 45 °C for all strains [165]. In addition to the limitations of the used culture medium (MRS) and the available nutrients for SCFA synthesis in the aforementioned study, these findings highlight the importance of considering temperature and incubation time to optimize the production of a product or metabolite.Taken together, these results show the importance of identifying and applying appropriate environmental factors and conditions that promote the production of the postbiotic or metabolite of interest by the microorganism, which will facilitate the presence and study of these compounds.
- (3)
- The production of beneficial postbiotics can be positively influenced by other types of bacterial species, which supports taking into consideration the use of multiple bacterial strains. In support of this, a recent study by Song et al. [185] evaluated the benefits of different postbiotic and paraprobiotic forms, administered together or alone, in an in vivo intervention rat model. Oat-derived postbiotics were obtained from L. plantarum HH-LP56, L. reuteri PB-LR09, L. rhamnosus PB-LR76, L. acidophilus HH-LA26, and B. lactis HH-BA68, used together as a treatment group (OF-5) or separately in another group (OF-1; L. plantarum HH-LP56). Paraprobiotic forms were HK and employed together as a treatment group (HK-5). All forms resulted in a complete restoration of serum glutathione peroxidase (GSH-PX) levels. However, HK-5 and OF-5 were superior in restoring serum SOD levels, and only OF-5 prevented elevation of MDA levels. Regarding hepatic inflammation, all forms were able to reduce hepatic TNF-α protein expression in a similar manner. Moreover, lipid metabolism markers showed a superior effect of the postbiotics (OF-1 and OF-5) by regulating the protein expression of PPAR-α, FAT/CD36, and FaβO, which was not shown by Bac-5. OF-5 was superior in other parameters such as NAFLD activity score (NAS) and liver/body weight ratio. The above demonstrates that different postbiotic and paraprobiotic forms resulted in different effects. The administration of oat-based postbiotics derived from five different probiotics, which resulted in altogether superior protective effects in terms of lipid and hepatic changes through regulation of protein expression (translational level) when compared to the use of only one or the HK form [185]. This can be attributed to a synergistic effect between the selected probiotics, as well as the composition of metabolites generated in the ferment, which invites the evaluation of the benefit of using selected strains together versus separately.Additionally, gut microbiota composition may influence the outcomes. Lützhøft et al. [186] used an in vivo model with Göttingen minipigs and found that 12 weeks of exposure to an HFD resulted in a decrease in intestinal microbiota species richness, which was associated with a decrease in circulating SCFAs and other metabolites like hippuric acid, xanthine, and trigonelline, as well as an increase in branched amino acids. Similarly, a study by Krolenko et al. [187] confirmed the decrease in SCFA in an in vivo model of diet-induced obesity and compared it with genetically induced obesity. They concluded that diet has a greater influence on the production of these metabolites.Taken together, these results suggest that other bacterial strains may influence interbacterial interactions that may also influence the production of desired metabolites for the postbiotic form. This should also be considered to ensure that postbiotics used for therapeutic purposes in the future are associated with changes in the diet and other factors that positively modulate the gut microbiota.
- (4)
- Postbiotics (e.g., supernatants) can modulate metabolism at a transcriptional and translational level by regulating mRNA expression and protein expression, respectively. This results in the modulation of a variety of signaling pathways. Other reported mechanisms include the modulation of enzymatic activity and the immune response (this is discussed extensively by Jastrząb et al.) [188].
- (5)
- Microorganisms can be used as “machinery” for the production of postbiotics, but, if included, it is necessary to inactivate them [12]. Some cellular fragments are necessary to observe the beneficial effects, such as lipopolysaccharides, intracellular proteins, S-layer proteins, and lipoteichoic acid, among others [188]. Continuing research with the paraprobiotic form will enable the identification of the components that exert specific beneficial effects on obesity, thereby offering potential treatment options.
- (6)
- Implications for clinical development: Probiotics have long been used, and clinical trial studies are extensive. Postbiotics and paraprobiotic forms, on the other hand, are newly researched areas with unidentified gaps. They are promising therapeutic agents in the prevention and intervention of obesity since their positive effects not only regulate gene expression in target organs and tissues implicated in obesity’s alterations, such as adipose tissue (lipid deposition and hormonal regulation), the brain (hunger–satiety and gut–brain axis) and the modulation of intestinal microbiota for added effects. So, what is stopping postbiotic and paraprobiotic Lactobacillus clinical application?
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, X.-D.; Chen, Q.-F.; Yang, W.; Zuluaga, M.; Targher, G.; Byrne, C.D.; Valenti, L.; Luo, F.; Katsouras, C.S.; Thaher, O.; et al. Burden of Disease Attributable to High Body Mass Index: An Analysis of Data from the Global Burden of Disease Study 2021. EClinicalMedicine 2024, 76, 102848. [Google Scholar] [CrossRef] [PubMed]
- da Cruz Nascimento, S.S.; Passos, T.S.; de Sousa Júnior, F.C. Probiotics in Plant-Based Food Matrices: A Review of Their Health Benefits. PharmaNutrition 2024, 28, 100390. [Google Scholar] [CrossRef]
- Bai, Y.; Ma, K.; Li, J.; Li, J.; Bi, C.; Shan, A. Deoxynivalenol Exposure Induces Liver Damage in Mice: Inflammation and Immune Responses, Oxidative Stress, and Protective Effects of Lactobacillus rhamnosus GG. Food Chem. Toxicol. 2021, 156, 112514. [Google Scholar] [CrossRef]
- Nie, P.; Wang, M.; Zhao, Y.; Liu, S.; Chen, L.; Xu, H. Protective Effect of Lactobacillus rhamnosus GG on TiO2 Nanoparticles-Induced Oxidative Stress Damage in the Liver of Young Rats. Nanomaterials 2021, 11, 803. [Google Scholar] [CrossRef] [PubMed]
- Duan, B.; Shao, L.; Liu, R.; Msuthwana, P.; Hu, J.; Wang, C. Lactobacillus rhamnosus GG Defense against Salmonella enterica serovar Typhimurium Infection through Modulation of M1 Macrophage Polarization. Microb. Pathog. 2021, 156, 104939. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, Q.; Gu, S.; Wang, Q.; Chen, Y.; Lv, L.; Zheng, B.; Wang, K.; Wang, S.; Xia, J.; et al. Modulation of Lactobacillus rhamnosus GG on the Gut Microbiota and Metabolism in Mice with Clostridioides difficile Infection. Food Funct. 2022, 13, 5667–5679. [Google Scholar] [CrossRef]
- Kim, S.-W.; Park, K.-Y.; Kim, B.; Kim, E.; Hyun, C.-K. Lactobacillus rhamnosus GG Improves Insulin Sensitivity and Reduces Adiposity in High-Fat Diet-Fed Mice through Enhancement of Adiponectin Production. Biochem. Biophys. Res. Commun. 2013, 431, 258–263. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, L.; Liu, Q.; Li, F.; Zhang, L.; Zhu, F.; Shao, T.; Barve, S.; Chen, Y.; Li, X.; et al. Fibroblast Growth Factor 21 Is Required for the Therapeutic Effects of Lactobacillus rhamnosus GG against Fructose-Induced Fatty Liver in Mice. Mol. Metab. 2019, 29, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.-C.; Liu, J.-R. Effect of Lactobacillus rhamnosus GG on Energy Metabolism, Leptin Resistance, and Gut Microbiota in Mice with Diet-Induced Obesity. Nutrients 2020, 12, 2557. [Google Scholar] [CrossRef]
- Wang, T.; Yan, H.; Lu, Y.; Li, X.; Wang, X.; Shan, Y.; Yi, Y.; Liu, B.; Zhou, Y.; Lü, X. Anti-Obesity Effect of Lactobacillus rhamnosus LS-8 and Lactobacillus crustorum MN047 on High-Fat and High-Fructose Diet Mice Base on Inflammatory Response Alleviation and Gut Microbiota Regulation. Eur. J. Nutr. 2020, 59, 2709–2728. [Google Scholar] [CrossRef]
- Sanchez, M.; Darimont, C.; Drapeau, V.; Emady-Azar, S.; Lepage, M.; Rezzonico, E.; Ngom-Bru, C.; Berger, B.; Philippe, L.; Ammon-Zuffrey, C.; et al. Effect of Lactobacillus rhamnosus CGMCC1.3724 Supplementation on Weight Loss and Maintenance in Obese Men and Women. Br. J. Nutr. 2014, 111, 1507–1519. [Google Scholar] [CrossRef] [PubMed]
- Salminen, S.; Collado, M.C.; Endo, A.; Hill, C.; Lebeer, S.; Quigley, E.M.M.; Sanders, M.E.; Shamir, R.; Swann, J.R.; Szajewska, H.; et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Postbiotics. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 649–667. [Google Scholar] [CrossRef]
- Vallejo-Cordoba, B.; Castro-López, C.; García, H.S.; González-Córdova, A.F.; Hernández-Mendoza, A. Postbiotics and Paraprobiotics: A Review of Current Evidence and Emerging Trends. Adv. Food Nutr. Res. 2020, 94, 1–34. [Google Scholar] [CrossRef]
- Watanabe, J.; Hashimoto, N.; Yin, T.; Sandagdorj, B.; Arakawa, C.; Inoue, T.; Suzuki, S. Heat-killed L Actobacillus brevis KB290 Attenuates Visceral Fat Accumulation Induced by High-fat Diet in Mice. J. Appl. Microbiol. 2021, 131, 1998–2009. [Google Scholar] [CrossRef]
- Bray, G.A. Beyond BMI. Nutrients 2023, 15, 2254. [Google Scholar] [CrossRef] [PubMed]
- Biobaku, F.; Ghanim, H.; Batra, M.; Dandona, P. Macronutrient-Mediated Inflammation and Oxidative Stress: Relevance to Insulin Resistance, Obesity, and Atherogenesis. J. Clin. Endocrinol. Metab. 2019, 104, 6118–6128. [Google Scholar] [CrossRef]
- Li, H.; Ren, J.; Li, Y.; Wu, Q.; Wei, J. Oxidative Stress: The Nexus of Obesity and Cognitive Dysfunction in Diabetes. Front. Endocrinol. 2023, 14, 1134025. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.S.-Y.; Brunelle, L.; Pilon, G.; Cautela, B.G.; Tompkins, T.A.; Drapeau, V.; Marette, A.; Tremblay, A. Lacticaseibacillus rhamnosus HA-114 Improves Eating Behaviors and Mood-Related Factors in Adults with Overweight during Weight Loss: A Randomized Controlled Trial. Nutr. Neurosci. 2023, 26, 667–679. [Google Scholar] [CrossRef]
- Park, J.; Kim, H.-L.; Jung, Y.; Ahn, K.S.; Kwak, H.J.; Um, J.-Y. Bitter Orange (Citrus aurantium Linné) Improves Obesity by Regulating Adipogenesis and Thermogenesis through AMPK Activation. Nutrients 2019, 11, 1988. [Google Scholar] [CrossRef]
- Ertunc, M.E.; Sikkeland, J.; Fenaroli, F.; Griffiths, G.; Daniels, M.P.; Cao, H.; Saatcioglu, F.; Hotamisligil, G.S. Secretion of Fatty Acid Binding Protein AP2 from Adipocytes through a Nonclassical Pathway in Response to Adipocyte Lipase Activity. J. Lipid Res. 2015, 56, 423–434. [Google Scholar] [CrossRef]
- Zheng, Y.; Lee, S.-Y.; Lee, Y.; Lee, T.-K.; Kim, J.E.; Kim, T.H.; Kang, I.-J. Standardized Sanguisorba officinalis L. Extract Inhibits Adipogenesis and Promotes Thermogenesis via Reducing Oxidative Stress. Antioxidants 2023, 12, 882. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.-I.; You, S.; Kim, S.; Won, G.; Kang, C.-H.; Kim, G.-H. Weissella cibaria MG5285 and Lactobacillus reuteri MG5149 Attenuated Fat Accumulation in Adipose and Hepatic Steatosis in High-Fat Diet-Induced C57BL/6J Obese Mice. Food Nutr. Res. 2021, 65, 1–11. [Google Scholar] [CrossRef]
- Kang, T.; Ree, J.; Park, J.-W.; Choe, H.; Park, Y.I. Anti-Obesity Effects of SPY Fermented with Lactobacillus rhamnosus BST-L.601 via Suppression of Adipogenesis and Lipogenesis in High-Fat Diet-Induced Obese Mice. Foods 2023, 12, 2202. [Google Scholar] [CrossRef]
- Hossain, M.; Park, D.-S.; Rahman, M.S.; Ki, S.-J.; Lee, Y.R.; Imran, K.M.; Yoon, D.; Heo, J.; Lee, T.-J.; Kim, Y.-S. Bifidobacterium longum DS0956 and Lactobacillus rhamnosus DS0508 Culture-Supernatant Ameliorate Obesity by Inducing Thermogenesis in Obese-Mice. Benef. Microbes 2020, 11, 361–374. [Google Scholar] [CrossRef]
- Jagtap, U.; Paul, A. UCP1 Activation: Hottest Target in the Thermogenesis Pathway to Treat Obesity Using Molecules of Synthetic and Natural Origin. Drug Discov. Today 2023, 28, 103717. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.S.; Park, M.H.; Kim, S.H. Selection and Characterization of Probiotic Bacteria Exhibiting Antiadipogenic Potential in 3T3-L1 Preadipocytes. Probiotics Antimicrob. Proteins 2022, 14, 72–86. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, Z.; Li, Y.; Zhou, L.; Ding, Q.; Xu, L. Isolated Exopolysaccharides from Lactobacillus rhamnosus GG Alleviated Adipogenesis Mediated by TLR2 in Mice. Sci. Rep. 2016, 6, 36083. [Google Scholar] [CrossRef]
- Kim, W.; Lee, E.J.; Bae, I.; Myoung, K.; Kim, S.T.; Park, P.J.; Lee, K.; Pham, A.V.Q.; Ko, J.; Oh, S.H.; et al. Lactobacillus plantarum -derived Extracellular Vesicles Induce Anti-inflammatory M2 Macrophage Polarization In Vitro. J. Extracell. Vesicles 2020, 9, 1793514. [Google Scholar] [CrossRef] [PubMed]
- Balaguer, F.; Enrique, M.; Llopis, S.; Barrena, M.; Navarro, V.; Álvarez, B.; Chenoll, E.; Ramón, D.; Tortajada, M.; Martorell, P. Lipoteichoic Acid from Bifidobacterium animalis Subsp. lactis BPL1: A Novel Postbiotic That Reduces Fat Deposition via IGF-1 Pathway. Microb. Biotechnol. 2022, 15, 805–816. [Google Scholar] [CrossRef]
- Hsieh, F.-C.; Lan, C.-C.E.; Huang, T.-Y.; Chen, K.-W.; Chai, C.-Y.; Chen, W.-T.; Fang, A.-H.; Chen, Y.-H.; Wu, C.-S. Heat-Killed and Live Lactobacillus reuteri GMNL-263 Exhibit Similar Effects on Improving Metabolic Functions in High-Fat Diet-Induced Obese Rats. Food Funct. 2016, 7, 2374–2388. [Google Scholar] [CrossRef]
- Nobre, L.M.S.; Fernandes, C.; Florêncio, K.G.D.; Alencar, N.M.N.; Wong, D.V.T.; Lima-Júnior, R.C.P. Could Paraprobiotics Be a Safer Alternative to Probiotics for Managing Cancer Chemotherapy-Induced Gastrointestinal Toxicities? Braz. J. Med. Biol. Res. 2022, 55, e12522. [Google Scholar] [CrossRef] [PubMed]
- Molaee Parvarei, M.; Fazeli, M.R.; Mortazavian, A.M.; Sarem Nezhad, S.; Mortazavi, S.A.; Golabchifar, A.A.; Khorshidian, N. Comparative Effects of Probiotic and Paraprobiotic Addition on Microbiological, Biochemical and Physical Properties of Yogurt. Food Res. Int. 2021, 140, 110030. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.Z.A.; Lau, H.; Lim, S.Y.; Li, S.F.Y.; Liu, S.-Q. Untargeted LC-QTOF-MS/MS Based Metabolomics Approach for Revealing Bioactive Components in Probiotic Fermented Coffee Brews. Food Res. Int. 2021, 149, 110656. [Google Scholar] [CrossRef]
- Spaggiari, L.; Pedretti, N.; Ricchi, F.; Pinetti, D.; Campisciano, G.; De Seta, F.; Comar, M.; Kenno, S.; Ardizzoni, A.; Pericolini, E. An Untargeted Metabolomic Analysis of Lacticaseibacillus (L.) rhamnosus, Lactobacillus (L.) acidophilus, Lactiplantibacillus (L.) plantarum and Limosilactobacillus (L.) reuteri Reveals an Upregulated Production of Inosine from L. rhamnosus. Microorganisms 2024, 12, 662. [Google Scholar] [CrossRef]
- Niemann, B.; Haufs-Brusberg, S.; Puetz, L.; Feickert, M.; Jaeckstein, M.Y.; Hoffmann, A.; Zurkovic, J.; Heine, M.; Trautmann, E.M.; Müller, C.E.; et al. Apoptotic Brown Adipocytes Enhance Energy Expenditure via Extracellular Inosine. Nature 2022, 609, 361–368. [Google Scholar] [CrossRef]
- Wang, F.; Li, W.; Wang, G.; Yu, M.; Zhong, J.; Xu, C.; Li, D.; Zhou, Y. Gas Chromatography-Mass Spectrometry Based Serum Metabolic Analysis for Premature Infants and the Relationship with Necrotizing Enterocolitis: A Cross-Sectional Study. Ital. J. Pediatr. 2019, 45, 54. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jelleschitz, J.; Grune, T.; Chen, W.; Zhao, Y.; Jia, M.; Wang, Y.; Liu, Z.; Höhn, A. Methionine Restriction—Association with Redox Homeostasis and Implications on Aging and Diseases. Redox Biol. 2022, 57, 102464. [Google Scholar] [CrossRef]
- Aiello, A.; De Luca, L.; Pizzolongo, F.; Pinto, G.; Addeo, F.; Romano, R. Kinetics of Formation of Butyric and Pyroglutamic Acid during the Shelf Life of Probiotic, Prebiotic and Synbiotic Yoghurt. Fermentation 2023, 9, 763. [Google Scholar] [CrossRef]
- Brennan, A.M.; Tchernof, A.; Gerszten, R.E.; Cowan, T.E.; Ross, R. Depot-Specific Adipose Tissue Metabolite Profiles and Corresponding Changes Following Aerobic Exercise. Front. Endocrinol. 2018, 9, 759. [Google Scholar] [CrossRef]
- Yoshinari, O.; Igarashi, K. Anti-Diabetic Effect of Pyroglutamic Acid in Type 2 Diabetic Goto-Kakizaki Rats and KK-AyMice. Br. J. Nutr. 2011, 106, 995–1004. [Google Scholar] [CrossRef]
- Lee, M.; Yun, Y.-R.; Choi, E.J.; Song, J.H.; Kang, J.Y.; Kim, D.; Lee, K.W.; Chang, J.Y. Anti-Obesity Effect of Vegetable Juice Fermented with Lactic Acid Bacteria Isolated from Kimchi in C57BL/6J Mice and Human Mesenchymal Stem Cells. Food Funct. 2023, 14, 1349–1356. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Xie, Z.; Wu, D.; Liu, L.; Shi, Y.; Li, P.; Gu, Q. The Effect of Indole-3-Lactic Acid from Lactiplantibacillus plantarum ZJ316 on Human Intestinal Microbiota In Vitro. Foods 2022, 11, 3302. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Fan, Y.; Zhang, G.; Cai, S.; Ma, Y.; Yang, L.; Wang, Y.; Yu, H.; Qiao, S.; Zeng, X. Microbiota-Derived Indoles Alleviate Intestinal Inflammation and Modulate Microbiome by Microbial Cross-Feeding. Microbiome 2024, 12, 59. [Google Scholar] [CrossRef]
- Liu, M.; Wang, Y.; Xiang, H.; Guo, M.; Li, S.; Liu, M.; Yao, J. The Tryptophan Metabolite Indole-3-Carboxaldehyde Alleviates Mice with DSS-Induced Ulcerative Colitis by Balancing Amino Acid Metabolism, Inhibiting Intestinal Inflammation, and Improving Intestinal Barrier Function. Molecules 2023, 28, 3704. [Google Scholar] [CrossRef]
- Shelton, C.D.; Sing, E.; Mo, J.; Shealy, N.G.; Yoo, W.; Thomas, J.; Fitz, G.N.; Castro, P.R.; Hickman, T.T.; Torres, T.P.; et al. An Early-Life Microbiota Metabolite Protects against Obesity by Regulating Intestinal Lipid Metabolism. Cell Host Microbe 2023, 31, 1604–1619.e10. [Google Scholar] [CrossRef]
- Islas-Garduño, A.L.; Romero-Cerecero, O.; Jiménez-Aparicio, A.R.; Tortoriello, J.; Montiel-Ruiz, R.M.; González-Cortazar, M.; Zamilpa, A. Pharmacological and Chemical Analysis of Bauhinia divaricata L. Using an In Vitro Antiadipogenic Model. Plants 2023, 12, 3799. [Google Scholar] [CrossRef]
- Dong, J.; Zheng, H.; Zeng, Q.; Zhang, X.; Du, L.; Bais, S. Protective Effect of D-(−)-Quinic Acid as Food Supplement in Modulating AMP-Activated Protein Kinase Signalling Pathway Activation in HFD Induced Obesity. Hum. Exp. Toxicol. 2022, 41, 096032712211198. [Google Scholar] [CrossRef]
- Jin, Q.; Zhang, C.; Chen, R.; Jiang, L.; Li, H.; Wu, P.; Li, L. Quinic Acid Regulated TMA/TMAO-Related Lipid Metabolism and Vascular Endothelial Function through Gut Microbiota to Inhibit Atherosclerotic. J. Transl. Med. 2024, 22, 352. [Google Scholar] [CrossRef] [PubMed]
- Misawa, N.; Hosoya, T.; Yoshida, S.; Sugimoto, O.; Yamada-Kato, T.; Kumazawa, S. 5-Hydroxyferulic Acid Methyl Ester Isolated from Wasabi Leaves Inhibits 3T3-L1 Adipocyte Differentiation. Phytother. Res. 2018, 32, 1304–1310. [Google Scholar] [CrossRef]
- Kim, G.-H.; Ju, J.-Y.; Chung, K.-S.; Cheon, S.-Y.; Gil, T.-Y.; Cominguez, D.C.; Cha, Y.-Y.; Lee, J.-H.; Roh, S.-S.; An, H.-J. Rice Hull Extract (RHE) Suppresses Adiposity in High-Fat Diet-Induced Obese Mice and Inhibits Differentiation of 3T3-L1 Preadipocytes. Nutrients 2019, 11, 1162. [Google Scholar] [CrossRef]
- Vougiouklaki, D.; Tsironi, T.; Papaparaskevas, J.; Halvatsiotis, P.; Houhoula, D. Characterization of Lacticaseibacillus rhamnosus, Levilactobacillus brevis and Lactiplantibacillus plantarum Metabolites and Evaluation of Their Antimicrobial Activity against Food Pathogens. Appl. Sci. 2022, 12, 660. [Google Scholar] [CrossRef]
- González, A.; Gálvez, N.; Martín, J.; Reyes, F.; Pérez-Victoria, I.; Dominguez-Vera, J.M. Identification of the Key Excreted Molecule by Lactobacillus fermentum Related to Host Iron Absorption. Food Chem. 2017, 228, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Beloborodova, N.; Bairamov, I.; Olenin, A.; Shubina, V.; Teplova, V.; Fedotcheva, N. Effect of Phenolic Acids of Microbial Origin on Production of Reactive Oxygen Species in Mitochondria and Neutrophils. J. Biomed. Sci. 2012, 19, 89. [Google Scholar] [CrossRef] [PubMed]
- Salazar-López, N.J.; Astiazarán-García, H.; González-Aguilar, G.A.; Loarca-Piña, G.; Ezquerra-Brauer, J.-M.; Domínguez Avila, J.A.; Robles-Sánchez, M. Ferulic Acid on Glucose Dysregulation, Dyslipidemia, and Inflammation in Diet-Induced Obese Rats: An Integrated Study. Nutrients 2017, 9, 675. [Google Scholar] [CrossRef]
- Sgarbi, E.; Lazzi, C.; Iacopino, L.; Bottesini, C.; Lambertini, F.; Sforza, S.; Gatti, M. Microbial Origin of Non Proteolytic Aminoacyl Derivatives in Long Ripened Cheeses. Food Microbiol. 2013, 35, 116–120. [Google Scholar] [CrossRef]
- Li, V.L.; He, Y.; Contrepois, K.; Liu, H.; Kim, J.T.; Wiggenhorn, A.L.; Tanzo, J.T.; Tung, A.S.-H.; Lyu, X.; Zushin, P.-J.H.; et al. An Exercise-Inducible Metabolite That Suppresses Feeding and Obesity. Nature 2022, 606, 785–790. [Google Scholar] [CrossRef]
- Hoene, M.; Zhao, X.; Machann, J.; Birkenfeld, A.L.; Heni, M.; Peter, A.; Niess, A.; Moller, A.; Lehmann, R.; Xu, G.; et al. Exercise-Induced N-Lactoylphenylalanine Predicts Adipose Tissue Loss during Endurance Training in Overweight and Obese Humans. Metabolites 2022, 13, 15. [Google Scholar] [CrossRef]
- Zagmignan, A.; Mendes, Y.C.; Mesquita, G.P.; dos Santos, G.D.C.; Silva, L.d.S.; Sales, A.C.d.S.; Branco, S.J.d.S.C.; Junior, A.R.C.; Bazán, J.M.N.; Alves, E.R.; et al. Short-Term Intake of Theobroma grandiflorum Juice Fermented with Lacticaseibacillus rhamnosus ATCC 9595 Amended the Outcome of Endotoxemia Induced by Lipopolysaccharide. Nutrients 2023, 15, 1059. [Google Scholar] [CrossRef]
- Park, J.; Cho, S.Y.; Kang, J.; Park, W.Y.; Lee, S.; Jung, Y.; Kang, M.-W.; Kwak, H.J.; Um, J.-Y. Vanillic Acid Improves Comorbidity of Cancer and Obesity through STAT3 Regulation in High-Fat-Diet-Induced Obese and B16BL6 Melanoma-Injected Mice. Biomolecules 2020, 10, 1098. [Google Scholar] [CrossRef]
- Han, X.; Guo, J.; You, Y.; Yin, M.; Liang, J.; Ren, C.; Zhan, J.; Huang, W. Vanillic Acid Activates Thermogenesis in Brown and White Adipose Tissue. Food Funct. 2018, 9, 4366–4375. [Google Scholar] [CrossRef]
- Chamberlain, M.; O’Flaherty, S.; Cobián, N.; Barrangou, R. Metabolomic Analysis of Lactobacillus acidophilus, L. gasseri, L. crispatus, and Lacticaseibacillus rhamnosus Strains in the Presence of Pomegranate Extract. Front. Microbiol. 2022, 13, 863228. [Google Scholar] [CrossRef] [PubMed]
- Petrus, P.; Lecoutre, S.; Dollet, L.; Wiel, C.; Sulen, A.; Gao, H.; Tavira, B.; Laurencikiene, J.; Rooyackers, O.; Checa, A.; et al. Glutamine Links Obesity to Inflammation in Human White Adipose Tissue. Cell Metab. 2020, 31, 375–390.e11. [Google Scholar] [CrossRef] [PubMed]
- Calvigioni, M.; Bertolini, A.; Codini, S.; Mazzantini, D.; Panattoni, A.; Massimino, M.; Celandroni, F.; Zucchi, R.; Saba, A.; Ghelardi, E. HPLC-MS-MS Quantification of Short-Chain Fatty Acids Actively Secreted by Probiotic Strains. Front. Microbiol. 2023, 14, 1124144. [Google Scholar] [CrossRef] [PubMed]
- Jiao, A.; Yu, B.; He, J.; Yu, J.; Zheng, P.; Luo, Y.; Luo, J.; Yan, H.; Wang, Q.; Wang, H.; et al. Sodium Acetate, Propionate, and Butyrate Reduce Fat Accumulation in Mice via Modulating Appetite and Relevant Genes. Nutrition 2021, 87–88, 111198. [Google Scholar] [CrossRef]
- Lin, H.V.; Frassetto, A.; Kowalik, E.J., Jr.; Nawrocki, A.R.; Lu, M.M.; Kosinski, J.R.; Hubert, J.A.; Szeto, D.; Yao, X.; Forrest, G.; et al. Butyrate and Propionate Protect against Diet-Induced Obesity and Regulate Gut Hormones via Free Fatty Acid Receptor 3-Independent Mechanisms. PLoS ONE 2012, 7, e35240. [Google Scholar] [CrossRef]
- Kim, J.-E.; Kim, J.-S.; Jo, M.-J.; Cho, E.; Ahn, S.-Y.; Kwon, Y.-J.; Ko, G.-J. The Roles and Associated Mechanisms of Adipokines in Development of Metabolic Syndrome. Molecules 2022, 27, 334. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Du, T.; Li, C.; Yang, G. STAT3 Phosphorylation in Central Leptin Resistance. Nutr. Metab. 2021, 18, 39. [Google Scholar] [CrossRef]
- Palhinha, L.; Liechocki, S.; Hottz, E.D.; Pereira, J.A.d.S.; de Almeida, C.J.; Moraes-Vieira, P.M.M.; Bozza, P.T.; Maya-Monteiro, C.M. Leptin Induces Proadipogenic and Proinflammatory Signaling in Adipocytes. Front. Endocrinol. 2019, 10, 841. [Google Scholar] [CrossRef] [PubMed]
- Darby, T.M.; Naudin, C.R.; Luo, L.; Jones, R.M. Lactobacillus rhamnosus GG–Induced Expression of Leptin in the Intestine Orchestrates Epithelial Cell Proliferation. Cell Mol. Gastroenterol. Hepatol. 2020, 9, 627–639. [Google Scholar] [CrossRef]
- Patel, D.; Rathaur, P.; Parwani, K.; Patel, F.; Sharma, D.; Johar, K.; Mandal, P. In Vitro, In Vivo, and In Silico Analysis of Synbiotics as Preventive Interventions for Lipid Metabolism in Ethanol-Induced Adipose Tissue Injury. Lipids Health Dis. 2023, 22, 49. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, Y.; Li, F.; Gu, Z.; Liu, M.; Shao, T.; Zhang, L.; Zhou, G.; Pan, C.; He, L.; et al. Probiotic Culture Supernatant Improves Metabolic Function through FGF21-Adiponectin Pathway in Mice. J. Nutr. Biochem. 2020, 75, 108256. [Google Scholar] [CrossRef]
- Arellano-García, L.; Macarulla, M.T.; Cuevas-Sierra, A.; Martínez, J.A.; Portillo, M.P.; Milton-Laskibar, I. Lactobacillus rhamnosus GG Administration Partially Prevents Diet-Induced Insulin Resistance in Rats: A Comparison with Its Heat-Inactivated Parabiotic. Food Funct. 2023, 14, 8865–8875. [Google Scholar] [CrossRef] [PubMed]
- Hui, X.; Feng, T.; Liu, Q.; Gao, Y.; Xu, A. The FGF21–Adiponectin Axis in Controlling Energy and Vascular Homeostasis. J. Mol. Cell Biol. 2016, 8, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Yang, L.; Liu, Y.; Huang, P.; Song, H.; Zheng, P. The Potential Function and Clinical Application of FGF21 in Metabolic Diseases. Front. Pharmacol. 2022, 13, 1089214. [Google Scholar] [CrossRef]
- Xu, H.; Wang, J.; Cai, J.; Feng, W.; Wang, Y.; Liu, Q.; Cai, L. Protective Effect of Lactobacillus rhamnosus GG and Its Supernatant against Myocardial Dysfunction in Obese Mice Exposed to Intermittent Hypoxia Is Associated with the Activation of Nrf2 Pathway. Int. J. Biol. Sci. 2019, 15, 2471–2483. [Google Scholar] [CrossRef] [PubMed]
- Turpin, T.; Thouvenot, K.; Gonthier, M.-P. Adipokines and Bacterial Metabolites: A Pivotal Molecular Bridge Linking Obesity and Gut Microbiota Dysbiosis to Target. Biomolecules 2023, 13, 1692. [Google Scholar] [CrossRef]
- Briansó-Llort, L.; Fuertes-Rioja, L.; Ramos-Perez, L.; Hernandez, C.; Simó, R.; Selva, D.M. Caffeine Upregulates Hepatic Sex Hormone-Binding Globulin Production by Increasing Adiponectin Through AKT/FOXO1 Pathway in White Adipose Tissue. Mol. Nutr. Food Res. 2020, 64, e1901253. [Google Scholar] [CrossRef]
- Choi, H.M.; Doss, H.M.; Kim, K.S. Multifaceted Physiological Roles of Adiponectin in Inflammation and Diseases. Int. J. Mol. Sci. 2020, 21, 1219. [Google Scholar] [CrossRef]
- Ávila-Escalante, M.L.; Coop-Gamas, F.; Cervantes-Rodríguez, M.; Méndez-Iturbide, D.; Aranda-González, I.I. The Effect of Diet on Oxidative Stress and Metabolic Diseases-Clinically Controlled Trials. J. Food Biochem. 2020, 44, e13191. [Google Scholar] [CrossRef]
- Hartwick Bjorkman, S.; Oliveira Pereira, R. The Interplay Between Mitochondrial Reactive Oxygen Species, Endoplasmic Reticulum Stress, and Nrf2 Signaling in Cardiometabolic Health. Antioxid. Redox Signal 2021, 35, 252–269. [Google Scholar] [CrossRef]
- Shaw, P.; Chattopadhyay, A. Nrf2–ARE Signaling in Cellular Protection: Mechanism of Action and the Regulatory Mechanisms. J. Cell Physiol. 2020, 235, 3119–3130. [Google Scholar] [CrossRef] [PubMed]
- Lv, Q.; Long, J.; Gong, Z.; Nong, K.; Liang, X.; Qin, T.; Huang, W.; Yang, L. Current State of Knowledge on the Antioxidant Effects and Mechanisms of Action of Polyphenolic Compounds. Nat. Prod. Commun. 2021, 16, 1934578X2110277. [Google Scholar] [CrossRef]
- Mishra, V.; Shah, C.; Mokashe, N.; Chavan, R.; Yadav, H.; Prajapati, J. Probiotics as Potential Antioxidants: A Systematic Review. J. Agric. Food Chem. 2015, 63, 3615–3626. [Google Scholar] [CrossRef] [PubMed]
- Kumar, H.; Dhalaria, R.; Guleria, S.; Cimler, R.; Sharma, R.; Siddiqui, S.A.; Valko, M.; Nepovimova, E.; Dhanjal, D.S.; Singh, R.; et al. Anti-Oxidant Potential of Plants and Probiotic Spp. in Alleviating Oxidative Stress Induced by H2O2. Biomed. Pharmacother. 2023, 165, 115022. [Google Scholar] [CrossRef]
- Chooruk, A.; Piwat, S.; Teanpaisan, R. Antioxidant Activity of Various Oral Lactobacillus Strains. J. Appl. Microbiol. 2017, 123, 271–279. [Google Scholar] [CrossRef]
- Lin, W.-Y.; Lin, J.-H.; Kuo, Y.-W.; Chiang, P.-F.R.; Ho, H.-H. Probiotics and Their Metabolites Reduce Oxidative Stress in Middle-Aged Mice. Curr. Microbiol. 2022, 79, 104. [Google Scholar] [CrossRef]
- Yang, J.; Dong, C.; Ren, F.; Xie, Y.; Liu, H.; Zhang, H.; Jin, J. Lactobacillus Paracasei M11 -4 Isolated from Fermented Rice Demonstrates Good Antioxidant Properties In Vitro and In Vivo. J. Sci. Food Agric. 2022, 102, 3107–3118. [Google Scholar] [CrossRef]
- Zhou, X.; Du, H.; Jiang, M.; Zhou, C.; Deng, Y.; Long, X.; Zhao, X. Antioxidant Effect of Lactobacillus fermentum CQPC04-Fermented Soy Milk on D-Galactose-Induced Oxidative Aging Mice. Front. Nutr. 2021, 8, 727467. [Google Scholar] [CrossRef]
- Suo, H.; Zhao, X.; Qian, Y.; Sun, P.; Zhu, K.; Li, J.; Sun, B. Lactobacillus fermentum Suo Attenuates HCl/Ethanol Induced Gastric Injury in Mice through Its Antioxidant Effects. Nutrients 2016, 8, 155. [Google Scholar] [CrossRef]
- Saeedi, B.J.; Liu, K.H.; Owens, J.A.; Hunter-Chang, S.; Camacho, M.C.; Eboka, R.U.; Chandrasekharan, B.; Baker, N.F.; Darby, T.M.; Robinson, B.S.; et al. Gut-Resident Lactobacilli activate Hepatic Nrf2 and Protect Against Oxidative Liver Injury. Cell Metab. 2020, 31, 956–968.e5. [Google Scholar] [CrossRef]
- Ahmed, H.M.; Shehata, H.H.; El-Saeed, G.S.M.; Abou Gabal, H.H.; El-Daly, S.M. Ameliorative Effect of Lactobacillus rhamnosus GG on Acetaminophen-Induced Hepatotoxicity via PKC/Nrf2/PGC-1α Pathway. J. Genet. Eng. Biotechnol. 2022, 20, 142. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Li, N.; Yue, Y.; Wang, C.; Zhao, L.; Evivie, S.E.; Li, B.; Huo, G. Screening for Potential Novel Probiotics with Dipeptidyl Peptidase IV-Inhibiting Activity for Type 2 Diabetes Attenuation In Vitro and In Vivo. Front. Microbiol. 2020, 10, 2855. [Google Scholar] [CrossRef] [PubMed]
- Buccigrossi, V.; Poeta, M.; Cioffi, V.; Terranova, S.; Nunziata, F.; Lo Vecchio, A.; Guarino, A. Lacticaseibacillus rhamnosus GG Counteracts Rotavirus-Induced Ion Secretion and Enterocyte Damage by Inhibiting Oxidative Stress and Apoptosis Through Specific Effects of Living and Postbiotic Preparations. Front. Cell Infect. Microbiol. 2022, 12, 854989. [Google Scholar] [CrossRef] [PubMed]
- Poeta, M.; Cioffi, V.; Tarallo, A.; Damiano, C.; Lo Vecchio, A.; Bruzzese, E.; Parenti, G.; Guarino, A. Postbiotic Preparation of Lacticaseibacillus rhamnosus GG against Diarrhea and Oxidative Stress Induced by Spike Protein of SARS-CoV-2 in Human Enterocytes. Antioxidants 2023, 12, 1878. [Google Scholar] [CrossRef] [PubMed]
- Bilska, K.; Stuper-Szablewska, K.; Kulik, T.; Buśko, M.; Załuski, D.; Perkowski, J. Resistance-Related l-Pyroglutamic Acid Affects the Biosynthesis of Trichothecenes and Phenylpropanoids by F. Graminearum Sensu Stricto. Toxins 2018, 10, 492. [Google Scholar] [CrossRef]
- Salau, V.F.; Erukainure, O.L.; Ibeji, C.U.; Olasehinde, T.A.; Koorbanally, N.A.; Islam, M.S. Ferulic Acid Modulates Dysfunctional Metabolic Pathways and Purinergic Activities, While Stalling Redox Imbalance and Cholinergic Activities in Oxidative Brain Injury. Neurotox. Res. 2020, 37, 944–955. [Google Scholar] [CrossRef]
- Salazar-López, N.J.; González-Aguilar, G.A.; Loarca-Piña, G.; Cinco-Moroyoqui, F.J.; Rouzaud-Sández, O.; Domínguez-Avila, J.A.; Robles-Sánchez, M. Contribution and Interactions of Hydroxycinnamic Acids Found in Bran and Wholegrain Sorghum (Sorghum bicolor L. Moench): Effects on the Antioxidant Capacity and Inhibition of Human Erythrocyte Hemolysis. Oxid. Med. Cell Longev. 2017, 2017, 8219023. [Google Scholar] [CrossRef]
- Mahmoud, A.M.; Hussein, O.E.; Hozayen, W.G.; Bin-Jumah, M.; Abd El-Twab, S.M. Ferulic Acid Prevents Oxidative Stress, Inflammation, and Liver Injury via Upregulation of Nrf2/HO-1 Signaling in Methotrexate-Induced Rats. Environ. Sci. Pollut. Res. 2020, 27, 7910–7921. [Google Scholar] [CrossRef]
- Mentese, A.; Demir, S.; Kucuk, H.; Yulug, E.; Alemdar, N.T.; Demir, E.A.; Aliyazicioglu, Y. Vanillic Acid Abrogates Cisplatin-Induced Ovotoxicity through Activating Nrf2 Pathway. Tissue Cell 2023, 84, 102161. [Google Scholar] [CrossRef]
- Girawale, S.D.; Meena, S.N.; Yadav, A.A.; Kodam, K.M. Biocatalysis at Its Finest: Bacillus paralicheniformis Produces 4-Vinylphenol with Potent Biological Activities. Biocatal. Agric. Biotechnol. 2023, 52, 102842. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Bakshi, R.; Logan, R.; Ascherio, A.; Macklin, E.; Schwarzschild, M. Oral Inosine Persistently Elevates Plasma Antioxidant Capacity in Early Parkinson’s Disease (S37.009). Neurology 2014, 82, 417. [Google Scholar] [CrossRef]
- Wu, H.; Ballantyne, C.M. Metabolic Inflammation and Insulin Resistance in Obesity. Circ. Res. 2020, 126, 1549–1564. [Google Scholar] [CrossRef] [PubMed]
- Auger, C.; Kajimura, S. Adipose Tissue Remodeling in Pathophysiology. Annu. Rev. Pathol. Mech. Dis. 2023, 18, 71–93. [Google Scholar] [CrossRef]
- Xu, L.; Yan, X.; Zhao, Y.; Wang, J.; Liu, B.; Yu, S.; Fu, J.; Liu, Y.; Su, J. Macrophage Polarization Mediated by Mitochondrial Dysfunction Induces Adipose Tissue Inflammation in Obesity. Int. J. Mol. Sci. 2022, 23, 9252. [Google Scholar] [CrossRef]
- Zhang, A.M.Y.; Wellberg, E.A.; Kopp, J.L.; Johnson, J.D. Hyperinsulinemia in Obesity, Inflammation, and Cancer. Diabetes Metab. J. 2021, 45, 285–311. [Google Scholar] [CrossRef] [PubMed]
- Gamallat, Y.; Meyiah, A.; Kuugbee, E.D.; Hago, A.M.; Chiwala, G.; Awadasseid, A.; Bamba, D.; Zhang, X.; Shang, X.; Luo, F.; et al. Lactobacillus rhamnosus Induced Epithelial Cell Apoptosis, Ameliorates Inflammation and Prevents Colon Cancer Development in an Animal Model. Biomed. Pharmacother. 2016, 83, 536–541. [Google Scholar] [CrossRef]
- Ritze, Y.; Bárdos, G.; Claus, A.; Ehrmann, V.; Bergheim, I.; Schwiertz, A.; Bischoff, S.C. Lactobacillus rhamnosus GG Protects against Non-Alcoholic Fatty Liver Disease in Mice. PLoS ONE 2014, 9, e80169. [Google Scholar] [CrossRef]
- Arnbjerg, C.J.; Vestad, B.; Hov, J.R.; Pedersen, K.K.; Jespersen, S.; Johannesen, H.H.; Holm, K.; Halvorsen, B.; Fallentin, E.; Hansen, A.E.; et al. Effect of Lactobacillus rhamnosus GG Supplementation on Intestinal Inflammation Assessed by PET/MRI Scans and Gut Microbiota Composition in HIV-Infected Individuals. JAIDS J. Acquir. Immune Defic. Syndr. 2018, 78, 450–457. [Google Scholar] [CrossRef]
- Moludi, J.; Kafil, H.S.; Qaisar, S.A.; Gholizadeh, P.; Alizadeh, M.; Vayghyan, H.J. Effect of Probiotic Supplementation along with Calorie Restriction on Metabolic Endotoxemia, and Inflammation Markers in Coronary Artery Disease Patients: A Double Blind Placebo Controlled Randomized Clinical Trial. Nutr. J. 2021, 20, 47. [Google Scholar] [CrossRef]
- Reiter, A.; Bengesser, S.A.; Hauschild, A.-C.; Birkl-Töglhofer, A.-M.; Fellendorf, F.T.; Platzer, M.; Färber, T.; Seidl, M.; Mendel, L.-M.; Unterweger, R.; et al. Interleukin-6 Gene Expression Changes after a 4-Week Intake of a Multispecies Probiotic in Major Depressive Disorder—Preliminary Results of the PROVIT Study. Nutrients 2020, 12, 2575. [Google Scholar] [CrossRef]
- Lee, J.Y.; Park, J.-Y.; Jeong, Y.; Kang, C.-H. Anti-Inflammatory Response in TNFα/IFNγ-Induced HaCaT Keratinocytes and Probiotic Properties of Lacticaseibacillus rhamnosus MG4644, Lacticaseibacillus paracasei MG4693, and Lactococcus Lactis MG5474. J. Microbiol. Biotechnol. 2023, 33, 1039–1049. [Google Scholar] [CrossRef] [PubMed]
- Bu, L.; Li, Y.; Wang, C.; Jiang, Y.; Suo, H. Preventive Effect of Lacticaseibacillus rhamnosus 2016SWU.05.0601 and Its Postbiotic Elements on Dextran Sodium Sulfate-Induced Colitis in Mice. Front. Microbiol. 2024, 15, 1342705. [Google Scholar] [CrossRef] [PubMed]
- Paek, J.J.; Yang, H.; Ryu, K.H.; Lee, Y. Increased Production of Interleukin-10 and Decreased Production of Tumor Necrosis Factor-α by Lacticaseibacillus rhamnosus PL60. Int. J. Probiotics Prebiotics 2023, 18, 14–20. [Google Scholar] [CrossRef]
- Magryś, A.; Pawlik, M. Postbiotic Fractions of Probiotics Lactobacillus plantarum 299v and Lactobacillus rhamnosus GG Show Immune-Modulating Effects. Cells 2023, 12, 2538. [Google Scholar] [CrossRef]
- Yeganegi, M.; Leung, C.G.; Martins, A.; Kim, S.O.; Reid, G.; Challis, J.R.G.; Bocking, A.D. Lactobacillus rhamnosus GR-1-Induced IL-10 Production in Human Placental Trophoblast Cells Involves Activation of JAK/STAT and MAPK Pathways. Reprod. Sci. 2010, 17, 1043–1051. [Google Scholar] [CrossRef]
- Park, J.-Y.; Lee, J.Y.; Kim, Y.; Kang, C.-H. Lactic Acid Bacteria Improve the Photoprotective Effect via MAPK/AP-1/MMP Signaling Pathway on Skin Fibroblasts. Microorganisms 2022, 10, 2481. [Google Scholar] [CrossRef] [PubMed]
- Shin, C.H.; Choi, D.-S. Essential Roles for the Non-Canonical IκB Kinases in Linking Inflammation to Cancer, Obesity, and Diabetes. Cells 2019, 8, 178. [Google Scholar] [CrossRef]
- Du, X.; Rodriguez, J.; Wee, J. Dietary Postbiotics Reduce Cytotoxicity and Inflammation Induced by Crystalline Silica in an In Vitro RAW 264.7 Macrophage Model. Foods 2022, 11, 877. [Google Scholar] [CrossRef]
- Wani, K.; AlHarthi, H.; Alghamdi, A.; Sabico, S.; Al-Daghri, N.M. Role of NLRP3 Inflammasome Activation in Obesity-Mediated Metabolic Disorders. Int. J. Environ. Res. Public. Health 2021, 18, 511. [Google Scholar] [CrossRef]
- El Far, M.S.; Zakaria, A.S.; Kassem, M.A.; Wedn, A.; Guimei, M.; Edward, E.A. Promising Biotherapeutic Prospects of Different Probiotics and Their Derived Postbiotic Metabolites: In-Vitro and Histopathological Investigation. BMC Microbiol. 2023, 23, 122. [Google Scholar] [CrossRef]
- Uribe, G.; Villéger, R.; Bressollier, P.; Dillard, R.N.; Worthley, D.L.; Wang, T.C.; Powell, D.W.; Urdaci, M.C.; Pinchuk, I.V. Lactobacillus rhamnosus GG Increases Cyclooxygenase-2 Expression and Prostaglandin E2 Secretion in Colonic Myofibroblasts via a MyD88-Dependent Mechanism during Homeostasis. Cell Microbiol. 2018, 20, e12871. [Google Scholar] [CrossRef] [PubMed]
- Dardmeh, F.; Nielsen, H.I.; Alipour, H.; Kjærgaard, B.; Brandsborg, E.; Gazerani, P. Potential Nociceptive Regulatory Effect of Probiotic Lactobacillus rhamnosus PB01 (DSM 14870) on Mechanical Sensitivity in Diet-Induced Obesity Model. Pain Res. Manag. 2016, 2016, 5080438. [Google Scholar] [CrossRef] [PubMed]
- Salva, S.; Kolling, Y.; Ivir, M.; Gutiérrez, F.; Alvarez, S. The Role of Immunobiotics and Postbiotics in the Recovery of Immune Cell Populations from Respiratory Mucosa of Malnourished Hosts: Effect on the Resistance Against Respiratory Infections. Front. Nutr. 2021, 8, 704868. [Google Scholar] [CrossRef] [PubMed]
- Vale, G.C.; Mayer, M.P.A. Effect of Probiotic Lactobacillus rhamnosus By-Products on Gingival Epithelial Cells Challenged with Porphyromonas Gingivalis. Arch. Oral. Biol. 2021, 128, 105174. [Google Scholar] [CrossRef] [PubMed]
- Pompilio, A.; Kaya, E.; Lupetti, V.; Catelli, E.; Bianchi, M.; Maisetta, G.; Esin, S.; Di Bonaventura, G.; Batoni, G. Cell-Free Supernatants from Lactobacillus Strains Exert Antibacterial, Antibiofilm, and Antivirulence Activity against Pseudomonas aeruginosa from Cystic Fibrosis Patients. Microbes Infect. 2024, 26, 105301. [Google Scholar] [CrossRef]
- Salva, S.; Tiscornia, I.; Gutiérrez, F.; Alvarez, S.; Bollati-Fogolín, M. Lactobacillus rhamnosus Postbiotic-Induced Immunomodulation as Safer Alternative to the Use of Live Bacteria. Cytokine 2021, 146, 155631. [Google Scholar] [CrossRef]
- Li, J.; Li, Q.; Gao, N.; Wang, Z.; Li, F.; Li, J.; Shan, A. Exopolysaccharides Produced by Lactobacillus rhamnosus GG Alleviate Hydrogen Peroxide-Induced Intestinal Oxidative Damage and Apoptosis through the Keap1/Nrf2 and Bax/Bcl-2 Pathways In Vitro. Food Funct. 2021, 12, 9632–9641. [Google Scholar] [CrossRef]
- Aleman, R.S.; Moncada, M.; Aryana, K.J. Leaky Gut and the Ingredients That Help Treat It: A Review. Molecules 2023, 28, 619. [Google Scholar] [CrossRef]
- Steinbach, E.; Masi, D.; Ribeiro, A.; Serradas, P.; Le Roy, T.; Clément, K. Upper Small Intestine Microbiome in Obesity and Related Metabolic Disorders: A New Field of Investigation. Metabolism 2024, 150, 155712. [Google Scholar] [CrossRef]
- Geng, J.; Ni, Q.; Sun, W.; Li, L.; Feng, X. The Links between Gut Microbiota and Obesity and Obesity Related Diseases. Biomed. Pharmacother. 2022, 147, 112678. [Google Scholar] [CrossRef]
- Esther Mejia-Leon, M.; Argüelles-Lopez, A.; Briseño-Sahagun, P.; Aguayo-Patron, S.V.; Maria Calderon de la Barca, A. Could Alterations in the Infant Gut Microbiota Explain the Development of Noncommunicable Diseases from the DOHaD Perspective? In Effect of Microbiota on Health and Disease; IntechOpen: Cairo, Egypt, 2022. [Google Scholar] [CrossRef]
- Agus, A.; Planchais, J.; Sokol, H. Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease. Cell Host Microbe 2018, 23, 716–724. [Google Scholar] [CrossRef] [PubMed]
- Chae, Y.-R.; Lee, Y.R.; Kim, Y.-S.; Park, H.-Y. Diet-Induced Gut Dysbiosis and Leaky Gut Syndrome. J. Microbiol. Biotechnol. 2024, 34, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Miura, K.; Ishioka, M.; Iijima, K. The Roles of the Gut Microbiota and Toll-like Receptors in Obesity and Nonalcoholic Fatty Liver Disease. J. Obes. Metab. Syndr. 2017, 26, 86–96. [Google Scholar] [CrossRef]
- Parekh, P.J.; Balart, L.A.; Johnson, D.A. The Influence of the Gut Microbiome on Obesity, Metabolic Syndrome and Gastrointestinal Disease. Clin. Transl. Gastroenterol. 2015, 6, e91. [Google Scholar] [CrossRef]
- Han, S.-K.; Shin, Y.-J.; Lee, D.-Y.; Kim, K.M.; Yang, S.-J.; Kim, D.S.; Choi, J.-W.; Lee, S.; Kim, D.-H. Lactobacillus rhamnosus HDB1258 Modulates Gut Microbiota-Mediated Immune Response in Mice with or without Lipopolysaccharide-Induced Systemic Inflammation. BMC Microbiol. 2021, 21, 146. [Google Scholar] [CrossRef]
- Chen, L.; Li, H.; Li, J.; Chen, Y.; Yang, Y. Lactobacillus rhamnosus GG Treatment Improves Intestinal Permeability and Modulates Microbiota Dysbiosis in an Experimental Model of Sepsis. Int. J. Mol. Med. 2019, 43, 1139–1148. [Google Scholar] [CrossRef]
- Martín, R.; Chamignon, C.; Mhedbi-Hajri, N.; Chain, F.; Derrien, M.; Escribano-Vázquez, U.; Garault, P.; Cotillard, A.; Pham, H.P.; Chervaux, C.; et al. The Potential Probiotic Lactobacillus rhamnosus CNCM I-3690 Strain Protects the Intestinal Barrier by Stimulating Both Mucus Production and Cytoprotective Response. Sci. Rep. 2019, 9, 5398. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Wu, T.; Zhang, G.; Liu, R.; Sui, W.; Zhang, M.; Geng, J.; Yin, J.; Zhang, M. Lactobacillus rhamnosus LRa05 Improves Lipid Accumulation in Mice Fed with a High Fat Diet via Regulating the Intestinal Microbiota, Reducing Glucose Content and Promoting Liver Carbohydrate Metabolism. Food Funct. 2020, 11, 9514–9525. [Google Scholar] [CrossRef]
- Chaiyasut, C.; Sivamaruthi, B.S.; Thangaleela, S.; Sisubalan, N.; Bharathi, M.; Khongtan, S.; Kesika, P.; Sirilun, S.; Choeisoongnern, T.; Peerajan, S.; et al. Influence of Lactobacillus rhamnosus Supplementation on the Glycaemic Index, Lipid Profile, and Microbiome of Healthy Elderly Subjects: A Preliminary Randomized Clinical Trial. Foods 2024, 13, 1293. [Google Scholar] [CrossRef]
- Nicolucci, A.C.; Hume, M.P.; Martínez, I.; Mayengbam, S.; Walter, J.; Reimer, R.A. Prebiotics Reduce Body Fat and Alter Intestinal Microbiota in Children Who Are Overweight or with Obesity. Gastroenterology 2017, 153, 711–722. [Google Scholar] [CrossRef]
- Dang, L.; Li, D.; Mu, Q.; Zhang, N.; Li, C.; Wang, M.; Tian, H.; Jha, R.; Li, C. Youth-Derived Lactobacillus rhamnosus with Prebiotic Xylo-Oligosaccharide Exhibits Anti-Hyperlipidemic Effects as a Novel Synbiotic. Food Res. Int. 2024, 195, 114976. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, M.; Zhou, Q.; Sun, C.; Zheng, X.; Chen, J.; Liu, B.; Liu, S.; Liu, S.; Wang, A. Synbiotic Effects of Lactobacillus rhamnosus Fermented with Different Prebiotics on the Digestive Enzyme Activities, SCFAs and Intestinal Flora of Macrobrachium rosenbergii In Vitro. Aquac. Rep. 2024, 38, 102303. [Google Scholar] [CrossRef]
- Yin, M.; Chen, L.; Chen, M.; Yuan, Y.; Liu, F.; Zhong, F. Encapsulation of Lactobacillus rhamnosus GG in Double Emulsions: Role of Prebiotics in Improving Probiotics Survival during Spray Drying and Storage. Food Hydrocoll. 2024, 151, 109792. [Google Scholar] [CrossRef]
- Meng, X.; Tan, C.; Feng, Y. Solvent Extraction and In Vitro Simulated Gastrointestinal Digestion of Phenolic Compounds from Purple Sweet Potato. Int. J. Food Sci. Technol. 2019, 54, 2887–2896. [Google Scholar] [CrossRef]
- Xu, J.; Ge, J.; He, X.; Sheng, Y.; Zheng, S.; Zhang, C.; Xu, W.; Huang, K. Caffeic Acid Reduces Body Weight by Regulating Gut Microbiota in Diet-Induced-Obese Mice. J. Funct. Foods 2020, 74, 104061. [Google Scholar] [CrossRef]
- Oh, J.K.; Vasquez, R.; Hwang, I.-C.; Oh, Y.N.; Kim, S.H.; Kang, S.H.; Joung, J.Y.; Oh, N.S.; Kim, S.; Yoon, Y.; et al. Cudrania tricuspidata Combined with Lacticaseibacillus rhamnosus Modulate Gut Microbiota and Alleviate Obesity-Associated Metabolic Parameters in Obese Mice. Microorganisms 2021, 9, 1908. [Google Scholar] [CrossRef]
- Gao, J.; Li, Y.; Wan, Y.; Hu, T.; Liu, L.; Yang, S.; Gong, Z.; Zeng, Q.; Wei, Y.; Yang, W.; et al. A Novel Postbiotic from Lactobacillus rhamnosus GG with a Beneficial Effect on Intestinal Barrier Function. Front. Microbiol. 2019, 10, 477. [Google Scholar] [CrossRef]
- He, X.; Zeng, Q.; Puthiyakunnon, S.; Zeng, Z.; Yang, W.; Qiu, J.; Du, L.; Boddu, S.; Wu, T.; Cai, D.; et al. Lactobacillus rhamnosus GG Supernatant Enhance Neonatal Resistance to Systemic Escherichia coli K1 Infection by Accelerating Development of Intestinal Defense. Sci. Rep. 2017, 7, 43305. [Google Scholar] [CrossRef]
- Yan, F.; Cao, H.; Cover, T.L.; Whitehead, R.; Washington, M.K.; Polk, D.B. Soluble Proteins Produced by Probiotic Bacteria Regulate Intestinal Epithelial Cell Survival and Growth. Gastroenterology 2007, 132, 562–575. [Google Scholar] [CrossRef]
- Domínguez-Díaz, C.; Avila-Arrezola, K.E.; Rodríguez, J.A.; del-Toro-Arreola, S.; Delgado-Rizo, V.; Fafutis-Morris, M. Recombinant P40 Protein Promotes Expression of Occludin in HaCaT Keratinocytes: A Brief Communication. Microorganisms 2023, 11, 2913. [Google Scholar] [CrossRef]
- Lu, Q.; Guo, Y.; Yang, G.; Cui, L.; Wu, Z.; Zeng, X.; Pan, D.; Cai, Z. Structure and Anti-Inflammation Potential of Lipoteichoic Acids Isolated from Lactobacillus Strains. Foods 2022, 11, 1610. [Google Scholar] [CrossRef] [PubMed]
- Bäuerl, C.; Coll-Marqués, J.M.; Tarazona-González, C.; Pérez-Martínez, G. Lactobacillus casei Extracellular Vesicles Stimulate EGFR Pathway Likely Due to the Presence of Proteins P40 and P75 Bound to Their Surface. Sci. Rep. 2020, 10, 19237. [Google Scholar] [CrossRef] [PubMed]
- Vohra, M.S.; Benchoula, K.; Serpell, C.J.; Hwa, W.E. AgRP/NPY and POMC Neurons in the Arcuate Nucleus and Their Potential Role in Treatment of Obesity. Eur. J. Pharmacol. 2022, 915, 174611. [Google Scholar] [CrossRef] [PubMed]
- Rhea, E.M.; Salameh, T.S.; Gray, S.; Niu, J.; Banks, W.A.; Tong, J. Ghrelin Transport across the Blood–Brain Barrier Can Occur Independently of the Growth Hormone Secretagogue Receptor. Mol. Metab. 2018, 18, 88–96. [Google Scholar] [CrossRef]
- Cifuentes, L.; Acosta, A. Homeostatic Regulation of Food Intake. Clin. Res. Hepatol. Gastroenterol. 2022, 46, 101794. [Google Scholar] [CrossRef]
- Steinert, R.E.; Feinle-Bisset, C.; Asarian, L.; Horowitz, M.; Beglinger, C.; Geary, N. Ghrelin, CCK, GLP-1, and PYY(3–36): Secretory Controls and Physiological Roles in Eating and Glycemia in Health, Obesity, and After RYGB. Physiol. Rev. 2017, 97, 411–463. [Google Scholar] [CrossRef]
- Piper, N.B.C.; Whitfield, E.A.; Stewart, G.D.; Xu, X.; Furness, S.G.B. Targeting Appetite and Satiety in Diabetes and Obesity, via G Protein-Coupled Receptors. Biochem. Pharmacol. 2022, 202, 115115. [Google Scholar] [CrossRef]
- Krieger, J.-P. Intestinal Glucagon-like Peptide-1 Effects on Food Intake: Physiological Relevance and Emerging Mechanisms. Peptides 2020, 131, 170342. [Google Scholar] [CrossRef]
- Obaroakpo, J.U.; Liu, L.; Zhang, S.; Lu, J.; Liu, L.; Pang, X.; Lv, J. In Vitro Modulation of Glucagon-like Peptide Release by DPP-IV Inhibitory Polyphenol-Polysaccharide Conjugates of Sprouted Quinoa Yoghurt. Food Chem. 2020, 324, 126857. [Google Scholar] [CrossRef]
- Hamamah, S.; Amin, A.; Al-Kassir, A.L.; Chuang, J.; Covasa, M. Dietary Fat Modulation of Gut Microbiota and Impact on Regulatory Pathways Controlling Food Intake. Nutrients 2023, 15, 3365. [Google Scholar] [CrossRef]
- Ahmed, H.; Leyrolle, Q.; Koistinen, V.; Kärkkäinen, O.; Layé, S.; Delzenne, N.; Hanhineva, K. Microbiota-Derived Metabolites as Drivers of Gut–Brain Communication. Gut Microbes 2022, 14, 2102878. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Wang, Y.; Li, C.; Jia, S.; Shi, Y.; Tang, Y.; Li, Y. A Preliminary Study on Preparation, Characterization, and Prebiotic Activity of a Polysaccharide from the Edible Mushroom Ramaria flava. J. Food Biochem. 2022, 46, e14371. [Google Scholar] [CrossRef] [PubMed]
- Akbari-Alavijeh, S.; Soleimanian-Zad, S.; Sheikh-Zeinoddin, M.; Hashmi, S. Pistachio Hull Water-Soluble Polysaccharides as a Novel Prebiotic Agent. Int. J. Biol. Macromol. 2018, 107, 808–816. [Google Scholar] [CrossRef]
- Thananimit, S.; Pahumunto, N.; Teanpaisan, R. Characterization of Short Chain Fatty Acids Produced by Selected Potential Probiotic Lactobacillus Strains. Biomolecules 2022, 12, 1829. [Google Scholar] [CrossRef] [PubMed]
- Masse, K.E.; Lu, V.B. Short-Chain Fatty Acids, Secondary Bile Acids and Indoles: Gut Microbial Metabolites with Effects on Enteroendocrine Cell Function and Their Potential as Therapies for Metabolic Disease. Front. Endocrinol. 2023, 14, 1169624. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, J.; Xie, F.; He, H.; Johnston, L.J.; Dai, X.; Wu, C.; Ma, X. Dietary Fiber-derived Short-chain Fatty Acids: A Potential Therapeutic Target to Alleviate Obesity-related Nonalcoholic Fatty Liver Disease. Obes. Rev. 2021, 22, e13316. [Google Scholar] [CrossRef]
- Leeuwendaal, N.K.; Cryan, J.F.; Schellekens, H. Gut Peptides and the Microbiome: Focus on Ghrelin. Curr. Opin. Endocrinol. Diabetes Obes. 2021, 28, 243–252. [Google Scholar] [CrossRef]
- Torres-Fuentes, C.; Golubeva, A.V.; Zhdanov, A.V.; Wallace, S.; Arboleya, S.; Papkovsky, D.B.; El Aidy, S.; Ross, P.; Roy, B.L.; Stanton, C.; et al. Short-chain Fatty Acids and Microbiota Metabolites Attenuate Ghrelin Receptor Signaling. FASEB J. 2019, 33, 13546–13559. [Google Scholar] [CrossRef]
- Gabriel, F.C.; Fantuzzi, G. The Association of Short-Chain Fatty Acids and Leptin Metabolism: A Systematic Review. Nutr. Res. 2019, 72, 18–35. [Google Scholar] [CrossRef]
- Cook, T.M.; Gavini, C.K.; Jesse, J.; Aubert, G.; Gornick, E.; Bonomo, R.; Gautron, L.; Layden, B.T.; Mansuy-Aubert, V. Vagal Neuron Expression of the Microbiota-Derived Metabolite Receptor, Free Fatty Acid Receptor (FFAR3), Is Necessary for Normal Feeding Behavior. Mol. Metab. 2021, 54, 101350. [Google Scholar] [CrossRef]
- Goswami, C.; Iwasaki, Y.; Yada, T. Short-Chain Fatty Acids Suppress Food Intake by Activating Vagal Afferent Neurons. J. Nutr. Biochem. 2018, 57, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yi, C.-X.; Katiraei, S.; Kooijman, S.; Zhou, E.; Chung, C.K.; Gao, Y.; van den Heuvel, J.K.; Meijer, O.C.; Berbée, J.F.P.; et al. Butyrate Reduces Appetite and Activates Brown Adipose Tissue via the Gut-Brain Neural Circuit. Gut 2018, 67, 1269–1279. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, X.; Huang, G.; Wang, H.; Chen, H.; Su, Y.; Yu, K.; Zhu, W. Propionate Stimulates the Secretion of Satiety Hormones and Reduces Acute Appetite in a Cecal Fistula Pig Model. Anim. Nutr. 2022, 10, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Chambers, E.S.; Viardot, A.; Psichas, A.; Morrison, D.J.; Murphy, K.G.; Zac-Varghese, S.E.K.; MacDougall, K.; Preston, T.; Tedford, C.; Finlayson, G.S.; et al. Effects of Targeted Delivery of Propionate to the Human Colon on Appetite Regulation, Body Weight Maintenance and Adiposity in Overweight Adults. Gut 2015, 64, 1744–1754. [Google Scholar] [CrossRef] [PubMed]
- Cong, J.; Zhou, P.; Zhang, R. Intestinal Microbiota-Derived Short Chain Fatty Acids in Host Health and Disease. Nutrients 2022, 14, 1977. [Google Scholar] [CrossRef]
- Thorakkattu, P.; Khanashyam, A.C.; Shah, K.; Babu, K.S.; Mundanat, A.S.; Deliephan, A.; Deokar, G.S.; Santivarangkna, C.; Nirmal, N.P. Postbiotics: Current Trends in Food and Pharmaceutical Industry. Foods 2022, 11, 3094. [Google Scholar] [CrossRef]
- Sánchez-Villavicencio, M.L.; Vinqvist-Tymchuk, M.; Kalt, W.; Matar, C.; Alarcón Aguilar, F.J.; Escobar Villanueva, M.d.C.; Haddad, P.S. Fermented Blueberry Juice Extract and Its Specific Fractions Have an Anti-Adipogenic Effect in 3T3-L1 Cells. BMC Complement. Altern. Med. 2017, 17, 24. [Google Scholar] [CrossRef]
- He, Y.; Tao, Y.; Qiu, L.; Xu, W.; Huang, X.; Wei, H.; Tao, X. Lotus (Nelumbo nucifera Gaertn.) Leaf-Fermentation Supernatant Inhibits Adipogenesis in 3T3-L1 Preadipocytes and Suppresses Obesity in High-Fat Diet-Induced Obese Rats. Nutrients 2022, 14, 4348. [Google Scholar] [CrossRef]
- Leonard, W.; Zhang, P.; Ying, D.; Adhikari, B.; Fang, Z. Fermentation Transforms the Phenolic Profiles and Bioactivities of Plant-Based Foods. Biotechnol. Adv. 2021, 49, 107763. [Google Scholar] [CrossRef]
- Chai, Z.; Yan, Y.; Zan, S.; Meng, X.; Zhang, F. Probiotic-Fermented Blueberry Pomace Alleviates Obesity and Hyperlipidemia in High-Fat Diet C57BL/6J Mice. Food Res. Int. 2022, 157, 111396. [Google Scholar] [CrossRef]
- Jeong, S.-G.; Kim, H.M.; Lee, M.; Yang, J.E.; Park, H.W. Use of Vegetable Waste as a Culture Medium Ingredient Improves the Antimicrobial and Immunomodulatory Activities of Lactiplantibacillus plantarum WiKim0125 Isolated from Kimchi. J. Microbiol. Biotechnol. 2023, 33, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Cho, H.; Gil, M.; Kim, K.E. Anti-Inflammation and Anti-Melanogenic Effects of Maca Root Extracts Fermented Using Lactobacillus Strains. Antioxidants 2023, 12, 798. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, J.; Guo, H.; Cheng, Q.; Abbas, Z.; Tong, Y.; Yang, T.; Zhou, Y.; Zhang, H.; Wei, X.; et al. Optimization of Exopolysaccharide Produced by Lactobacillus plantarum R301 and Its Antioxidant and Anti-Inflammatory Activities. Foods 2023, 12, 2481. [Google Scholar] [CrossRef]
- Song, W.; Wen, R.; Liu, T.; Zhou, L.; Wang, G.; Dai, X.; Shi, L. Oat-Based Postbiotics Ameliorate High-Sucrose Induced Liver Injury and Colitis Susceptibility by Modulating Fatty Acids Metabolism and Gut Microbiota. J. Nutr. Biochem. 2024, 125, 109553. [Google Scholar] [CrossRef] [PubMed]
- Lützhøft, D.O.; Bækgård, C.; Wimborne, E.; Straarup, E.M.; Pedersen, K.-M.; Swann, J.R.; Pedersen, H.D.; Kristensen, K.; Morgills, L.; Nielsen, D.S.; et al. High Fat Diet Is Associated with Gut Microbiota Dysbiosis and Decreased Gut Microbial Derived Metabolites Related to Metabolic Health in Young Göttingen Minipigs. PLoS ONE 2024, 19, e0298602. [Google Scholar] [CrossRef]
- Krolenko, E.V.; Kupriyanova, O.V.; Nigmatullina, L.S.; Grigoryeva, T.V.; Roumiantsev, S.A.; Shestopalov, A.V. Changes of the Concentration of Short-Chain Fatty Acids in the Intestines of Mice with Different Types of Obesity. Bull. Exp. Biol. Med. 2024, 176, 347–353. [Google Scholar] [CrossRef]
- Jastrząb, R.; Graczyk, D.; Siedlecki, P. Molecular and Cellular Mechanisms Influenced by Postbiotics. Int. J. Mol. Sci. 2021, 22, 13475. [Google Scholar] [CrossRef]
- Zhang, N.; Li, C.; Niu, Z.; Kang, H.; Wang, M.; Zhang, B.; Tian, H. Colonization and Immunoregulation of Lactobacillus plantarum BF_15, a Novel Probiotic Strain from the Feces of Breast-Fed Infants. Food Funct. 2020, 11, 3156–3166. [Google Scholar] [CrossRef]
- Phelps, N.H.; Singleton, R.K.; Zhou, B.; Heap, R.A.; Mishra, A.; Bennett, J.E.; Paciorek, C.J.; Lhoste, V.P.; Carrillo-Larco, R.M.; Stevens, G.A.; et al. Worldwide Trends in Underweight and Obesity from 1990 to 2022: A Pooled Analysis of 3663 Population-Representative Studies with 222 million Children, Adolescents, and Adults. Lancet 2024, 403, 1027–1050. [Google Scholar] [CrossRef]
- Welch, A.R.; Salomon, R.; Boroumand, S. Biopharmaceutical Drug Development Pillars: Begin with the End in Mind. Clin. Pharmacol. Ther. 2019, 105, 33–35. [Google Scholar] [CrossRef]
- Spielmans, G.I.; Kirsch, I. Drug Approval and Drug Effectiveness. Annu. Rev. Clin. Psychol. 2014, 10, 741–766. [Google Scholar] [CrossRef] [PubMed]
- Ho, H.; Chen, C.; Yi, T.; Huang, Y.; Kuo, Y.; Lin, J.; Chen, J.; Tsai, S.; Chan, L.; Liang, C. Novel application of a Co-Fermented postbiotics of TYCA06/AP-32/CP-9/collagen in the improvement of acne vulgaris—A randomized clinical study of efficacy evaluation. J. Cosmet. Dermatol. 2022, 21, 6249–6260. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Wang, B.; Bai, J.; Zhang, Y.; Liu, C.; Suo, H.; Wang, C. Postbiotics Are a Candidate for New Functional Foods. Food Chem. X 2024, 23, 101650. [Google Scholar] [CrossRef] [PubMed]
- Soleymanzadeh Moghaddam, S.; Momeni, M.; Mazar Atabaki, S.; Mousavi Shabestari, T.; Boustanshenas, M.; Afshar, M.; Roham, M. Topical Treatment of Second-Degree Burn Wounds with Lactobacillus plantarum Supernatant: Phase I Trial. Iran. J. Pathol. 2022, 17, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Morisset, M.; Aubert-Jacquin, C.; Soulaines, P.; Moneret-Vautrin, D.-A.; Dupont, C. A Non-Hydrolyzed, Fermented Milk Formula Reduces Digestive and Respiratory Events in Infants at High Risk of Allergy. Eur. J. Clin. Nutr. 2011, 65, 175–183. [Google Scholar] [CrossRef]
- Lu, Y.; Li, Y.; Xu, L.; Xia, M.; Cao, L. Bacterial Lysate Increases the Percentage of Natural Killer T Cells in Peripheral Blood and Alleviates Asthma in Children. Pharmacology 2015, 95, 139–144. [Google Scholar] [CrossRef]
- Liang, X.; Li, Y.; Zhao, Z.; Ding, R.; Sun, J.; Chi, C. Safety and Efficacy of Adding Postbiotics in Infant Formula: A Systematic Review and Meta-Analysis. Pediatr. Res. 2024, 95, 43–51. [Google Scholar] [CrossRef]
- Depommier, C.; Everard, A.; Druart, C.; Plovier, H.; Van Hul, M.; Vieira-Silva, S.; Falony, G.; Raes, J.; Maiter, D.; Delzenne, N.M.; et al. Supplementation with Akkermansia Muciniphila in Overweight and Obese Human Volunteers: A Proof-of-Concept Exploratory Study. Nat. Med. 2019, 25, 1096–1103. [Google Scholar] [CrossRef]
Medium Conditions and/or Extraction | Compound | Model | Main Obesity-Related Results |
---|---|---|---|
Cell-free Supernatant of L. rhamnosus ATCC 7469 incubated in liquid MRS medium [34] | Inosine | In vitro; BAT explants WT mice (C57BL/6). Inosine (100 µg/kg) | Stimulates energy expenditure in brown adipocytes through the cAMP–protein kinase A-signaling pathway (cAMP-PKA) [35] |
O-succinyl-L-homoserine | Humans; 19 premature infant serum samples. GC-MS analysis. | Associated with low serum levels of O-succinyl-L-homoserine [36]. O-succinyl-L-homoserine is a precursor to methionine. Methionine restriction decreases body weight and adiposity in vivo [37]. | |
Supernatant of brewed coffee extract, fermented with LGG, analyzed by LC-QTOF-MS/MS [33] | Pyroglutamic acid | In vitro; L. acidophilus and Bifidobacteria in yogurt for 30 days. Determined by HPLC. | Potential antioxidant capacity [38] |
Humans; 103 middle-aged abdominally obese men and women in 4 groups of different exercise schemes with 6 months duration. LC-MS/MS plasma samples. | Potential biomarker of cardiometabolic health: inverse correlation with visceral adipose tissue deposition in humans [39] | ||
In vivo; Goto–Kakizaki diabetic rats (n = 5). Diet containing 0.05% pyroglutamic acid for 43 days. | Decreased epididymal adipose tissue, improvement in lipid profile, and decreased serum insulin and TNF-α levels, as well as hepatic total cholesterol and triglycerides (p < 0.05) [40] | ||
Indole-3-lactic acid (ILA) | In vitro; human adipose-derived mesenchymal stem cells (hMSCs). Various concentrations. | Antiadipogenic concentration-dependent, evidenced by Oil Red O-staining microscopy and quantification of lipid droplet accumulation [41] | |
In vitro; human intestinal microbiota, ILA (172 mg/L), 24-h fermentation. | Potential to regulate the intestinal microbiota by increasing the average relative abundance of Firmicutes and Bacteroidota phyla (9.27% and 15.38%, respectively) and decreasing Proteobacteria (14.36%). Increase in acetic acid, propionic acid, and butyric acid [42]. | ||
In vivo; DSS-induced colitis in C57BL/6 mice. ILA (20 mg/kg, oral) for 7 days. | Anti-inflammatory (serum TNF-α, IL-1β, p < 0.05 vs. DSS) and gut microbiota regulator [43] | ||
Indole-3-carboxaldehyde | In vivo; C57BL/6 mice, DSS-induced ulcerative colitis. Indole-3-carboxaldehyde by gavage for 7 days. | Modulation of intestinal integrity. Anti-inflammatory by inhibiting intestinal TLR4/NF-κB/p38 pathway [44] | |
3-Phenyllactic acid | In vivo; C57BL/6 mice fed an HFD (60% fat) for 5 weeks. 3-Phenyllactic acid supplemented in drinking water. | 3-Phenyllactic acid regulates lipid metabolism by activating intestinal PPAR-γ, which inhibits lipid secretion in intestinal epithelial cells and prevents excessive adiposity [45] | |
In vitro; differentiated hMSCs. | Antiadipogenic by reducing lipid droplet accumulation evidenced by Oil Red O staining [41] | ||
Hydroxydodecanoic acid isomer | In vitro; 3T3-L1 cells. | (3R)-3-hydroxydodecanoic acid from Bauhinia divaricata L. extract may exert anti-obesogenic effects by inhibiting adipocyte differentiation [46] | |
Quinic acid | In vivo; intervention model on Swiss Albino mice fed an HFD (58% fat) for 8 weeks, followed by oral administration of quinic acid (75, 150, 300 mg/kg) for 6 weeks. | Prevents steatosis, dyslipidemia, and weight gain [47] | |
In vivo; C57BL/6J ApoE−/− mice fed an HFD. Quinic acid (10 mg/kg, intraperitoneal) 5 times a week for 12 weeks. | Regulates gut microbiota; inhibits atherogenesis [48] | ||
5-Hydroxyferulic acid | In vitro; 3T3L1 preadipocytes. 5-Hydroxyferullic acid isolated from wasabi leaves. | Inhibition of adipocyte differentiation and lipid accumulation by suppressing gene expression of PPARγ and C/EBPα and genes involved in adipogenesis like SREBP-1c, ACC, and FAS [49] | |
4-Vinylphenol | In vivo; C57BL/6J mice fed an HFD (45 kcal% fat) supplemented with rice husk extract (O. sativa L.) (20 or 40 mg/kg) by oral gavage daily for 14 weeks. | 4-vinylphenol identified as one of the most abundant compounds. The extract reduced adipose tissue and liver adipogenesis and improved lipid profile [50] | |
LGG in MRS broth, for 48 h under anaerobic conditions. Collection of supernatant and metabolite analysis by HPLC-UV/DAD [51] | p-Hydroxyphenyllactic acid [33] | In vitro; secreted by L. fermentum CECT5716. | Antioxidant capacity [52] |
In vitro; hepatic mitochondria and blood neutrophils from Wistar rats. | Decreased ROS production in neutrophils and mitochondria [53] | ||
Ferulic acid (FA) | In vivo; Wistar rats fed a supplemented HFD with FA (2 g/kg) for 8 weeks. | Increased plasma antioxidant capacity, reduced body weight, adipose tissue, dyslipidemia, and inflammation [54] | |
Lysed cells of L. rhamnosus increased the production of lactoyl-phenylalanine compared to its viable form, exposed to amino acids as precursors. Compositional analysis by UPLC/ESI-MS. [55] | N-Lactoyl-phenylalanine [33] | In vivo; mice and racehorses for level determination [56] In vivo; diet-induced obese mice, N-lactoylphenylalanine (50 mg/kg, intraperitoneal) [56] Humans; sedentary overweight and obese subjects. Determination of N-Lactoylphenylalanine before and after 8-week exercise intervention [57]. | Levels increase immediately after running. Acute administration of N-lactoylphenylalanine suppressed food intake by ~50% in obese mice but not lean mice [56] Appetite suppression, decreased adiposity and decreased body weight [56,57]. |
Theobroma grandiflorum juice ferment by L. rhamnosus ATCC9595. Analyzed by LC-QQToF [58] | Vanillic acid (VA) | In vivo; melanoma model on C57BL/6J mice fed HFD (60% fat) for 5 weeks. Afterwards, VA administered by oral gavage every other day for 2 weeks [59]. In vivo; C57BL/6J mice with diet-induced obesity, HFHFD (25% fructose, 25% lard), and VA (0.5% w/w) diet supplementation [60]. | Decreased adiposity. Promotes thermogenesis and mitochondrial synthesis in brown and white adipose tissue through AMPK activation [59,60]. |
Supernatants, derived from the presence of pomegranate extract in SDM (semi-defined media) with LGG [61] | Glutamine | Ex vivo; subcutaneous abdominal WAT of obese subjects (n = 52). In vivo; male C57BL/6 mice fed an HFD for 5 weeks, intraperitoneal glutamine for the last 2 weeks. | Low levels identified in WAT from obese individuals and inversely associated with body fat mass percent; probably related to reduced glutamine synthetase in the obese state. Attenuates the expression of proinflammatory genes (IL-6, IL1-b, CD68) in adipocytes and macrophage infiltration in eWAT [62] |
Supernatant of L. rhamnosus ATCC 53103 derived from BHIG (brain heart infusion glucose culture) culture inoculum. Analyzed by HPLC-MS-MS [63] | Short-chain fatty acids: Acetate | In vivo; C57BL/6J mice fed an HFD with 5% sodium acetate for 35 days. | Acetate increased serum GLP-1 and leptin (p < 0.05), associated with increased relative expression of leptin mRNA in epididymal fat (p < 0.05) [64] |
Propionate | In vivo; C57BL/6J mice fed an HFD with 5% sodium propionate for 35 days. | Propionate increased serum GLP-1, PYY, and leptin (p < 0.05), associated with an increase in leptin mRNA (p < 0.05) [64] | |
Butyrate | In vivo; C57BL/6J mice fed an HFD with 5% sodium butyrate for 35 days. | Butyrate increased serum PYY (p < 0.05) and decreased daily food intake (p < 0.05) [64] | |
In vivo; C57BL/6N mice fed an HFD (60% kcal from fat). | Butyrate exerts short-, medium-, and long-term beneficial effects:
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Almada, G.; Mejía-León, M.E.; Salazar-López, N.J. Probiotic, Postbiotic, and Paraprobiotic Effects of Lactobacillus rhamnosus as a Modulator of Obesity-Associated Factors. Foods 2024, 13, 3529. https://doi.org/10.3390/foods13223529
López-Almada G, Mejía-León ME, Salazar-López NJ. Probiotic, Postbiotic, and Paraprobiotic Effects of Lactobacillus rhamnosus as a Modulator of Obesity-Associated Factors. Foods. 2024; 13(22):3529. https://doi.org/10.3390/foods13223529
Chicago/Turabian StyleLópez-Almada, Gabriela, María Esther Mejía-León, and Norma Julieta Salazar-López. 2024. "Probiotic, Postbiotic, and Paraprobiotic Effects of Lactobacillus rhamnosus as a Modulator of Obesity-Associated Factors" Foods 13, no. 22: 3529. https://doi.org/10.3390/foods13223529
APA StyleLópez-Almada, G., Mejía-León, M. E., & Salazar-López, N. J. (2024). Probiotic, Postbiotic, and Paraprobiotic Effects of Lactobacillus rhamnosus as a Modulator of Obesity-Associated Factors. Foods, 13(22), 3529. https://doi.org/10.3390/foods13223529