Effects of Saccharomyces cerevisiae and Kluyveromyces marxianus on the Physicochemical, Microbial, and Flavor Changes of Sauce Meat during Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Instruments and Equipment
2.3. Sample Preparation
2.4. Determination of Moisture Content and Water Activity
2.5. Determination of pH
2.6. Determination of Malondialdehyde, Acid Value, and Peroxide Value
2.7. Determination of Free Amino Acid Content
2.8. Determination of Soluble Protein Content
2.9. Determination of Volatile Flavor Substances
2.10. Data Processing
3. Results and Discussion
3.1. Physical and Chemical Indicators
3.1.1. Changes in Moisture Content and Water Activity
3.1.2. Changes in pH Value
3.1.3. Changes in AV, TBARS, and POV Values
3.1.4. Changes in FAA Values
3.1.5. Changes in SP Values
3.2. Flavor Change Rule
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.; Tang, C.; Ji, L.; Bai, T.; Zhang, L.; Wang, W. Study on the effect of brewer’s yeast on the physicochemical properties and microbiological characteristics of bacon. Food Ind. Sci. Technol. 2023, 14, 145–153. [Google Scholar] [CrossRef]
- Fungal Ripened Meats and Meat Products. Available online: https://link.springer.com/chapter/10.1007/978-1-4615-2163-1_5 (accessed on 21 January 2024).
- Alfaia, C.M.; Gouveia, I.M.; Fernandes, M.J.; Semedo-Lemsaddek, T.; Barreto, A.S.; Fraqueza, M.J. Assessment of Coagulase-Negative Staphylococci and Lactic Acid Bacteria Isolated from Portuguese Dry Fermented Sausages as Potential Starters Based on Their Biogenic Amine Profile. J. Food Sci. 2018, 83, 2544–2549. [Google Scholar] [CrossRef]
- Aquilanti, L.; Garofalo, C.; Osimani, A.; Clementi, F. Mini Review Ecology of lactic acid bacteria and coagulase negative cocci in fermented dry sausages manufactured in Italy and other Mediterranean countries: An overview. Int. Food Res. J. 2016, 23, 429–445. [Google Scholar]
- Laranjo, M.; Potes, M.E.; Elias, M. Role of Starter Cultures on the Safety of Fermented Meat Products. Front. Microbiol. 2019, 10, 853. [Google Scholar] [CrossRef]
- Zhang, Q.; Shen, J.; Meng, G.; Wang, H.; Liu, C.; Zhu, C.; Zhao, G.; Tong, L. Selection of yeast strains in naturally fermented cured meat as promising starter cultures for fermented cured beef, a traditional fermented meat product of northern China. J. Sci. Food Agric. 2023, 104, 883–891. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Han, J.; Wang, D.; Gao, F.; Zhang, K.; Tian, J.; Jin, Y. Research Update on the Impact of Lactic Acid Bacteria on the Substance Metabolism, Flavor, and Quality Characteristics of Fermented Meat Products. Foods 2022, 11, 2090. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Qian, M.; Cheng, F.; Wang, Y.; Han, J.; Xu, Y.; Zhang, K.; Tian, J.; Jin, Y. The effect of lactic acid bacteria on lipid metabolism and flavor of fermented sausages. Food Biosci. 2023, 56, 103172. [Google Scholar] [CrossRef]
- Settier-Ramírez, L.; López-Carballo, G.; Gavara, R.; Hernández-Muñoz, P. Evaluation of Lactococcus lactis subsp. lactis as protective culture for active packaging of non-fermented foods: Creamy mushroom soup and sliced cooked ham. Food Control 2021, 122, 107802. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhou, C.; Ning, J.; Wang, S.; Nie, Q.; Wang, W.; Zhang, J.; Ji, L. Effect of fermentation by Pediococcus pentosaceus and Staphylococcus carnosus on the metabolite profile of sausages. Food Res. Int. 2022, 162, 112096. [Google Scholar] [CrossRef] [PubMed]
- Dura, M. Effect of growth phase and dry-cured sausage processing conditions on Debaryomyces spp. generation of volatile compounds from branched-chain amino acids. Food Chem. 2004, 86, 391–399. [Google Scholar] [CrossRef]
- Ashaolu, T.J.; Khalifa, I.; Mesak, M.A.; Lorenzo, J.M.; Farag, M.A. A comprehensive review of the role of microorganisms on texture change, flavor and biogenic amines formation in fermented meat with their action mechanisms and safety. Crit. Rev. Food Sci. Nutr. 2021, 63, 3538–3555. [Google Scholar] [CrossRef]
- Salari, R.; Salari, R. Investigation of the Best Saccharomyces cerevisiae Growth Condition. Electron. Physician 2017, 9, 3592–3597. [Google Scholar] [CrossRef]
- Lahue, C.; Madden, A.A.; Dunn, R.R.; Smukowski Heil, C. History and Domestication of Saccharomyces cerevisiae in Bread Baking. Front. Genet. 2020, 11, 584718. [Google Scholar] [CrossRef]
- Liu, Y.; Danial, M.; Liu, L.; Sadiq, F.A.; Wei, X.; Zhang, G. Effects of Co-Fermentation of Lactiplantibacillus plantarum and Saccharomyces cerevisiae on Digestive and Quality Properties of Steamed Bread. Foods 2023, 12, 3333. [Google Scholar] [CrossRef] [PubMed]
- Liao, E.; Xu, Y.; Jiang, Q.; Xia, W. Characterisation of dominant autochthonous strains for nitrite degradation of Chinese traditional fermented fish. Int. J. Food Sci. Technol. 2018, 53, 2633–2641. [Google Scholar] [CrossRef]
- Gonçalves, M.; Pontes, A.; Almeida, P.; Barbosa, R.; Serra, M.; Libkind, D.; Hutzler, M.; Gonçalves, P.; Sampaio, J.P. Distinct Domestication Trajectories in Top-Fermenting Beer Yeasts and Wine Yeasts. Curr. Biol. 2016, 26, 2750–2761. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, M.; Ren, T.; Wang, J.; Niu, C.; Zheng, F.; Li, Q. Effect of Saccharomyces cerevisiae and non-Saccharomyces strains on alcoholic fermentation behavior and aroma profile of yellow-fleshed peach wine. Lwt 2022, 155, 112993. [Google Scholar] [CrossRef]
- Legras, J.-L.; Merdinoglu, D.; Cornuet, J.-M.; Karst, F. Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history. Mol. Ecol. 2007, 16, 2091–2102. [Google Scholar] [CrossRef] [PubMed]
- Wang Lianxian, e.a. Research on physiological properties and application of Saccharomyces cerevisiae and Kluyveromyces marxianus. Yunnan Agric. Sci. Technol. 2011, 3, 11–16. [Google Scholar]
- Shing, K.S. Research on Production and Preservation Technology of Fermented Pork Jerky. Maste’s Thesis, Guizhou University, Guiyang, China, 2019. [Google Scholar]
- Li, X.L.; Gu, R.; Yan, H.; Zhang, L.; Zhang, J. Screening identification and application of Kluyveromyces marxianus. China Dairy Cattle 2013, 15, 44–46. [Google Scholar]
- Nie, M.; Wang, S.; Piao, C.; Wang, H.; Dai, W. Study on the effect of Kluyveromyces marxianus on the fermentation flavour of natto beans and the fermentation process. Soybean Sci. 2021, 40, 835–843. [Google Scholar]
- Zhang, Y.; Liu, T.; Gong, P.; Zhang, L.; Wang, S.; Yi, H. Screening of antifungal lactic acid bacteria and their application in yoghurt fermentation. Food Ferment. Ind. 2021, 47, 84–89. [Google Scholar] [CrossRef]
- Struyf, N.; Vandewiele, H.; Herrera-Malaver, B.; Verspreet, J.; Verstrepen, K.J.; Courtin, C.M. Kluyveromyces marxianus yeast enables the production of low FODMAP whole wheat breads. Food Microbiol. 2018, 76, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Gao, E.-Y. Screening, Proliferation Culture of Lactogenic Kluyveromyces Marxianus and Optimisation of its Lyophilised Powder Preparation. Master’s Thesis, Jiangsu University, Zhenjiang, China, 2019. [Google Scholar]
- Koo, O.-K.; Eggleton, M.; O’Bryan, C.A.; Crandall, P.G.; Ricke, S.C. Antimicrobial activity of lactic acid bacteria against Listeria monocytogenes on frankfurters formulated with and without lactate/diacetate. Meat Sci. 2012, 92, 533–537. [Google Scholar] [CrossRef] [PubMed]
- Liao, E.; Xu, Y.; Jiang, Q.; Xia, W. Effects of inoculating autochthonous starter cultures on N-nitrosodimethylamine and its precursors formation during fermentation of Chinese traditional fermented fish. Food Chem. 2019, 271, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.; Anjaneyulu, A.S.R.; Kondaiah, N. Quality of hurdle treated pork sausages during refrigerated (4 ± 1 °C) storage. J. Food Sci. Technol. 2010, 47, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Summo, C.; Caponio, F.; Pasqualone, A.; Gomes, T. Vacuum-packed ripened sausages: Evolution of volatile compounds during storage. J. Sci. Food Agric. 2011, 91, 950–955. [Google Scholar] [CrossRef]
- Kim, I.-S.; Jin, S.-K.; Mandal, P.K.; Kang, S.-N. Quality of low-fat pork sausages with tomato powder as colour and functional additive during refrigerated storage. J. Food Sci. Technol. 2010, 48, 591–597. [Google Scholar] [CrossRef]
- Siripatrawan, U.; Noipha, S. Active film from chitosan incorporating green tea extract for shelf life extension of pork sausages. Food Hydrocoll. 2012, 27, 102–108. [Google Scholar] [CrossRef]
- Castellano, P.; Belfiore, C.; Vignolo, G. Combination of bioprotective cultures with EDTA to reduce Escherichia coli O157:H7 in frozen ground-beef patties. Food Control 2011, 22, 1461–1465. [Google Scholar] [CrossRef]
- Chaillou, S.; Christieans, S.; Rivollier, M.; Lucquin, I.; Champomier-Vergès, M.C.; Zagorec, M. Quantification and efficiency of Lactobacillus sakei strain mixtures used as protective cultures in ground beef. Meat Sci. 2014, 97, 332–338. [Google Scholar] [CrossRef]
- Young, N.W.G.; O’Sullivan, G.R. Food and Beverage Stability and Shelf Life; Woodhead Publishing: Thorston, UK, 2011; pp. 132–183. [Google Scholar] [CrossRef]
- GB 5009.238-2016; National Standard for Food Safety Determination of Moisture Activity of Foods. National Health and Family Planning Commission of PRC: Beijing, China, 2016.
- GB 5009.237-2016; National standard for food safety Determination of food pH. National Health and Family Planning Commission of PRC: Beijing, China, 2016.
- Liu, H.C.; Huang, T.; Huang, S.; Huang, M. Effects of different fermentation agents on the quality of fermented chicken breast meat. J. Nanjing Agric. Univ. 2022, 45, 377–385. [Google Scholar]
- GB 5009.229-2016; National Standard for Food Safety Determination of Acid Value in Foods. National Health and Family Planning Commission of PRC: Beijing, China, 2016.
- GB 5009.227-2016; National Standard for Food Safety Determination of Peroxide Value in Foods. National Health and Family Planning Commission of PRC: Beijing, China, 2016.
- Zhu, L.; Tang, S.; Zhou, L. Teaching practice and methodological discussion of protein content determination by Kaumas Brilliant Blue G 250 method. Educ. Teach. Forum 2020, 23, 266–269. [Google Scholar]
- Chai, Z.H.; Li, H.; Li, S.; Zhang, D.; Li, R.; He, Z. Changes in bacterial phase and physicochemical properties of low-salt bacon during storage. Food Sci. 2019, 40, 201–206. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Ren, H. Effects of grape seed extract on lipid oxidation, biogenic amine formation and microbiological quality in Chinese traditional smoke-cured bacon during storage. J. Food Saf. 2018, 38, e12426. [Google Scholar] [CrossRef]
- Ma, H.; Zhou, G.; Yu, X.; Zhao, C. Relationship between pH and Aw in Chinese fermented sausages and its effect on product flavour. Food Res. Dev. 2009, 30, 87–91. [Google Scholar]
- Zhang, C.; Zhou, H.; Xu, X.; Zhang, W. Effect of a composite microbial fermenter on the quality of fermented sausage. Food Ind. Technol. 2017, 38, 182–188. [Google Scholar] [CrossRef]
- Chen, J.; Hu, Y.; Wen, R.; Liu, Q.; Chen, Q.; Kong, B. Effect of NaCl substitutes on the physical, microbial and sensory characteristics of Harbin dry sausage. Meat Sci. 2019, 156, 205–213. [Google Scholar] [CrossRef]
- Lima, V.; Pinto, C.A.; Saraiva, J.A. The dependence of microbial inactivation by emergent nonthermal processing technologies on pH and water activity. Innov. Food Sci. Emerg. Technol. 2023, 89, 103460. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, Y.; Woldemariam, K.Y.; Zhong, S.; Yu, Q.; Wang, J. Antioxidant effect of yeast on lipid oxidation in salami sausage. Front. Microbiol. 2023, 13, 1113848. [Google Scholar] [CrossRef]
- Aksu, M.İ.; Kaya, M.; Ockerman, H.W. Effect of modified atmosphere packaging, storage period, and storage temperature on the residual nitrate of sliced-pastırma, dry meat product, produced from fresh meat and frozen/thawed meat. Food Chem. 2005, 93, 237–242. [Google Scholar] [CrossRef]
- Ran, M.; He, L.; Li, C.; Zhu, Q.; Zeng, X. Quality Changes and Shelf-Life Prediction of Cooked Cured Ham Stored at Different Temperatures. J. Food Prot. 2021, 84, 1252–1264. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xiong, Q.; Zhou, H.; Xu, B.; Sun, Y. Analysis of Microbial Diversity and Dynamics During Bacon Storage Inoculated With Potential Spoilage Bacteria by High-Throughput Sequencing. Front. Microbiol. 2021, 12, 713513. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Y.; Wang, X.; Zhang, J. Effects of microbial fermentation agents on the storability and flavour characteristics of Sichuan bacon. Food Sci. Technol. 2014, 39, 159–164. [Google Scholar] [CrossRef]
- Fu, Y.; Shi, X.; Li, F.; Yan, X.; Li, B.; Luo, Y.; Jiang, G.; Liu, X.; Wang, L. Fermentation of mead using Saccharomyces cerevisiae and Lactobacillus paracasei: Strain growth, aroma components and antioxidant capacity. Food Biosci. 2023, 52, 102402. [Google Scholar] [CrossRef]
- Lund, M.N.; Heinonen, M.; Baron, C.P.; Estévez, M. Protein oxidation in muscle foods: A review. Mol. Nutr. Food Res. 2011, 55, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Weizheng, S. Study on Lipid Hydrolysis, Protein Degradation and Changes in Flavour Composition during Processing of Cantonese Sausage. Ph.D. Dissertation, South China University of Technology, Guangzhou, China, 2011. [Google Scholar]
- Qu, Z.; Feng, C.; Li, R.; Liu, N.; Zheng, S. Characteristic and effect analysis of protein and peptide in Cantonese cured meat processing. Food Sci. Hum. Wellness 2022, 11, 1392–1401. [Google Scholar] [CrossRef]
- Merlo, T.C.; Lorenzo, J.M.; Saldaña, E.; Patinho, I.; Oliveira, A.C.; Menegali, B.S.; Selani, M.M.; Domínguez, R.; Contreras-Castillo, C.J. Relationship between volatile organic compounds, free amino acids, and sensory profile of smoked bacon. Meat Sci. 2021, 181, 108596. [Google Scholar] [CrossRef]
- Hughes, M.C.; Kerry, J.P.; Arendt, E.K.; Kenneally, P.M.; McSweeney PL, H.; O’neill, E.E. Characterization of proteolysis during the ripening of semi-dry fermented sausages. Meat Sci. 2002, 62, 205–216. [Google Scholar] [CrossRef]
- Sun, W.; Zhao, M.; Zhao, H.; Zhao, Q.; Yang, B.A.O.; Wu, N.A.; Qian, Y. Effect of Manufacturing Level on the Biochemical Characteristics of Cantonese Sausage during Processing. J. Food Biochem. 2011, 35, 1015–1033. [Google Scholar] [CrossRef]
- Stadnik, J.; Kęska, P.; Gazda, P.; Siłka, Ł.; Kołożyn-Krajewska, D. Influence of LAB Fermentation on the Color Stability and Oxidative Changes in Dry-Cured Meat. Appl. Sci. 2022, 12, 11736. [Google Scholar] [CrossRef]
- Wang, D.; Cheng, F.; Wang, Y.; Han, J.; Gao, F.; Tian, J.; Zhang, K.; Jin, Y. The Changes Occurring in Proteins during Processing and Storage of Fermented Meat Products and Their Regulation by Lactic Acid Bacteria. Foods 2022, 11, 2427. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F. Research on Processing Technology and Volatile Flavour Substances of Sauce Meat. Master’s Thesis, Southwest University, Chongqing, China, 2008. [Google Scholar]
- Wang, D.J. Analytical study on the composition of volatile flavour substances in sauce meat from pig hind leg. Process. Agric. Prod. 2021, 8, 46–50,+55. [Google Scholar] [CrossRef]
- Alter, T.; Bori, A.; Hamedi, A.; Ellerbroek, L.; Fehlhaber, K. Influence of inoculation levels and processing parameters on the survival of Campylobacter jejuni in German style fermented turkey sausages. Food Microbiol. 2006, 23, 701–707. [Google Scholar] [CrossRef] [PubMed]
- Lu, L. Effect of Kluyveromyces Marxianus on Lipid Metabolism in Fermented Milk. Master’s Thesis, Jilin Agricultural University, Changchun, China, 2016. [Google Scholar]
- Ning, J.; Ma, L.; Ren, Z.; Yang, R. Effect of ethyl maltol on acid price determination. China Flavour. 2020, 45, 98–100. [Google Scholar]
- Mączka, W.; Duda-Madej, A.; Grabarczyk, M.; Wińska, K. Natural Compounds in the Battle against Microorganisms—Linalool. Molecules 2022, 27, 6928. [Google Scholar] [CrossRef]
- Li, Y. Correlation Analysis of Microbial Community Succession and Bacon Flavour during Traditional Longxi Bacon Production. Master’s Thesis, Gansu Agricultural University, Lanzhou, China, 2020. [Google Scholar]
- Li, B.B.; Li, Y.; Liu, Z.; Wu, H.; Jia, W. Effect of mixed fermentation of Lactobacillus plantarum and Saccharomyces cerevisiae on volatile flavour substances of red date wine. Food Ind. Sci. Technol. 2023, 44, 170–179. [Google Scholar] [CrossRef]
- Saerens, S.M.G.; Delvaux, F.R.; Verstrepen, K.J.; Thevelein, J.M. Production and biological function of volatile esters inSaccharomyces cerevisiae. Microb. Biotechnol. 2010, 3, 165–177. [Google Scholar] [CrossRef]
- Lv, J.; Lin, X.; Liu, M.; Yan, X.; Liang, H.; Ji, C.; Li, S.; Zhang, S.; Chen, Y.; Zhu, B. Effect of Saccharomyces cerevisiae LXPSC1 on microorganisms and metabolites of sour meat during the fermentation. Food Chem. 2023, 402, 134213. [Google Scholar] [CrossRef]
- Qin, Y.-X.; Cai, D.-D.; Zhang, D.-N.; Liu, Y.; Lai, K.-Q. Characteristics of volatile flavor components in stewed meat and meat broths prepared with repeatedly used broths containing star anise. J. Food Meas. Charact. 2019, 14, 557–572. [Google Scholar] [CrossRef]
- Xing, B.; Zhou, T.; Gao, H.; Wu, L.; Zhao, D.; Wu, J.; Li, C. Flavor evolution of normal- and low-fat Chinese sausage during natural fermentation. Food Res. Int. 2023, 169, 112937. [Google Scholar] [CrossRef] [PubMed]
- d’Acampora Zellner, B.; Casilli, A.; Dugo, P.; Dugo, G.; Mondello, L. Odour fingerprint acquisition by means of comprehensive two-dimensional gas chromatography-olfactometry and comprehensive two-dimensional gas chromatography/mass spectrometry. J. Chromatogr. A 2007, 1141, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cao, X.; Wang, J.; Tang, F. Enhancement of linalool production in Saccharomyces cerevisiae by utilizing isopentenol utilization pathway. Microb. Cell Factories 2022, 21, 212. [Google Scholar] [CrossRef] [PubMed]
Sample | Time (Month) | Compounds | Aldehydes | Alcohols | Acids | Esters | Phenols | Ethers | Olefins | Alkanes | Others |
---|---|---|---|---|---|---|---|---|---|---|---|
CK | 1 | relative content (%) | 1.4 | 12.87 | 0 | 11.53 | 49.04 | 0 | 24.22 | 0.94 | 0 |
amount | 3 | 3 | 0 | 4 | 2 | 0 | 10 | 1 | 0 | ||
2 | relative content (%) | 2.46 | 0.56 | 0.43 | 2.18 | 85.72 | 4.24 | 3.87 | 0.53 | 0 | |
amount | 5 | 2 | 2 | 4 | 2 | 1 | 7 | 3 | 0 | ||
4 | relative content (%) | 0.84 | 13.17 | 0.49 | 9.77 | 37.54 | 2.12 | 28.2 | 5.18 | 2.7 | |
amount | 1 | 2 | 1 | 5 | 1 | 1 | 3 | 6 | 0 | ||
6 | relative content (%) | 6.62 | 7.54 | 0 | 5.24 | 59.42 | 1.97 | 16.23 | 2.76 | 0.23 | |
amount | 5 | 5 | 0 | 7 | 1 | 1 | 7 | 6 | 1 | ||
SC | 1 | relative content (%) | 0.57 | 11.07 | 0 | 5.03 | 56.23 | 0 | 25.92 | 1.19 | 0 |
amount | 2 | 6 | 0 | 4 | 2 | 0 | 17 | 1 | 0 | ||
2 | relative content (%) | 2.31 | 16.97 | 0.43 | 7.74 | 52.36 | 0.13 | 14.77 | 0 | 5.3 | |
amount | 8 | 7 | 3 | 6 | 2 | 0 | 15 | 0 | 3 | ||
4 | relative content (%) | 0.66 | 22.85 | 1.18 | 16.41 | 19.18 | 1.13 | 27.08 | 1.37 | 10.14 | |
amount | 1 | 6 | 1 | 7 | 1 | 1 | 8 | 4 | 0 | ||
6 | relative content (%) | 1.69 | 19.86 | 0.15 | 17 | 18.56 | 2.28 | 39.13 | 0.61 | 0.72 | |
amount | 5 | 9 | 2 | 9 | 2 | 1 | 15 | 4 | 2 | ||
KM | 1 | relative content (%) | 1.08 | 18.05 | 0.12 | 5.53 | 52.09 | 4.86 | 18.27 | 0 | 0 |
amount | 4 | 9 | 1 | 3 | 2 | 1 | 17 | 0 | 0 | ||
2 | relative content (%) | 1.38 | 15.08 | 0.24 | 9.13 | 57.37 | 3.6 | 12.69 | 0 | 0.51 | |
amount | 5 | 7 | 1 | 7 | 2 | 2 | 12 | 0 | 3 | ||
4 | relative content (%) | 7.68 | 21.64 | 0 | 20.11 | 16.81 | 0.96 | 27.23 | 1.92 | 3.65 | |
amount | 3 | 7 | 0 | 9 | 1 | 1 | 11 | 4 | 4 | ||
6 | relative content (%) | 2.39 | 13.71 | 0.06 | 18.98 | 18.87 | 1.61 | 43.84 | 0.42 | 0.12 | |
amount | 4 | 6 | 1 | 5 | 2 | 1 | 16 | 4 | 2 |
RT | Name | Relative Content (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CK | SC | KM | |||||||||||
1 | 2 | 4 | 6 | 1 | 2 | 4 | 6 | 1 | 2 | 4 | 6 | ||
Aldehydes (12) | 1.40 | 2.46 | 0.84 | 6.62 | 0.57 | 2.31 | 0.66 | 1.69 | 1.08 | 1.38 | 7.68 | 2.39 | |
4.38 | Hexanal | - | - | - | 1.62 | - | - | - | 0.44 | - | - | 6.03 | 0.71 |
7.34 | Heptanal | - | - | - | 0.34 | - | - | - | - | - | - | 0.56 | 0.15 |
7.74 | Methional | 0.06 | 0.25 | - | 0.16 | - | 0.06 | - | - | - | - | - | - |
9.76 | Benzaldehyde | 0.86 | 0.72 | - | - | - | 0.55 | - | - | 0.35 | - | - | - |
13.23 | Benzeneacetaldehyde | 0.48 | 1.02 | - | 2.40 | 0.38 | 0.52 | - | 0.11 | 0.17 | 0.50 | - | 0.10 |
15.94 | Nonanal | - | 0.26 | 0.84 | 2.10 | - | 0.34 | 0.66 | 1.06 | - | - | 1.09 | 1.37 |
15.95 | 10-Undecenal | - | - | - | - | - | - | - | - | - | 0.31 | - | - |
15.99 | Dodecanal | - | - | - | - | - | - | - | - | 0.40 | - | - | - |
18.48 | 6-Octenal, 3,7-dimethyl-, (R)- | - | - | - | - | - | 0.04 | - | 0.02 | - | - | - | - |
23.63 | 2, 6-Octadienal, 3,7-dimethyl-, (Z)- | - | - | - | - | - | 0.25 | - | - | - | 0.18 | - | - |
25.13 | 2-Propenal, 3-phenyl- | - | 0.20 | - | - | - | 0.15 | - | - | - | 0.12 | - | - |
25.27 | Citral | - | - | - | - | 0.19 | 0.40 | - | 0.06 | 0.15 | 0.28 | - | 0.05 |
Alcohols (17) | 12.87 | 0.56 | 13.17 | 7.54 | 11.07 | 16.97 | 22.85 | 19.86 | 18.05 | 15.08 | 21.64 | 13.71 | |
3.24 | 1-Butanol, 2-methyl- | - | - | - | - | - | - | - | 0.68 | - | - | - | - |
4.18 | 2,3-Butanediol, [R-(R*, R*)]- | - | - | - | 0.37 | - | - | - | - | - | - | - | - |
6.34 | 1-Hexanol | - | - | - | - | - | - | - | 0.22 | - | - | - | - |
12.48 | Eucalyptol | - | - | 3.77 | 1.63 | 1.11 | 1.89 | 3.51 | 4.34 | 0.89 | 1.48 | 2.88 | 2.51 |
14.13 | Bicyclo[3.1.0]hexan-2-ol, 2-methyl-5-(1-methylethyl)-, (1.alpha., 2.beta., 5.alpha.)- | - | - | - | - | - | - | 1.49 | - | 0.74 | - | 1.36 | - |
14.18 | 5-Isopropyl-2-methylbicyclo[3.1.0]hexan-2-ol | - | - | - | - | - | 0.66 | - | 0.67 | - | 1.58 | - | - |
14.24 | Bicyclo[3.1.0]hexan-2-ol, 2-methyl-5-(1-methylethyl)-, (1.alpha., 2.alpha., 5.alpha.)- | - | - | - | - | 0.14 | 0.69 | - | 0.64 | 0.64 | - | - | 0.59 |
14.43 | trans-Linalool oxide (furanoid) | - | - | - | - | - | - | - | 0.25 | 0.12 | - | - | 0.13 |
14.47 | .alpha.-Methyl-.alpha.-[4-methyl-3-pentenyl]oxiranemethanol | - | - | - | - | - | 0.10 | - | - | - | 0.09 | 0.19 | - |
15.55 | 5-Isopropyl-2-methylbicyclo[3.1.0]hexan-2-ol | - | - | - | - | - | - | 0.85 | - | - | - | 0.75 | - |
15.81 | Linalool | 10.78 | - | 9.41 | 4.55 | 7.35 | 10.49 | 13.66 | 10.62 | 12.27 | 9.17 | 13.28 | 8.05 |
16.41 | Phenylethyl Alcohol | - | - | - | - | - | - | - | 0.26 | 0.28 | - | - | - |
19.79 | 3-Cyclohexen-1-ol, 4-methyl-1-(1-methylethyl)-, (R)- | - | 0.44 | - | 0.83 | - | 2.46 | 2.93 | 2.18 | - | 2.15 | 2.84 | 2.06 |
19.83 | Terpinen-4-ol | 1.57 | - | - | - | 1.75 | - | - | - | 2.40 | - | - | - |
20.65 | .alpha.-Terpineol | 0.51 | 0.12 | - | 0.16 | 0.66 | 0.68 | 0.42 | - | 0.63 | 0.54 | 0.34 | 0.37 |
30.43 | Nerolidol | - | - | - | - | 0.08 | - | - | - | 0.09 | - | - | - |
32.76 | (1S,2R,5R)-2-Methyl-5-((R)-6-methylhept-5-en-2-yl)bicyclo[3.1.0]hexan-2-ol | - | - | - | - | - | - | - | - | - | 0.07 | - | - |
Acids(6) | 0.00 | 0.43 | 0.49 | 0.00 | 0.00 | 0.43 | 1.18 | 0.15 | 0.12 | 0.24 | 0.00 | 0.06 | |
6.11 | Butanoic acid, 3-methyl- | - | - | 0.49 | - | - | - | - | - | - | - | - | - |
6.56 | Hexanoic acid, 2-methyl- | - | - | - | - | - | - | 1.18 | - | - | - | - | - |
6.94 | Formic acid | - | - | - | - | - | - | - | - | 0.12 | - | - | - |
11.15 | Hexanoic acid | - | - | - | - | - | 0.16 | - | - | - | - | - | - |
25.72 | Nonanoic acid | - | 0.17 | - | - | - | 0.09 | - | 0.12 | - | - | - | - |
30.09 | n-Decanoic acid | - | 0.26 | - | - | - | 0.17 | - | 0.03 | - | 0.24 | - | 0.06 |
esters(20) | 11.53 | 2.18 | 9.77 | 5.24 | 5.03 | 7.74 | 16.41 | 17.00 | 5.53 | 9.13 | 20.11 | 18.98 | |
3.61 | Propanoic acid, 2-methyl-, ethyl ester | - | - | - | - | - | - | 0.45 | - | - | - | - | - |
3.71 | Hydrazinecarboxylic acid, phenylmethyl ester | - | - | - | - | - | - | 1.44 | - | - | - | - | - |
4.45 | Butanoic acid, ethyl ester | - | - | - | 1.03 | - | - | - | 0.44 | - | - | - | - |
4.79 | Propanoic acid, 2-hydroxy-, ethyl ester | - | - | - | 0.41 | - | - | - | 0.23 | - | - | - | - |
5.73 | Butanoic acid, 2-methyl-, ethyl ester | - | - | 1.14 | 0.43 | - | - | 1.74 | 0.08 | - | - | 0.20 | - |
5.83 | Butanoic acid, 3-methyl-, ethyl ester | - | - | 3.06 | 0.68 | - | - | 3.51 | 0.11 | - | - | 0.26 | - |
7.39 | Pentanoic acid, ethyl ester | - | - | 0.53 | - | - | - | - | - | - | - | - | - |
9.42 | Octyl chloroformate | - | - | - | - | - | - | - | - | - | - | 0.18 | - |
9.59 | 2,5-Pyrrolidinedione, 1-(benzoyloxy)- | - | - | - | - | - | - | - | - | - | 0.19 | 0.33 | - |
11.29 | Hexanoic acid, ethyl ester | - | - | - | 1.75 | - | - | - | - | - | - | - | - |
11.95 | 4-Terpinenyl acetate | - | - | - | - | 0.23 | - | - | - | - | - | - | - |
24.54 | Linalyl acetate | 10.93 | 0.59 | 4.34 | 0.36 | 4.29 | 6.08 | 8.84 | 14.95 | 5.05 | 7.26 | 18.07 | 17.50 |
29.22 | .alpha.-Terpinyl acetate | 0.21 | 0.08 | - | - | 0.31 | 0.23 | - | 0.25 | 0.32 | 0.23 | 0.27 | 0.37 |
29.81 | (R)-lavandulyl acetate | - | - | - | - | - | 0.06 | - | - | - | 0.07 | - | - |
29.82 | 1,6-Octadien-3-ol, 3,7-dimethyl-, formate | 0.14 | - | - | - | - | - | - | - | - | - | - | - |
30.33 | 2,6-Octadien-1-ol, 3,7-dimethyl-, acetate, (Z)- | - | - | - | - | - | - | 0.12 | 0.14 | - | - | 0.13 | 0.19 |
30.35 | Geranyl acetate | - | - | - | - | - | 0.10 | - | 0.30 | - | 0.11 | 0.25 | 0.39 |
30.36 | 4-Hexen-1-ol, 5-methyl-2-(1-methylethenyl)-, acetate | 0.25 | - | - | - | 0.20 | - | - | - | 0.16 | - | - | - |
30.46 | Ethyl trans-4-decenoate | - | 0.11 | - | - | - | 0.10 | - | - | - | 0.10 | - | - |
30.66 | Decanoic acid, ethyl ester | - | 1.40 | 0.71 | 0.59 | - | 1.16 | 0.30 | 0.50 | - | 1.18 | 0.42 | 0.53 |
phenols(2) | 49.04 | 85.72 | 37.54 | 56.23 | 52.36 | 52.28 | 19.18 | 18.56 | 52.09 | 57.37 | 16.81 | 18.87 | |
21.49 | Ethyl maltol | 48.95 | 85.72 | 37.54 | 56.23 | 52.36 | 52.03 | 19.18 | 18.45 | 51.85 | 57.13 | 16.81 | 18.74 |
29.51 | Eugenol | 0.09 | 0.00 | - | - | 0.26 | 0.25 | - | 0.11 | 0.24 | 0.24 | - | 0.12 |
ethers(2) | 0.00 | 4.24 | 2.12 | 1.97 | 0.00 | 0.13 | 1.13 | 2.28 | 4.86 | 3.60 | 0.96 | 1.61 | |
21.14 | Estragole | - | - | - | - | - | 0.13 | - | - | - | 0.10 | - | - |
25.94 | Anethole | - | 4.24 | 2.12 | 1.97 | - | - | 1.13 | 2.28 | 4.86 | 3.50 | 0.96 | 1.61 |
olefins(33) | 24.22 | 3.87 | 28.20 | 16.23 | 25.92 | 14.77 | 27.08 | 39.13 | 18.27 | 12.69 | 27.23 | 43.84 | |
6.92 | Styrene | - | - | - | - | - | - | - | - | - | - | 0.09 | - |
9.10 | Camphene | - | - | - | - | 0.16 | 0.13 | 0.28 | 0.36 | - | - | 0.17 | 0.28 |
10.03 | Bicyclo[3.1.0]hexane, 4-methylene-1-(1-methylethyl)- | - | - | - | - | - | 0.15 | - | 0.78 | 0.25 | 0.14 | 1.08 | 1.71 |
10.86 | .beta.-Pinene | - | 0.73 | - | - | - | - | - | - | - | - | - | - |
10.96 | .beta.-Myrcene | 3.49 | - | 6.93 | 3.66 | 3.09 | 2.47 | 4.53 | 6.57 | 2.32 | 2.23 | 4.60 | 7.57 |
11.65 | 3-Carene | - | - | - | - | 0.08 | - | - | 0.55 | - | - | - | - |
11.82 | Cyclohexene, 1-methyl-4-(1-methylethylidene)- | - | - | - | - | - | - | - | - | - | - | - | 1.31 |
11.95 | 1,3-Cyclohexadiene, 1-methyl-4-(1-methylethyl)- | 0.48 | 0.11 | 1.04 | 0.89 | - | 0.54 | 1.01 | - | 0.44 | 0.26 | 1.39 | - |
12.23 | Benzene, 1-methyl-3-(1-methylethyl)- | - | 0.12 | - | 0.54 | - | 0.55 | 1.29 | 1.04 | - | - | - | 0.88 |
12.46 | D-Limonene | 14.41 | 2.58 | 20.23 | 9.16 | 13.10 | 8.11 | 17.13 | 24.55 | 10.40 | 7.68 | 16.49 | 27.40 |
12.99 | (1R)-2,6,6-Trimethylbicyclo[3.1.1]hept-2-ene | 0.22 | 0.11 | - | 0.80 | 0.56 | 0.79 | - | 1.96 | 0.41 | 0.65 | 0.20 | 1.04 |
13.36 | 1,3,6-Octatriene, 3,7-dimethyl-, (Z)- | - | 0.10 | - | 0.40 | - | - | 0.39 | - | - | - | 0.65 | - |
13.45 | .beta.-Ocimene | 0.47 | - | - | - | - | - | - | - | - | - | - | - |
13.82 | .gamma.-Terpinene | 0.61 | 0.12 | - | 0.78 | 0.67 | 0.65 | 1.85 | 2.06 | 0.74 | 0.61 | 1.93 | 2.33 |
15.05 | 1,5,5-Trimethyl-6-methylene-cyclohexene | - | - | - | - | - | - | 0.60 | - | - | - | - | - |
15.09 | 2-Carene | - | - | - | - | - | - | - | - | - | 0.23 | - | - |
15.14 | Cyclohexene, 1-methyl-4-(1-methylethylidene)- | 0.32 | - | - | - | - | - | - | - | 0.42 | - | - | - |
17.13 | 2,4,6-Octatriene, 2,6-dimethyl-, (E,Z)- | 0.26 | - | - | - | 0.17 | - | - | - | - | - | - | - |
25.91 | Anethole | 3.80 | - | - | - | 5.09 | - | - | - | - | - | - | - |
29.93 | Copaene | - | - | - | - | 0.14 | 0.05 | - | - | 0.07 | - | - | 0.07 |
30.76 | Bicyclo[7.2.0]undec-4-ene, 4,11,11-trimethyl-8-methylene- | - | - | - | - | 0.40 | 0.15 | - | - | 0.42 | - | 0.15 | - |
31.04 | Caryophyllene | 0.17 | - | - | - | 1.64 | 0.55 | - | 0.72 | 1.45 | 0.13 | 0.47 | 0.67 |
31.44 | Bicyclo[3.1.1]hept-2-ene, 2, 6-dimethyl-6-(4-methyl-3-pentenyl)- | - | - | - | - | 0.06 | - | - | 0.03 | 0.10 | 0.35 | - | - |
31.74 | Humulene | - | - | - | - | - | - | - | 0.04 | 0.13 | - | - | 0.05 |
32.34 | Benzene, 1-(1, 5-dimethyl-4-hexenyl)-4-methyl- | - | - | - | - | 0.31 | 0.33 | - | 0.14 | 0.44 | 0.25 | - | 0.16 |
32.49 | 1,3a-Ethano-3aH-indene, 1,2,3,6,7,7a-hexahydro-2,2,4,7a-tetramethyl-, [1R-(1.alpha., 3a.alpha., 7a.alpha.)]- | - | - | - | - | 0.09 | - | - | 0.04 | 0.09 | - | - | 0.04 |
32.53 | Di-epi-.alpha.-cedrene | - | - | - | - | - | - | - | - | - | - | - | 0.14 |
32.55 | 1H-3a,7-Methanoazulene, 2,3,4,7,8,8a-hexahydro-3,6,8,8-tetramethyl-, [3R-(3.alpha., 3a.beta., 7.beta., 8a.alpha.)]- | - | - | - | - | - | - | - | - | 0.23 | 0.09 | - | - |
32.55 | Cedrene | - | - | - | - | 0.14 | 0.12 | - | - | - | - | - | - |
32.76 | .beta.-Bisabolene | - | - | - | - | 0.09 | 0.09 | - | 0.21 | 0.14 | - | - | 0.11 |
32.97 | 1H-3a,7-Methanoazulene, octahydro-3,8,8-trimethyl-6-methylene-, [3R-(3.alpha., 3a.beta., 7.beta., 8a.alpha.)]- | - | - | - | - | - | - | - | 0.08 | - | - | - | 0.09 |
32.99 | Naphthalene, 1,2,3,5,6,8a-hexahydro-4, 7-dimethyl-1-(1-methylethyl)-, (1S-cis)- | - | - | - | - | 0.12 | 0.10 | - | - | 0.21 | - | - | - |
32.99 | .beta.-copaene | - | - | - | - | - | - | - | - | - | 0.07 | - | - |
alkanes(11) | 0.94 | 0.53 | 5.18 | 2.76 | 1.19 | 0.00 | 1.37 | 0.61 | 0.00 | 0.00 | 1.92 | 0.42 | |
10.62 | Octane, 2,7-dimethyl- | - | - | - | - | - | - | - | - | - | - | 1.54 | - |
10.65 | Heptane, 2,2,4,6,6-pentamethyl- | - | - | 2.91 | - | - | - | 0.89 | - | - | - | - | - |
26.73 | Tridecane | - | 0.25 | - | 0.37 | - | - | - | - | - | - | - | - |
29.87 | Tridecane, 3-methyl- | - | 0.14 | - | - | - | - | - | - | - | - | - | - |
30.67 | Tetradecane | 0.94 | - | - | - | 1.19 | - | - | - | - | - | - | - |
32.59 | Pentadecane | - | 0.15 | 0.49 | 0.23 | - | - | 0.22 | - | - | - | 0.17 | - |
33.99 | Hexadecane | - | - | - | 0.38 | - | - | - | 0.12 | - | - | - | 0.08 |
35.21 | Heptadecane | - | - | 0.29 | 0.68 | - | - | - | 0.18 | - | - | - | 0.12 |
36.31 | Octadecane | - | - | 0.55 | 0.70 | - | - | 0.13 | 0.21 | - | - | 0.10 | 0.15 |
37.34 | Nonadecane | - | - | 0.64 | 0.40 | - | - | 0.14 | 0.11 | - | - | 0.11 | 0.08 |
38.30 | Eicosane | - | - | 0.30 | - | - | - | - | - | - | - | - | - |
others(8) | 0.00 | 0.00 | 2.70 | 0.23 | 0.00 | 5.30 | 10.14 | 0.72 | 0.00 | 0.51 | 3.65 | 0.12 | |
3.20 | Oxirane, 2-(1,1-dimethylethyl)-3-methyl- | - | - | 2.70 | - | - | - | 10.14 | 0.63 | - | - | 0.41 | - |
6.23 | p-Xylene | - | - | - | - | - | - | - | - | - | - | 0.23 | 0.04 |
3.71 | Toluene | - | - | - | - | - | - | - | - | - | - | 0.67 | - |
7.77 | Furan, 2-ethyl-5-methyl- | - | - | - | 0.23 | - | 5.12 | - | - | - | - | - | - |
12.23 | o-Cymene | - | - | - | - | - | - | - | - | - | 0.33 | 2.34 | - |
20.38 | Naphthalene, 1,2,3,4,4a,5,8,8a-octahydro-4a-methyl-, trans- | - | - | - | - | - | 0.13 | - | - | - | 0.13 | - | - |
29.87 | 2-Bromo dodecane | - | - | - | - | - | 0.04 | - | - | - | 0.05 | - | - |
32.57 | Hexadecane, 1-chloro- | - | - | - | - | - | - | - | 0.09 | - | - | - | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, L.; Wang, S.; Zhou, Y.; Nie, Q.; Zhou, C.; Ning, J.; Ren, C.; Tang, C.; Zhang, J. Effects of Saccharomyces cerevisiae and Kluyveromyces marxianus on the Physicochemical, Microbial, and Flavor Changes of Sauce Meat during Storage. Foods 2024, 13, 396. https://doi.org/10.3390/foods13030396
Ji L, Wang S, Zhou Y, Nie Q, Zhou C, Ning J, Ren C, Tang C, Zhang J. Effects of Saccharomyces cerevisiae and Kluyveromyces marxianus on the Physicochemical, Microbial, and Flavor Changes of Sauce Meat during Storage. Foods. 2024; 13(3):396. https://doi.org/10.3390/foods13030396
Chicago/Turabian StyleJi, Lili, Shu Wang, Yanan Zhou, Qing Nie, Chunyan Zhou, Jiawen Ning, Chunping Ren, Chun Tang, and Jiamin Zhang. 2024. "Effects of Saccharomyces cerevisiae and Kluyveromyces marxianus on the Physicochemical, Microbial, and Flavor Changes of Sauce Meat during Storage" Foods 13, no. 3: 396. https://doi.org/10.3390/foods13030396
APA StyleJi, L., Wang, S., Zhou, Y., Nie, Q., Zhou, C., Ning, J., Ren, C., Tang, C., & Zhang, J. (2024). Effects of Saccharomyces cerevisiae and Kluyveromyces marxianus on the Physicochemical, Microbial, and Flavor Changes of Sauce Meat during Storage. Foods, 13(3), 396. https://doi.org/10.3390/foods13030396