Assessment of the Stability and Nutritional Quality of Hemp Oil and Pumpkin Seed Oil Blends
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Determination of Fatty Acid Composition by Gas Chromatography
2.2.2. Health Indices of Oils
2.2.3. Distribution of Fatty Acids in Triacylglycerols Using Enzymatic Hydrolysis
2.2.4. Determination of Acid and Peroxide Values by Potentiometric Titration Method
2.2.5. Determination of Oxidative Stability Using Pressure Differential Scanning Calorimetry
2.3. Statistical Analysis
3. Results and Discussion
3.1. Fatty Acid Profile
3.2. Fatty Acid Distribution
3.3. Evaluation of Oil Quality
3.3.1. The Acid Value
3.3.2. The Peroxide Value
3.4. Evaluation of Oil Oxidative Stability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EU Regulation (2013) No 1307/2013 of the European Parliament of the Council of 17 December 2013 Establishing Rules for Direct Payments to Farmers Under Support Schemes Within the Framework of the Common Agricultural Policy Repealing Council Regulation (EC) No, 637/2008.; Council Regulation (EC) No 73/2009 Off, J. Eur. Union, 347/608. Available online: https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX%3A32013R1307 (accessed on 25 September 2024).
- Matthäus, B.; Brühl, L. Virgin Hemp Seed Oil: An Interesting Niche Product. Eur. J. Lipid Sci. Technol. 2008, 110, 655–661. [Google Scholar] [CrossRef]
- Kurek-Górecka, A.; Balwierz, R.; Mizera, P.; Nowak, M.; Żurawska-Płaksej, E. Therapeutic and Cosmetic Importance of Hemp Oil. Farm. Pol. 2018, 74, 704–708. [Google Scholar] [CrossRef] [PubMed]
- Petrović, M.; Debeljak, Ž.; Kezić, N.; Džidara, P. Relationship between Cannabinoids Content and Composition of Fatty Acids in Hempseed Oils. Food Chem. 2015, 170, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Olesińska, K.; Luchowska, K.; Sugier, D.; Wilczyński, K. Wpływ sposobu pozyskiwania oleju konopnego na wybrane jego właściwości. Pol. J. Food Eng. 2017, 22, 17–22. [Google Scholar]
- Kępińska-Pacelik, J. Właściwości Prozdrowotne Oleju Konopnego. Food Ind. 2021, 1, 29–34. [Google Scholar] [CrossRef]
- Liang, J.; Aachary, A.A.; Hydamaka, A.; Eskin, N.A.M.; Eck, P.; Thiyam-Holländer, U. Reduction of Chlorophyll in Cold-Pressed Hemp (Cannabis Sativa) Seed Oil by Ultrasonic Bleaching and Enhancement of Oxidative Stability: Impact of ultrasonic bleaching on hempseed oil. Eur. J. Lipid Sci. Technol. 2018, 120, 1700349. [Google Scholar] [CrossRef]
- Izzo, L.; Pacifico, S.; Piccolella, S.; Castaldo, L.; Narváez, A.; Grosso, M.; Ritieni, A. Chemical Analysis of Minor Bioactive Components and Cannabidiolic Acid in Commercial Hemp Seed Oil. Molecules 2020, 25, 3710. [Google Scholar] [CrossRef]
- Liang, J.; Appukuttan Aachary, A.; Thiyam-Holländer, U. Hemp Seed Oil: Minor Components and Oil Quality. Lipid Technol. 2015, 27, 231–233. [Google Scholar] [CrossRef]
- Boujemaa, I.; El Bernoussi, S.; Harhar, H.; Tabyaoui, M. The Influence of the Species on the Quality, Chemical Composition and Antioxidant Activity of Pumpkin Seed Oil. OCL 2020, 27, 40. [Google Scholar] [CrossRef]
- Šamec, D.; Loizzo, M.R.; Gortzi, O.; Çankaya, İ.T.; Tundis, R.; Suntar, İ.; Shirooie, S.; Zengin, G.; Devkota, H.P.; Reboredo-Rodríguez, P.; et al. The Potential of Pumpkin Seed Oil as a Functional Food-A Comprehensive Review of Chemical Composition, Health Benefits, and Safety. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4422–4446. [Google Scholar] [CrossRef]
- Ceclu, L.; Mocanu, D.G.; Nistor, O.V. Pumpkin—Health benefits. J. Agroaliment. Process Technol. 2020, 26, 241–246. [Google Scholar]
- Shaban, A.; Sahu, R.P. Pumpkin Seed Oil: An Alternative Medicine. Int. J. Pharmacogn. Phytochem. Res. 2017, 9, 11. [Google Scholar] [CrossRef]
- Montesano, D.; Blasi, F.; Simonetti, M.; Santini, A.; Cossignani, L. Chemical and Nutritional Characterization of Seed Oil from Cucurbita maxima L. (Var. Berrettina) Pumpkin. Foods 2018, 7, 30. [Google Scholar] [CrossRef]
- Dotto, J.M.; Chacha, J.S. The Potential of Pumpkin Seeds as a Functional Food Ingredient: A Review. Sci. Afr. 2020, 10, e00575. [Google Scholar] [CrossRef]
- Tańska, M.; Ogrodowska, D.; Bartoszewski, G.; Korzeniewska, A.; Konopka, I. Seed Lipid Composition of New Hybrids of Styrian Oil Pumpkin Grown in Poland. Agronomy 2020, 10, 1104. [Google Scholar] [CrossRef]
- Rohman, A.; Ghazali, M.A.B.; Windarsih, A.; Irnawati; Riyanto, S.; Yusof, F.M.; Mustafa, S. Comprehensive Review on Application of FTIR Spectroscopy Coupled with Chemometrics for Authentication Analysis of Fats and Oils in the Food Products. Molecules 2020, 25, 5485. [Google Scholar] [CrossRef]
- Rezig, L.; Chouaibi, M.; Ojeda-Amador, R.M.; Gomez-Alonso, S.; Salvador, M.D.; Fregapane, G.; Hamdi, S. Cucurbita Maxima Pumpkin Seed Oil: From the Chemical Properties to the Different Extracting Techniques. Not. Bot. Horti Agrobot. Cluj Napoca 2018, 46, 663–669. [Google Scholar] [CrossRef]
- Ramak, P.; Mahboubi, M. The Beneficial Effects of Pumpkin (Cucurbita pepo L.) Seed Oil for Health Condition of Men. Food Rev. Int. 2019, 35, 166–176. [Google Scholar] [CrossRef]
- Michalak, M.; Paradowska, K.; Zielińska, A. Selected Plant Oils as a Source of Carotenoids for the Applications in Cosmetology. Postepy Fitoter 2018, 19, 10–17. [Google Scholar]
- Mazaheri, Y.; Torbati, M.; Azadmard-Damirchi, S.; Savage, G.P. Oil Extraction from Blends of Sunflower and Black Cumin Seeds by Cold Press and Evaluation of Its Physicochemical Properties. J. Food Process Preserv. 2019, 43, e14154. [Google Scholar] [CrossRef]
- Siddeeg, A.; Xia, W. Oxidative Stability, Chemical Composition and Organoleptic Properties of Seinat (Cucumis melo Var. Tibish) Seed Oil Blends with Peanut Oil from China. J. Food Sci. Technol. 2015, 52, 8172–8179. [Google Scholar] [CrossRef]
- Zielińska, M.; Rutkowska, J.; Antoniewska, A. Produkty utleniania lipidów—Konsekwencje żywieniowe i zdrowotne. Probl. Higieny Epidemiol. 2017, 98, 203–211. [Google Scholar]
- Hashempour-Baltork, F.; Torbati, M.; Azadmard-Damirchi, S.; Savage, G.P. Vegetable Oil Blending: A Review of Physicochemical, Nutritional and Health Effects. Trends Food Sci. Technol. 2016, 57, 52–58. [Google Scholar] [CrossRef]
- European Commission. COMMISSION REGULATION (EU) 2023/915 of 25 April 2023 on maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006. Off. J. Eur. Union 2023, 119, 103–157. Available online: https://eur-lex.europa.eu/eli/reg/2023/915/oj (accessed on 25 September 2024).
- ISO. Animal and Vegetable Fats and Oils—Preparation of Methyl Esters of Fatty Acids; International Organization for Standardization: Geneva, Switzerland, 2001; Volume 5509. [Google Scholar]
- Bryś, J.; Flores, L.F.V.; Górska, A.; Wirkowska-Wojdyła, M.; Ostrowska-Ligęza, E.; Bryś, A. Use of GC and PDSC methods to characterize human milk fat substitutes obtained from lard and milk thistle oil mixtures. J. Therm. Anal. Calorim. 2017, 130, 319–327. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- Wirkowska-Wojdyła, M.; Ostrowska-Ligęza, E.; Górska, A.; Brzezińska, R.; Piasecka, I. Assessment of the Nutritional Potential and Resistance to Oxidation of Sea Buckthorn and Rosehip Oils. Appl. Sci. 2024, 14, 1867. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Bessa RJ, B.; Santos-Silva, F. Effect of Genotype, Feeding System and Slaughter Weight on the Quality of Light Lambs: II. Fatty Acid Composition of Meat. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
- Brzezińska, R.; Bryś, J.; Giers, O.; Bryś, A.; Górska, A.; Ostrowska-Ligęza, E.; Wirkowska-Wojdyła, M. Quality evaluation of plant oil blends interesterified by using immobilized Rhizomucor miehei lipase. Appl. Sci. 2022, 12, 11148. [Google Scholar] [CrossRef]
- AOCS Official Method Te 1a-64 Acid value. In Official Methods and Recommended Practices of the AOCS, 6th ed.; Firestone, D. (Ed.) AOCS Press: Champaign, IL, USA, 2009; p. 1. [Google Scholar]
- AOCS Official Method Cd 8b-90 Peroxide value, acetic acid, isooctane method. In Official Methods and Recommended Practices of the AOCS, 8th ed.; AOCS Press: Champaign, IL, USA, 2009.
- Bandara, R.R.; Louis-Gavet, C.; Bryś, J.; Mańko-Jurkowska, D.; Górska, A.; Brzezińska, R.; Siol, M.; Makouie, S.; Palani, B.K.; Obranović, M.; et al. Enzymatic Interesterification of Coconut and Hemp Oil Mixtures to Obtain Modified Structured Lipids. Foods 2024, 13, 2722. [Google Scholar] [CrossRef]
- Symoniuk, E.; Wroniak, M.; Napiórkowska, K.; Brzezińska, R.; Ratusz, K. Oxidative Stability and Antioxidant Activity of Selected Cold-Pressed Oils and Oils Mixtures. Foods 2022, 11, 1597. [Google Scholar] [CrossRef] [PubMed]
- Sokoła-Wysoczańska, E.; Wysoczański, T.; Wagner, J.; Czyż, K.; Bodkowski, R.; Lochyński, S.; Patkowska-Sokoła, B. Polyunsaturated Fatty Acids and Their Potential Therapeutic Role in Cardiovascular System Disorders—A Review. Nutrients 2018, 10, 1561. [Google Scholar] [CrossRef]
- Kapoor, B.; Kapoor, D.; Gautam, S.; Singh, R.; Bhardwaj, S. Dietary Polyunsaturated Fatty Acids (PUFAs): Uses And Potential Health Benefits. Curr. Nutr. Rep. 2021, 10, 232–242. [Google Scholar] [CrossRef]
- Ciećko, J.; Romańska, A.; Kowalczyk, M.; Domaradzki, P.; Kędzierska-Matysek, M.; Teter, A.; Skałecki, P.; Florek, M.; Dmoch, M.; Kondraciuk, M. Ocena profilu kwasów tłuszczowych olejów roślinnych wykorzystywanych w żywieniu człowieka i kosmetyce. In Wybrane Zagadznienia z Zakresu Produkcji Surowców, Żywności i Kosmetyków; Babicz, M., Kropiwiec-Domańska, K., Eds.; Wydawnictwo Uniwersytetu Przyrodniczego w Lublinie: Lublin, Poland, 2021; pp. 16–22. [Google Scholar]
- Bielecka, M.; Ziajka, J.; Staniewski, B.; Nowak, H. Oxidative stability and health-related indices of anhydrous milk fat and vegetable oil blends. Int. Dairy J. 2023, 137, 105529. [Google Scholar] [CrossRef]
- Siudem, P.; Wawer, I.; Paradowska, K. Rapid evaluation of edible hemp oil quality using NMR and FT-IR spectroscopy. J. Mol. Struct. 2019, 1177, 204–208. [Google Scholar] [CrossRef]
- Gaca, A.; Kludská, E.; Hradecký, J.; Hajšlová, J.; Jeleń, H.H. Changes in Volatile Compound Profiles in Cold-Pressed Oils Obtained from Various Seeds during Accelerated Storage. Molecules 2021, 26, 285. [Google Scholar] [CrossRef] [PubMed]
- Ulbricht TL, V.; Southgate DA, T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Ying, Q.; Wojciechowska, P.; Siger, A.; Kaczmarek, A.; Rudzińska, M. Phytochemical Content, Oxidative Stability, and Nutritional Properties of Unconventional Cold-Pressed Edible Oils. J. Food Nutr. Res. 2018, 6, 476–485. [Google Scholar] [CrossRef]
- Górska, A.; Piasecka, I.; Wirkowska-Wojdyła, M.; Bryś, J.; Kienc, K.; Brzezińska, R.; Ostrowska-Ligęza, E. Berry Seeds—A By-Product of the Fruit Industry as a Source of Oils with Beneficial Nutritional Characteristics. Appl. Sci. 2023, 13, 5114. [Google Scholar] [CrossRef]
- Siol, M.; Dudek, A.; Bryś, J.; Mańko-Jurkowska, D.; Gruczyńska-Sękowska, E.; Makouie, S.; Palani, B.K.; Obranović, M.; Koczoń, P. Chromatographic and Thermal Characteristics, and Hydrolytic and Oxidative Stability of Commercial Pomegranate Seed Oil. Foods 2024, 13, 1370. [Google Scholar] [CrossRef]
- Yurchenko, S.; Sats, A.; Tatar, V.; Kaart, T.; Mootse, H.; Jõudu, I. Fatty acid profile of milk from Saanen and Swedish Landrace goats. Food Chem. 2018, 254, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Ratusz, K.; Symoniuk, E.; Wroniak, M.; Rudzińska, M. Bioactive Compounds, Nutritional Quality and Oxidative Stability of Cold-Pressed Camelina (Camelina sativa L.) Oils. Appl. Sci. 2018, 8, 2606. [Google Scholar] [CrossRef]
- Karupaiah, T.; Sundram, K. Effects of stereospecific positioning of fatty acids in triacylglycerol structures in native and randomized fats: A review of their nutritional implications. Nutr. Metab. 2007, 4, 16. [Google Scholar] [CrossRef] [PubMed]
- Mu, H.; Høy, C.-E. The digestion of dietary triacylglycerols. Prog. Lipid Res. 2004, 43, 105–133. [Google Scholar] [CrossRef] [PubMed]
- Górska, A.; Mańko-Jurkowska, D.; Bryś, J.; Górska, A. Lipid Fraction Properties of Homemade Raw Cat Foods and Selected Commercial Cat Foods. Appl. Sci. 2021, 11, 10905. [Google Scholar] [CrossRef]
- Hunter, J.E. Studies on effects of dietary fatty acids as related to their position on triglycerides. Lipids 2001, 36, 655–668. [Google Scholar] [CrossRef]
- Tringaniello, C.; Cossignani, L.; Blasi, F. Characterization of the triacylglycerol fraction of Italian and Extra-European hemp seed oil. Foods 2021, 10, 916. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, W.; Zhou, H.; Zhang, D.; Li, R.; Li, C.; Wang, S. The relations between minor components and antioxidant capacity of five fruits and vegetables seed oils in China. J. Oleo Sci. 2019, 68, 625–635. [Google Scholar] [CrossRef]
- Mildner-Szkudlarz, S.; Różańska, M.; Gaca, A.; Jeleń, H.H. Changes in volatile compound profiles of cold-pressed berry seed oils induced by roasting. LWT 2021, 148, 111718. [Google Scholar] [CrossRef]
- Wroniak, M.; Rękas, A. Nutritional value of cold-pressed rapeseed oil during long term storage as influenced by the type of packaging material, exposure to light & oxygen and storage temperature. J. Food Sci. Technol. 2016, 53, 1338–1347. [Google Scholar]
- Robertson, G.L. Vegetable oils. In Food Packaging: Principles and Practice; Robertson, G.L., Ed.; CRC Press: New York, NY, USA, 2012; pp. 503–505. [Google Scholar]
- Sabah, A.; Shah, A.; Tanwir, S.; Arsalan, A.; Malik, A.; Ahmad, I. Light transmission properties of pharmaceutical liquid bottles and evaluation of their photoprotective efficacy. Pak. J. Pharm. Sci. 2020, 33, 877–885. [Google Scholar] [PubMed]
- Choe, E.; Min, D.B. Mechanisms and factors for edible oil oxidation. Compr. Rev. Food Sc. Food Saf. 2006, 5, 169–186. [Google Scholar] [CrossRef]
- Lo Turco, V.; Litrenta, F.; Nava, V.; Albergamo, A.; Rando, R.; Bartolomeo, G.; Potortì, A.G.; Di Bella, G. Effect of filtration process on oxidative stability and minor compounds of the cold-pressed hempseed oil during storage. Antioxidants 2023, 12, 1231. [Google Scholar] [CrossRef] [PubMed]
- Codex-ALINORM 09/32/17; Codex Alimentarius 2009. Codex Standard for Named Vegetable Oils. Codex Alimentarius Commission: Rome, Italy, 2009.
- Oleksy, A.; Kulig, B.; Lepiarczyk, A.; Kołodziejczyk, M.; Kasprowicz, M. Porównanie plonowania i składu chemicznego lnu oleistego i włóknistego oraz konopi siewnych w aspekcie ich przemysłowego wykorzystania. In Konferencja Naukowa Zrównoważone Technologie Produkcji Roślinnej—CZŁOWIEK i Środowisko; Kulig, B., Zając, T., Oleksy, A., Eds.; Wydawnictwo Uniwersytetu Rolniczego w Krakowie: Kraków, Poland, 2016; pp. 63–72. [Google Scholar]
- Lozada, M.I.O.; Maldonade, I.R.; Rodrigues, D.B.; Santos, D.S.; Sanchez, B.A.O.; de Souza, P.E.N.; Longo, J.P.; Amarode, G.B.; Oliveira, L.D.L. Physicochemical characterization and nano-emulsification of three species of pumpkin seed oils with focus on their physical stability. Food Chem. 2021, 343, 128512. [Google Scholar] [CrossRef] [PubMed]
- Kondratowicz-Pietruszka, E.; Ostasz, L. Wpływ modelowych czynników fizycznych na dynamikę przemian oksydacyjnych olejów tłoczonych na zimno. Krakow Rev. Econ. Manag. 2017, 7, 33–51. [Google Scholar] [CrossRef]
- Singh, A.; Kumar, V. Phyto-chemical and bioactive compounds of pumpkin seed oil as affected by different extraction methods. Food Chem. Adv. 2023, 2, 100211. [Google Scholar] [CrossRef]
- Satyarthi, J.K.; Srinivas, D.; Ratnasamy, P. Hydrolysis of vegetable oils and fats to fatty acids over solid acid catalysts. Appl. Catal. 2011, 391, 427–435. [Google Scholar] [CrossRef]
- Prescha, A.; Grajzer, M.; Dedyk, M.; Grajeta, H. The antioxidant activity and oxidative stability of cold-pressed oils. J. Am. Oil Chem. 2014, 91, 1291–1301. [Google Scholar] [CrossRef]
- Wroniak, M.; Cenkier, J. Porównanie cech sensorycznych, fizykochemicznych i stabilności oksydatywnej wybranych olejów tłoczonych na zimno. Zesz. Probl. Postęp Nauk. Rol. 2015, 581, 123–133. [Google Scholar]
- Nosenko, T.; Korolyuk, T.; Usatyuk, S.; Vovk, H.O.; Kostinova, T. Comparative study of walnut and pumpkin seeds oils biological value and oxidative stability. Chem. Food Prod. Mater. 2019, 13, 60–65. [Google Scholar] [CrossRef]
- Petkova, Z.Y.; Antova, G.A.; Angelova-Romova, M.Y. Development of lipid damage of pumpkin seed oil stabilized with different antioxidants during long-term storage. Bulg. Chem. Commun. 2018, 50, 112–117. [Google Scholar]
- Ahmed, M.; Pickova, J.; Ahmad, T.; Liaquat, M.; Farid, A.; Jahangir, M. Oxidation of lipids in foods. Sarhad J. Agric. 2016, 32, 230–238. [Google Scholar] [CrossRef]
- Mariotti, M. Virgin olive oil: Definition and standards. In The Extra-Virgin Olive Oil Handbook; Peri, C., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2014; pp. 11–19. [Google Scholar]
- Lyimo, M.E.; Shayo, N.B.; Kasanga, A. Physical-chemical properties, storage stability and sensory evaluation of pumpkin seed oil. Huria J. Open Univ. Tanzan. 2012, 12, 110–117. [Google Scholar]
- Gao, F.; Birch, J. Oxidative stability, thermal decomposition, and oxidation onset prediction of carrot, flax, hemp, and canola seed oils in relation to oil composition and positional distribution of fatty acids. Eur. J. Lipid Sci. Technol. 2016, 118, 1042–1052. [Google Scholar] [CrossRef]
- Kiralan, M.; Ulaş, M.; Özaydın, A.; Özdemir, N.; Özkan, G.; Bayrak, A.; Ramadan, M.F. Blends of cold pressed black cumin oil and sunflower oil with improved stability: A study based on changes in the levels of volatiles, tocopherols and thymoquinone during accelerated oxidation conditions. J. Food Biochem. 2017, 41, e12272. [Google Scholar] [CrossRef]
- Golimowski, W.; Teleszko, M.; Marcinkowski, D.; Kmiecik, D.; Grygier, A.; Kwaśnica, A. Quality of oil pressed from hemp seed varieties: ‘Earlina 8FC’,‘Secuieni Jubileu’ and ‘Finola’. Molecules 2022, 27, 3171. [Google Scholar] [CrossRef] [PubMed]
- Nooshkam, M.; Varidi, M.; Bashash, M. The Maillard reaction products as foodborn antioxidant and antibrowning agents in model and real food systems. Food Chem. 2019, 275, 644–660. [Google Scholar] [CrossRef]
- Islam, M.; Rajagukguk, Y.V.; Siger, A.; Tomaszewska-Gras, J. Assessment of hemp seed oil quality pressed from fresh and stored seeds of Henola cultivar using differential scanning calorimetry. Foods 2022, 12, 135. [Google Scholar] [CrossRef]
- Bryś, A.; Bryś, J.; Mellado, Á.F.; Głowacki, S.; Tulej, W.; Ostrowska-Ligęza, E.; Koczoń, P. Characterization of oil from roasted hemp seeds using the PDSC and FTIR techniques. J. Therm. Anal. Calorim. 2019, 138, 2781–2786. [Google Scholar] [CrossRef]
- Symoniuk, E.; Ratusz, K.; Ostrowska-Ligęza, E.; Krygier, K. Impact of selected chemical characteristics of cold-pressed oils on their oxidative stability determined using the Rancimat and pressure differential scanning calorimetry method. Food Anal. Methods 2018, 11, 1095–1104. [Google Scholar] [CrossRef]
- Tura, M.; Ansorena, D.; Astiasarán, I.; Mandrioli, M.; Toschi, T.G. Evaluation of hemp seed oils stability under accelerated storage test. Antioxidants 2022, 11, 490. [Google Scholar] [CrossRef] [PubMed]
- Olszowy-Tomczyk, M. Synergistic, antagonistic and additive antioxidant effects in the binary mixtures. Phytochem. Rev. 2020, 19, 63–103. [Google Scholar] [CrossRef]
- Shi, J.; Qu, Q.; Kakuda, Y.; Xue, S.J.; Jiang, Y.; Koide, S.; Shim, Y.Y. Investigation of the antioxidant and synergistic activity of lycopene and other natural antioxidants using LAME and AMVN model systems. J. Food Compos. Anal. 2007, 20, 603–608. [Google Scholar] [CrossRef]
- Ardabili, A.G.; Farhoosh, R.; Khodaparast, M.H.H. Frying stability of canola oil in presence of pumpkin seed and olive oils. Eur. J. Lipid Sci. Technol. 2010, 112, 871–877. [Google Scholar] [CrossRef]
Sample | Storage [Month] | Temperature [°C] | AI | TI | HPI | h/H |
---|---|---|---|---|---|---|
H | 0 | - | 0.07 | 0.11 | 15.35 | 15.55 |
2 | 4 | 0.08 | 0.12 | 12.47 | 12.71 | |
20 | 0.07 | 0.11 | 14.85 | 15.03 | ||
4 | 4 | 0.07 | 0.11 | 13.92 | 14.08 | |
20 | 0.07 | 0.11 | 13.92 | 14.06 | ||
3H:1P | 0 | - | 0.09 | 0.16 | 11.46 | 11.65 |
2 | 4 | 0.09 | 0.16 | 11.57 | 11.72 | |
20 | 0.09 | 0.16 | 11.44 | 11.59 | ||
4 | 4 | 0.09 | 0.16 | 10.75 | 10.97 | |
20 | 0.10 | 0.17 | 10.03 | 10.25 | ||
1H:1P | 0 | - | 0.11 | 0.22 | 9.29 | 9.47 |
2 | 4 | 0.12 | 0.24 | 8.23 | 8.40 | |
20 | 0.11 | 0.22 | 9.29 | 9.49 | ||
4 | 4 | 0.12 | 0.24 | 8.23 | 8.40 | |
20 | 0.13 | 0.24 | 7.87 | 8.03 | ||
1H:3P | 0 | - | 0.13 | 0.32 | 7.44 | 7.62 |
2 | 4 | 0.13 | 0.32 | 7.59 | 7.77 | |
20 | 0.14 | 0.32 | 7.39 | 7.55 | ||
4 | 4 | 0.14 | 0.33 | 7.25 | 7.43 | |
20 | 0.15 | 0.34 | 6.89 | 7.05 | ||
P | 0 | - | 0.15 | 0.48 | 6.47 | 6.65 |
2 | 4 | 0.16 | 0.49 | 6.35 | 6.53 | |
20 | 0.16 | 0.48 | 6.35 | 6.53 | ||
4 | 4 | 0.17 | 0.51 | 5.89 | 6.04 | |
20 | 0.17 | 0.50 | 5.89 | 6.05 |
Sample | Storage [Month] | Temperature [°C] | AV [mg KOH/g Oil] | PV [meq O2/kg Oil] |
---|---|---|---|---|
H | 0 | - | 4.25 e ± 0.01 | 7.24 e ± 0.14 |
2 | 4 | 4.84 d ± 0.01 | 12.34 d ± 0.07 | |
20 | 4.97 c ± 0.02 | 35.79 b ± 1.52 | ||
4 | 4 | 5.54 b ± 0.01 | 29.30 c ± 0.20 | |
20 | 5.81 a ± 0.01 | 71.23 a ± 0.87 | ||
3H:1P | 0 | - | 3.34 e ± 0.01 | 6.17 d ± 0.05 |
2 | 4 | 3.81 d ± 0.01 | 7.34 d ± 0.60 | |
20 | 3.95 c ± 0.05 | 28.43 b ± 1.23 | ||
4 | 4 | 4.36 b ± 0.01 | 13.13 c ± 0.15 | |
20 | 4.62 a ± 0.01 | 66.57 a ± 0.14 | ||
1H:1P | 0 | - | 2.47 e ± 0.01 | 5.63 d ± 0.26 |
2 | 4 | 2.80 d ± 0.01 | 6.58 cd ± 0.44 | |
20 | 2.87 c ± 0.01 | 16.63 b ± 1.34 | ||
4 | 4 | 3.20 b ± 0.01 | 8.83 c ± 0.49 | |
20 | 3.42 a ± 0.01 | 27.63 a ± 0.14 | ||
1H:3P | 0 | - | 1.51 e ± 0.01 | 5.24 d ± 0.07 |
2 | 4 | 1.76 d ± 0.01 | 5.54 d ± 0.59 | |
20 | 1.79 c ± 0.01 | 33.48 b ± 0.41 | ||
4 | 4 | 1.98 b ± 0.01 | 10.02 c ± 1.02 | |
20 | 2.06 a ± 0.01 | 64.32 a ± 0.06 | ||
P | 0 | - | 0.58 c ± 0.01 | 4.81 d ± 0.12 |
2 | 4 | 0.63 b ± 0.01 | 5.18 d ± 0.11 | |
20 | 0.61 b ± 0.01 | 8.44 c ± 0.54 | ||
4 | 4 | 0.76 a ± 0.01 | 10.32 b ± 0.64 | |
20 | 0.78 a ± 0.01 | 12.66 a ± 0.50 |
Sample | Storage [Month] | Temperature [°C] | τmax [Min] |
---|---|---|---|
H | 0 | - | 30.36 a ± 1.20 |
2 | 4 | 28.41 a ± 1.07 | |
20 | 21.82 b ± 0.57 | ||
4 | 4 | 23.07 b ± 0.08 | |
20 | 15.21 c ± 0.17 | ||
3H:1P | 0 | - | 38.60 a ± 1.07 |
2 | 4 | 34.01 b ± 0.99 | |
20 | 26.60 c ± 0.25 | ||
4 | 4 | 35.33 ab ± 1.36 | |
20 | 20.32 d ± 1.33 | ||
1H:1P | 0 | - | 48.86 a ± 1.56 |
2 | 4 | 43.56 ab ± 0.35 | |
20 | 38.93 b ± 0.61 | ||
4 | 4 | 47.50 a ± 2.27 | |
20 | 39.33 b ± 2.16 | ||
1H:3P | 0 | - | 61.18 a ± 1.75 |
2 | 4 | 53.26 a ± 1.24 | |
20 | 39.26 b ± 4.44 | ||
4 | 4 | 66.26 a ± 5.69 | |
20 | 38.27 b ± 0.59 | ||
P | 0 | - | 111.38 a ± 10.84 |
2 | 4 | 72.46 b ± 1.78 | |
20 | 65.46 b ± 1.08 | ||
4 | 4 | 97.86 a ± 3.53 | |
20 | 96.04 a ± 3.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siol, M.; Chołuj, N.; Mańko-Jurkowska, D.; Bryś, J. Assessment of the Stability and Nutritional Quality of Hemp Oil and Pumpkin Seed Oil Blends. Foods 2024, 13, 3813. https://doi.org/10.3390/foods13233813
Siol M, Chołuj N, Mańko-Jurkowska D, Bryś J. Assessment of the Stability and Nutritional Quality of Hemp Oil and Pumpkin Seed Oil Blends. Foods. 2024; 13(23):3813. https://doi.org/10.3390/foods13233813
Chicago/Turabian StyleSiol, Marta, Natalia Chołuj, Diana Mańko-Jurkowska, and Joanna Bryś. 2024. "Assessment of the Stability and Nutritional Quality of Hemp Oil and Pumpkin Seed Oil Blends" Foods 13, no. 23: 3813. https://doi.org/10.3390/foods13233813
APA StyleSiol, M., Chołuj, N., Mańko-Jurkowska, D., & Bryś, J. (2024). Assessment of the Stability and Nutritional Quality of Hemp Oil and Pumpkin Seed Oil Blends. Foods, 13(23), 3813. https://doi.org/10.3390/foods13233813