Enhanced Antioxidant and Digestive Enzyme Inhibitory Activities of Pacific White Shrimp Shell Protein Hydrolysates via Conjugation with Polyphenol: Characterization and Application in Surimi Gel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material and Chemicals
2.2. Preparation of Protein Hydrolysates from Shrimp Shells (SSPHs)
2.3. Conjugation of Shrimp Shell Protein Hydrolysate with Different Polyphenols
2.4. Characterization of Selected Shrimp Shell Protein Hydrolysate and Polyphenol Conjugates
2.4.1. Fourier-Transform Infrared (FTIR) Spectra
2.4.2. 1H-NMR
2.4.3. Antioxidant Activities
2.4.4. Digestive Enzyme Inhibitory Activity
α-Amylase Inhibitory Activity
α-Glucosidase Inhibitory Activity
Lipase Inhibitory Activity
2.5. Effect of A–C Conjugate on the Gel Properties of Threadfin Bream and Indian Mackerel Surimi Gel
2.5.1. Preparation of Surimi
2.5.2. Preparation of Surimi Gels
2.6. Analyses
2.6.1. Gel Properties
2.6.2. Texture Profile Analysis (TPA)
2.6.3. Protein Patterns
2.6.4. Scanning Electron Microscopic (SEM) Images
2.6.5. In Vitro Gastrointestinal Digestion of Surimi Gel
Digestive Enzyme Inhibitory
Antioxidant Activity
2.7. Statical Analysis
3. Results and Discussion
3.1. Effect of Varying Concentrations of AsA/H2O2 Redox Pair Initiators on Conjugation Efficiency (CE)
3.2. Effect of Different Concentrations of SSPHs and PPNs on the Conjugation Efficiency
3.3. Characterization of Protein Hydrolysate and Polyphenol Conjugates
3.3.1. FTIR Spectra
3.3.2. 1H-NMR Spectra
3.4. Antioxidant Activities of SSPHs and SSPH–PPNs
3.5. Antidiabetic Activity of Protein Hydrolysate and Polyphenol Conjugates
- α-Amylase Inhibitory Activity
- α-Glucosidase Inhibitory Activity
- Lipase Inhibitory Activity
3.6. Effect of A–C Conjugate on the Gelling Properties of Surimi Gel Obtained from Different Fish
3.6.1. Breaking Force and Deformation
3.6.2. Whiteness
3.6.3. Expressible Moisture Content (EMC)
3.6.4. Texture Profile Analysis
3.6.5. Protein Pattern
3.6.6. Microstructure
3.6.7. In Vitro Digestion of Surimi Gels
Antioxidant Activity
Inhibition of Digestive Enzymes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, T.; Huang, L.; Luo, D.; Xie, Y.; Zhang, Y.; Zhang, Y.; Jiao, W.; Su, G.; Zhao, M. Fabrication and characterization of anchovy protein hydrolysates-polyphenol conjugates with stabilizing effects on fish oil emulsion. Food Chem. 2021, 351, 129324. [Google Scholar] [CrossRef]
- Navarro-Peraza, R.S.; Osuna-Ruiz, I.; Lugo-Sánchez, M.E.; Pacheco-Aguilar, R.; Ramírez-Suárez, J.C.; Burgos-Hernández, A.; Martínez-Montaño, E.; Salazar-Leyva, J.A. Structural and biological properties of protein hydrolysates from seafood by-products: A review focused on fishery effluents. Food Sci. Technol. 2020, 40 (Suppl. 1), 1–5. [Google Scholar] [CrossRef]
- Nikoo, M.; Xu, X.; Regenstein, J.M.; Noori, F. Autolysis of Pacific white shrimp (Litopenaeus vannamei) processing by-products: Enzymatic activities, lipid and protein oxidation, and antioxidant activity of hydrolysates. Food Biosci. 2021, 39, 100844. [Google Scholar] [CrossRef]
- Singh, A.; Kadam, D.; Gautam, A.R.; Rengasamy, K.R.R.; Aluko, R.E.; Benjakul, S. Angiotensin-I-converting enzyme and renin inhibitions by antioxidant shrimp shell protein hydrolysate and ultrafiltration peptide fractions. Food Biosci. 2024, 60, 104524. [Google Scholar] [CrossRef]
- Djuardi, A.U.P.; Yuliana, N.D.; Ogawa, M.; Akazawa, T.; Suhartono, M.T. Emulsifying properties and antioxidant activity of soy protein isolate conjugated with tea polyphenol extracts. J. Food Sci. Technol. 2020, 57, 3591–3600. [Google Scholar] [CrossRef] [PubMed]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef]
- Liu, X.; Song, Q.; Li, X.; Chen, Y.; Liu, C.; Zhu, X.; Liu, J.; Granato, D.; Wang, Y.; Huang, J. Effects of different dietary polyphenols on conformational changes and functional properties of protein–polyphenol covalent complexes. Food Chem. 2021, 361, 130071. [Google Scholar] [CrossRef]
- Huang, R.; Mendis, E.; Kim, S.-K. Improvement of ACE inhibitory activity of chitooligosaccharides (COS) by carboxyl modification. Bioorg. Med. Chem. 2005, 13, 3649–3655. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Sarteshnizi, R.A.; Udenigwe, C.C. Recent advances in protein–polyphenol interactions focusing on structural properties related to antioxidant activities. Curr. Opin. Food Sci. 2022, 45, 100840. [Google Scholar] [CrossRef]
- Feng, Y.; Jin, C.; Lv, S.; Zhang, H.; Ren, F.; Wang, J. Molecular mechanisms and applications of polyphenol-protein complexes with antioxidant properties: A review. Antioxidants 2023, 12, 1577. [Google Scholar] [CrossRef]
- Balange, A.K.; Benjakul, S. Effect of oxidised phenolic compounds on the gel property of mackerel (Rastrelliger kanagurta) surimi. LWT 2009, 42, 1059–1064. [Google Scholar] [CrossRef]
- Ma, X.-S.; Yi, S.-M.; Yu, Y.-M.; Li, J.-R.; Chen, J.-R. Changes in gel properties and water properties of Nemipterus virgatus surimi gel induced by high-pressure processing. LWT 2015, 61, 377–384. [Google Scholar] [CrossRef]
- Vidanarachchi, J.K.; Ranadheera, C.S.; Wijerathne, T.; Udayangani, R.; Himali, S.; Pickova, J. Applications of seafood by-products in the food industry and human nutrition. In Seafood Processing By-Products: Trends and Applications; Springer: New York, NY, USA, 2014; pp. 463–528. [Google Scholar]
- Gautam, A.R.; Benjakul, S.; Mittal, A.; Singh, P.; Singh, A. Ultrasonication-assisted enzymatic hydrolysis of shrimp shell protein isolate: Characterization, antioxidant, and functional properties. Biomass Conv. Bioref. 2024. [Google Scholar] [CrossRef]
- Chotphruethipong, L.; Sukketsiri, W.; Battino, M.; Benjakul, S. Conjugate between hydrolyzed collagen from defatted seabass skin and epigallocatechin gallate (EGCG): Characteristics, antioxidant activity and in vitro cellular bioactivity. RSC Adv. 2021, 11, 2175–2184. [Google Scholar] [CrossRef]
- Zhang, G.; Yan, X.; Wu, S.; Ma, M.; Yu, P.; Gong, D.; Deng, S.; Zeng, Z. Ethanol extracts from Cinnamomum camphora seed kernel: Potential bioactivities as affected by alkaline hydrolysis and simulated gastrointestinal digestion. Food Res. Int. 2020, 137, 109363. [Google Scholar] [CrossRef] [PubMed]
- da Costa Silva, T.; Justino, A.B.; Prado, D.G.; Koch, G.A.; Martins, M.M.; de Souza Santos, P.; de Morais, S.A.L.; Goulart, L.R.; Cunha, L.C.S.; de Sousa, R.M.F. Chemical composition, antioxidant activity and inhibitory capacity of α-amylase, α-glucosidase, lipase and non-enzymatic glycation, in vitro, of the leaves of Cassia bakeriana Craib. Ind. Crops Prod. 2019, 140, 111641. [Google Scholar] [CrossRef]
- Roy, V.C.; Chamika, W.A.S.; Park, J.-S.; Ho, T.C.; Khan, F.; Kim, Y.-M.; Chun, B.-S. Preparation of bio-functional surimi gel incorporation of fish oil and green tea extracts: Physico-chemical activities, in-vitro digestibility, and bacteriostatic properties. Food Control 2021, 130, 108402. [Google Scholar] [CrossRef]
- Azadian, M.; Moosavi-Nasab, M.; Abedi, E. Comparison of functional properties and SDS-PAGE patterns between fish protein isolate and surimi produced from silver carp. Eur. Food Res. Technol. 2012, 235, 83–90. [Google Scholar] [CrossRef]
- Mi, H.; Li, Y.; Wang, C.; Yi, S.; Li, X.; Li, J. The interaction of starch-gums and their effect on gel properties and protein conformation of silver carp surimi. Food Hydrocoll. 2021, 112, 106290. [Google Scholar] [CrossRef]
- Fang, M.; You, J.; Yin, T.; Hu, Y.; Liu, R.; Du, H.; Liu, Y.; Xiong, S. Peptidomic analysis of digested products of surimi gels with different degrees of cross-linking: In vitro gastrointestinal digestion and absorption. Food Chem. 2022, 375, 131913. [Google Scholar] [CrossRef] [PubMed]
- Curcio, M.; Puoci, F.; Iemma, F.; Parisi, O.I.; Cirillo, G.; Spizzirri, U.G.; Picci, N. Covalent insertion of antioxidant molecules on chitosan by a free radical grafting procedure. J. Agric. Food Chem. 2009, 57, 5933–5938. [Google Scholar] [CrossRef] [PubMed]
- Hadidi, M.; Liñán-Atero, R.; Tarahi, M.; Christodoulou, M.C.; Aghababaei, F. The potential health benefits of gallic acid: Therapeutic and food applications. Antioxidants 2024, 13, 1001. [Google Scholar] [CrossRef]
- Mittal, A.; Singh, A.; Aluko, R.E.; Benjakul, S. Pacific white shrimp (Litopenaeus vannamei) shell chitosan and the conjugate with epigallocatechin gallate: Antioxidative and antimicrobial activities. J. Food Biochem. 2021, 45, e13569. [Google Scholar] [CrossRef]
- Manzoor, M.; Tchameni, Z.F.N.; Bhat, Z.F.; Jaiswal, A.K.; Jaglan, S. Recent insights on the conformational changes, functionality, and physiological properties of plant-based protein–polyphenol conjugates. Food Bioprocess Technol. 2024, 17, 2131–2154. [Google Scholar] [CrossRef]
- Pan, L.; Chen, J.; Fu, H.; Wang, N.; Zhou, J.; Zhang, S.; Lu, S.; Dong, J.; Wang, Q.; Yan, H. Effects of fabrication of conjugates between different polyphenols and bovine bone proteins on their structural and functional properties. Food Biosci. 2023, 52, 102375. [Google Scholar] [CrossRef]
- Li, M.; Ritzoulis, C.; Du, Q.; Liu, Y.; Ding, Y.; Liu, W.; Liu, J. Recent progress on protein-polyphenol complexes: Effect on stability and nutrients delivery of oil-in-water emulsion system. Front. Nutr. 2021, 8, 765589. [Google Scholar] [CrossRef]
- Ozdal, T.; Capanoglu, E.; Altay, F. A review on protein–phenolic interactions and associated changes. Food Res. Int. 2013, 51, 954–970. [Google Scholar] [CrossRef]
- Kroll, J.; Rawel, H.M.; Rohn, S. Reactions of plant phenolics with food proteins and enzymes under special consideration of covalent bonds. Food Sci. Technol. Res. 2003, 9, 205–218. [Google Scholar] [CrossRef]
- Parolia, S.; Maley, J.; Sammynaiken, R.; Green, R.; Nickerson, M.; Ghosh, S. Structure–Functionality of lentil protein-polyphenol conjugates. Food Chem. 2022, 367, 130603. [Google Scholar] [CrossRef] [PubMed]
- Low, M.; Ramasubramanian, N. Infrared study of the nature of the hydroxyl groups on the surface of porous glass. J. Phys. Chem. 1966, 70, 2740–2746. [Google Scholar] [CrossRef]
- Kong, J.; Yu, S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim. Biophys. Sin. 2007, 39, 549–559. [Google Scholar] [CrossRef]
- Yu, Y.; Fan, F.; Wu, D.; Yu, C.; Wang, Z.; Du, M. Antioxidant and ACE inhibitory activity of enzymatic hydrolysates from Ruditapes philippinarum. Molecules 2018, 23, 1189. [Google Scholar] [CrossRef] [PubMed]
- Elias, R.J.; Kellerby, S.S.; Decker, E.A. Antioxidant activity of proteins and peptides. Crit. Rev. Food Sci. Nutr. 2008, 48, 430–441. [Google Scholar] [CrossRef] [PubMed]
- Jing, H.; Sun, J.; Mu, Y.; Obadi, M.; McClements, D.J.; Xu, B. Sonochemical effects on the structure and antioxidant activity of egg white protein–tea polyphenol conjugates. Food Funct. 2020, 11, 7084–7094. [Google Scholar] [CrossRef] [PubMed]
- Awosika, T.O.; Aluko, R.E. Inhibition of the in vitro activities of α-amylase, α-glucosidase and pancreatic lipase by yellow field pea (Pisum sativum L.) protein hydrolysates. Int. J. Food Sci. Technol. 2019, 54, 2021–2034. [Google Scholar] [CrossRef]
- Ćorković, I.; Gašo-Sokač, D.; Pichler, A.; Šimunović, J.; Kopjar, M. Dietary polyphenols as natural inhibitors of α-amylase and α-glucosidase. Life 2022, 12, 1692. [Google Scholar] [CrossRef] [PubMed]
- Rasouli, H.; Hosseini-Ghazvini, S.M.-B.; Adibi, H.; Khodarahmi, R. Differential α-amylase/α-glucosidase inhibitory activities of plant-derived phenolic compounds: A virtual screening perspective for the treatment of obesity and diabetes. Food Funct. 2017, 8, 1942–1954. [Google Scholar] [CrossRef] [PubMed]
- Uraipong, C.; Zhao, J. Rice bran protein hydrolysates exhibit strong in vitro α-amylase, β-glucosidase and ACE-inhibition activities. J. Sci. Food Agric. 2016, 96, 1101–1110. [Google Scholar] [CrossRef]
- Kumar, S.; Narwal, S.; Kumar, V.; Prakash, O. α-glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacogn. Rev. 2011, 5, 19. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Kong, F. Evaluation of the in vitro α-glucosidase inhibitory activity of green tea polyphenols and different tea types. J. Sci. Food Agric. 2016, 96, 777–782. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Yan, H.; He, R.; Ma, Y. Purification and a molecular docking study of α-glucosidase-inhibitory peptides from a soybean protein hydrolysate with ultrasonic pretreatment. Eur. Food Res. Technol. 2018, 244, 1995–2005. [Google Scholar] [CrossRef]
- Eizirik, D.L.; Pasquali, L.; Cnop, M. Pancreatic β-cells in type 1 and type 2 diabetes mellitus: Different pathways to failure. Nat. Rev. Endocrinol. 2020, 16, 349–362. [Google Scholar] [CrossRef] [PubMed]
- Buchholz, T.; Melzig, M.F. Polyphenolic compounds as pancreatic lipase inhibitors. Planta Medica 2015, 81, 771–783. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Y.; Peng, C.; Wang, J. Optimization of the preparation of fish protein anti-obesity hydrolysates using response surface methodology. Int. J. Mol. Sci. 2013, 14, 3124–3139. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Bai, G.; Jin, G.; Wang, Y.; Wang, J.; Puolanne, E.; Cao, J. Role of low molecular additives in the myofibrillar protein gelation: Underlying mechanisms and recent applications. Crit. Rev. Food Sci. Nutr. 2024, 64, 3604–3622. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Patil, U.; Mittal, A.; Singh, P.; Tyagi, A.; Benjakul, S. Gelation characteristics of partially purified myofibrillar proteins extracted from commercially harvested Indian mackerel and threadfin bream. J. Food Sci. 2023, 88, 4015–4027. [Google Scholar] [CrossRef]
- An, Y.; Xiong, S.; Liu, R.; You, J.; Yin, T.; Hu, Y. The effect of cross-linking degree on physicochemical properties of surimi gel as affected by MTGase. J. Sci. Food Agric. 2021, 101, 6228–6238. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Munir, S.; Yu, X.; Yin, T.; You, J.; Liu, R.; Xiong, S.; Hu, Y. Interaction of myofibrillar proteins and epigallocatechin gallate in the presence of transglutaminase in solutions. Food Funct. 2020, 11, 9560–9572. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, T.; Lin, H.; Chen, H.; Liu, J.; Lyu, F.; Ding, Y. Physicochemical properties and microstructure of surimi treated with egg white modified by tea polyphenols. Food Hydrocoll. 2019, 90, 82–89. [Google Scholar] [CrossRef]
- Haard, N. (Ed.) The role of enzymes in determining seafood color, flavor and texture. In Safety and Quality Issues in Fish Processing; University of California, Davis: Davis, CA, USA, 2002; pp. 220–253. [Google Scholar]
- Quan, T.H.; Benjakul, S.; Hozzein, W.N. Quality and storage stability of fish tofu as affected by duck albumen hydrolysate-epigalocatechin gallate conjugate. LWT 2020, 120, 108927. [Google Scholar] [CrossRef]
- Alkuraieef, A.N.; Alsuhaibani, A.M.; Alshawi, A.H.; Aljahani, A.H.; Aljobair, M.O.; Albaridi, N.A. Proximate chemical composition and lipid profile of Indian mackerel fish. Food Sci. Technol. 2021, 42, e67120. [Google Scholar] [CrossRef]
- Suresh, P.; Nidheesh, T.; Pal, G.K. Enzymes in seafood processing. In Enzymes in Food and Beverage Processing; Taylor & Francis Group: Abingdon, UK, 2015; pp. 353–377. [Google Scholar]
- Ketprayoon, T.; Noitang, S.; Sangtanoo, P.; Srimongkol, P.; Saisavoey, T.; Reamtong, O.; Choowongkomon, K.; Karnchanatat, A. An in vitro study of lipase inhibitory peptides obtained from de-oiled rice bran. RSC Adv. 2021, 11, 18915–18929. [Google Scholar] [CrossRef]
- Fang, M.; Luo, X.; Xiong, S.; Yin, T.; Hu, Y.; Liu, R.; Du, H.; Liu, Y.; You, J. In vitro trypsin digestion and identification of possible cross-linking sites induced by transglutaminase (TGase) of silver carp (Hypophthalmichthys molitrix) surimi gels with different degrees of cross-linking. Food Chem. 2021, 364, 130443. [Google Scholar] [CrossRef] [PubMed]
- Benham, A.M.; Grommé, M.; Neefjes, J. Allelic differences in the relationship between proteasome activity and MHC class I peptide loading. J. Immunol. 1998, 161, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Mareček, V.; Mikyška, A.; Hampel, D.; Čejka, P.; Neuwirthová, J.; Malachová, A.; Cerkal, R. ABTS and DPPH methods as a tool for studying antioxidant capacity of spring barley and malt. J. Cereal Sci. 2017, 73, 40–45. [Google Scholar] [CrossRef]
- Galano, A. Free radicals induced oxidative stress at a molecular level: The current status, challenges and perspectives of computational chemistry-based protocols. J. Mex. Chem. Soc. 2015, 59, 231–262. [Google Scholar] [CrossRef]
- Kim, H.-S.; Quon, M.J.; Kim, J.-a. New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol. 2014, 2, 187–195. [Google Scholar] [CrossRef]
- Bi, H.; Zhong, C.; Shao, M.; Wang, C.; Yi, J.; Qiao, L.; Zhang, J. Differentiation and authentication of fishes at the species level through analysis of fish skin by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2019, 33, 1336–1343. [Google Scholar] [CrossRef] [PubMed]
- Daliri, E.B.-M.; Oh, D.H.; Lee, B.H. Bioactive peptides. Foods 2017, 6, 32. [Google Scholar] [CrossRef] [PubMed]
UAH | UPH | |||||
---|---|---|---|---|---|---|
EGCG | Catechin | Gallic Acid | EGCG | Catechin | Gallic Acid | |
AsA/H2O2 (%) | ||||||
0.5 | 75.94 ± 0.13 dC | 71.99 ± 0.86 eC | 91.52 ± 0.50 aC | 80.78 ± 0.42 cC | 75.16 ± 1.48 dC | 88.28 ± 1.01 bC |
1 | 79.58 ± 0.26 dB | 78.74 ± 1.01 eB | 94.17 ± 0.38 aB | 84.91 ± 0.47 cB | 77.94 ± 1.70 fB | 90.98 ± 0.37 bB |
2 | 83.50 ± 1.83 dA | 82.01 ± 0.83 eA | 95.41 ± 0.32 aA | 88.22 ± 0.12 cA | 83.32 ± 1.33 dA | 94.40 ± 1.14 bA |
PPNs (%) | ||||||
0.5 | 91.73 ± 0.40 cA | 90.24 ± 0.59 dA | 88.09 ± 0.68 eA | 90.22 ± 0.07 dA | 97.17 ± 0.16 aA | 96.13 ± 0.16 bA |
1 | 84.31 ± 0.56 eB | 89.40 ± 0.90 cB | 83.82 ± 0.59 fB | 86.64 ± 0.23 dB | 96.10 ± 0.26 aB | 95.33 ± 0.21 bB |
2 | 83.50 ± 1.83 dC | 88.22 ± 0.12 cC | 82.01 ± 0.83 fC | 83.32 ± 1.33 eC | 95.41 ± 0.32 aC | 94.40 ± 1.14 bC |
3 | 71.84 ± 0.20 fD | 74.80 ± 1.83 eD | 78.77 ± 1.38 dD | 81.05 ± 0.32 cD | 93.70 ± 0.40 aD | 91.51 ± 0.73 bD |
SSPHs (%) | ||||||
1 | 70.65 ± 0.13 fB | 80.58 ± 1.29 cB | 81.37 ± 0.06 bB | 72.04 ± 0.20 eB | 84.15 ± 0.40 aB | 78.19 ± 1.46 dB |
2 | 91.73 ± 0.40 cA | 90.24 ± 0.59 dA | 88.09 ± 0.68 eA | 90.22 ± 0.07 dA | 97.17 ± 0.16 aA | 96.13 ± 0.16 bA |
3 | 91.80 ± 0.36 bA | 90.96 ± 0.31 cA | 88.84 ± 0.15 dA | 90.15 ± 0.73 cA | 96.92 ± 0.09 aA | 96.58 ± 0.07 aA |
Antioxidant Activity | UAH | UPH | A–E | A–C | A–G | P–E | P–C | P–G |
---|---|---|---|---|---|---|---|---|
* DPPH-RSA | 108.67 ± 7.2 hY | 287.55 ± 3.43 gX | 661.30 ± 0.04 aA | 323.10 ± 0.04 eB | 227.09 ± 0.28 fB | 621.35 ± 0.17 bB | 584.32 ± 0.15 cA | 327.00 ± 0.12 dA |
* ABTS-RSA | 556.22 ± 3.15 gX | 263.26 ± 0.61 hY | 3667.00 ± 0.06 aA | 2304.50 ± 0.24 dB | 1923.07 ± 0.28 eA | 2586.00 ± 0.05 bB | 2330.40 ± 0.13 cA | 1761.21 ± 0.30 fB |
* FRAP | 18.70 ± 0.80 hY | 122.45 ± 0.40 gX | 5662.70 ± 0.30 aA | 4016.60 ± 2.90 cB | 797.90 ± 2.10 eA | 3777.00 ± 0.95 dB | 4610.00 ± 2.70 bA | 693.00 ± 0.75 fB |
# MCA | 12.73 ± 2.20 gX | 4.54 ± 0.25 hY | 2449.00 ± 2.10 aA | 2028.00 ± 2.40 dB | 1591.30 ± 2.40 eA | 2230.00 ± 2.40 bB | 2122.60 ± 0.23 cA | 1498.60 ± 1.20 fB |
Breaking Force (BF; g) | Deformation (DF; mm) | Whiteness | EMC (%) | |
---|---|---|---|---|
Indian mackerel (IM) | ||||
CIM | 150.20 ± 5.10 d | 11.40 ± 0.79 c | 62.60 ± 0.09 a | 13.80 ± 0.2 a |
2IM | 215.60 ± 7.19 c | 13.30 ± 0.16 b | 58.71 ± 0.25 b | 10.00 ± 0.6 b |
4IM | 245.40 ± 0.14 b | 13.89 ± 0.03 b | 56.68 ± 0.13 c | 9.20 ± 0.01 c |
6IM | 275.30 ± 3.14 a | 15.21 ± 0.90 a | 54.33 ± 0.01 d | 6.90 ± 0.23 d |
Threadfin bream (TH) | ||||
CTH | 135 ± 0.11 d | 10.11 ± 1.13 c | 69.84 ± 0.03 a | 11.60 ± 0.30 a |
2TH | 220.90 ± 6.2 c | 12.61 ± 0.32 b | 65.75 ± 0.04 b | 9.50 ± 0.62 b |
4TH | 255.50 ± 3.4 b | 14.56 ± 0.85 a | 63.94 ± 0.31 c | 8.70 ± 0.10 c |
6TH | 290.41 ± 8.62 a | 14.98 ± 0.03 a | 60.71 ± 0.01 d | 6.40 ± 0.15 d |
Hardness (g) | Cohesiveness (g) | Springiness (cm) | Gumminess (g) | Chewiness (g.cm) | |
---|---|---|---|---|---|
Indian mackerel | |||||
CIM | 483.47 ± 6.21 d | 0.42 ± 0.06 d | 0.16 ± 0.02 d | 86.67 ± 5.84 d | 34.00 ± 1.47 d |
2IM | 816.90 ± 17.31 c | 0.85 ± 0.05 c | 0.25 ± 0.09 c | 460.00 ± 10.00 c | 370.00 ± 10.00 c |
4IM | 861.97 ± 7.68 b | 0.96 ± 0.01 b | 0.28 ± 0.01 b | 490.00 ± 10.00 b | 400.00 ± 10.00 b |
6IM | 905.45 ± 10.40 a | 0.95 ± 0.01 a | 0.29 ± 0.04 a | 470.00 ± 0.40 a | 475.19 ± 6.90 a |
Threadfin bream | |||||
CTH | 893.87 ± 7.79 d | 0.78 ± 0.08 d | 0.23 ± 0.01 d | 307.08 ± 15.12 d | 230.47 ± 30.27 d |
2TH | 962.38 ± 7.78 c | 0.91 ± 0.01 c | 0.26 ± 0.05 c | 340.00 ± 12.01 c | 270.00 ± 10.00 c |
4TH | 984.67 ± 4.09 c | 0.94 ± 0.01 b | 0.31 ± 0.01 b | 380.00 ± 10.33 b | 300.00 ± 10.00 b |
6TH | 998.84 ± 7.09 a | 0.98 ± 0.08 a | 0.33 ± 0.05 a | 387.08 ± 9.16 a | 350.17 ± 9.27 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gautam, A.R.; Benjakul, S.; Kadam, D.; Tiwari, B.; Singh, A. Enhanced Antioxidant and Digestive Enzyme Inhibitory Activities of Pacific White Shrimp Shell Protein Hydrolysates via Conjugation with Polyphenol: Characterization and Application in Surimi Gel. Foods 2024, 13, 4022. https://doi.org/10.3390/foods13244022
Gautam AR, Benjakul S, Kadam D, Tiwari B, Singh A. Enhanced Antioxidant and Digestive Enzyme Inhibitory Activities of Pacific White Shrimp Shell Protein Hydrolysates via Conjugation with Polyphenol: Characterization and Application in Surimi Gel. Foods. 2024; 13(24):4022. https://doi.org/10.3390/foods13244022
Chicago/Turabian StyleGautam, Akanksha R., Soottawat Benjakul, Deepak Kadam, Brijesh Tiwari, and Avtar Singh. 2024. "Enhanced Antioxidant and Digestive Enzyme Inhibitory Activities of Pacific White Shrimp Shell Protein Hydrolysates via Conjugation with Polyphenol: Characterization and Application in Surimi Gel" Foods 13, no. 24: 4022. https://doi.org/10.3390/foods13244022
APA StyleGautam, A. R., Benjakul, S., Kadam, D., Tiwari, B., & Singh, A. (2024). Enhanced Antioxidant and Digestive Enzyme Inhibitory Activities of Pacific White Shrimp Shell Protein Hydrolysates via Conjugation with Polyphenol: Characterization and Application in Surimi Gel. Foods, 13(24), 4022. https://doi.org/10.3390/foods13244022