Exploring the Untapped Potential of Pine Nut Skin By-Products: A Holistic Characterization and Recycling Approach
Abstract
:1. Introduction
1.1. Valorization of Food By-Products
1.2. The Pine Nut Chain and Its Integument By-Product
2. Materials and Methods
2.1. Pine Nut Skin Sample
2.2. Characterization of Nutritional Profile
2.2.1. Protein Fraction
2.2.2. Carbohydrates
2.2.3. Total Dietary Fiber
2.2.4. Total Fat
2.2.5. Triacylglycerol Determination
2.2.6. Fatty Acid Determination
2.2.7. Wax Determination
2.2.8. Sterol Determination
2.3. Determination of Elements and Contaminants
2.3.1. Essential, Toxic, and Rare Earth Elements
2.3.2. Polycyclic Aromatic Hydrocarbons (PAHs)
2.3.3. Pesticides Residues
2.4. Nutraceutical Aspects
2.5. Morphological-Structural Characterization
2.6. Statistical Analysis
3. Results
3.1. Nutritional Aspect
3.2. Occurrence of Essential Elements and Contaminants
3.3. Nutraceutical Aspect
3.4. Morphological-Structural Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. The Future of Food and Agriculture: Alternative Pathways to 2050; Food and Agriculture Organization of the United Nations Rome: Rome, Italy, 2018. [Google Scholar]
- Food and Agriculture Organization of the United Nations Rome. How to Feed the World 2050; Food and Agriculture Organization of the United Nations Rome: Rome, Italy, 2009. [Google Scholar]
- Rosegrant, M.W.; Ringler, C.; Zhu, T. Water for agriculture: Maintaining food security under growing scarcity. Annu. Rev. Environ. Resour. 2009, 34, 205–222. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Salvatore, M.; Ferrara, A.F.; House, J.; Federici, S.; Rossi, S.; Biancalani, R.; Condor Golec, R.D.; Jacobs, H.; Flammini, A.; et al. The Contribution of Agriculture, Forestry and other Land Use activities to Global Warming, 1990–2012. Glob. Chang. Biol. 2015, 21, 2655–2660. [Google Scholar] [CrossRef]
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F.N.; Leip, A. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Halpern, B.S.; Frazier, M.; Verstaen, J.; Rayner, P.-E.; Clawson, G.; Blanchard, J.L.; Cottrell, R.S.; Froehlich, H.E.; Gephart, J.A.; Jacobsen, N.S. The environmental footprint of global food production. Nat. Sustain. 2022, 5, 1027–1039. [Google Scholar] [CrossRef]
- Irigoytia, M.B.; Irigoytia, K.; Sosa, N.; de Escalada Pla, M.; Genevois, C. Blueberry by-product as a novel food ingredient: Physicochemical characterization and study of its application in a bakery product. J. Sci. Food Agric. 2022, 102, 4551–4560. [Google Scholar] [CrossRef] [PubMed]
- Ainsa, A.; Marquina, P.L.; Roncalés, P.; Beltrán, J.A.; Calanche M, J.B. Enriched fresh pasta with a sea bass by-product, a novel food: Fatty acid stability and sensory properties throughout shelf life. Foods 2021, 10, 255. [Google Scholar] [CrossRef] [PubMed]
- Kraithong, S.; Issara, U. A strategic review on plant by-product from banana harvesting: A potentially bio-based ingredient for approaching novel food and agro-industry sustainability. J. Saudi Soc. Agric. Sci. 2021, 20, 530–543. [Google Scholar] [CrossRef]
- Iriondo-DeHond, A.; Iriondo-DeHond, M.; Del Castillo, M.D. Applications of compounds from coffee processing by-products. Biomolecules 2020, 10, 1219. [Google Scholar] [CrossRef] [PubMed]
- Setter, C.; Borges, F.A.; Cardoso, C.R.; Mendes, R.F.; Oliveira, T.J.P. Energy quality of pellets produced from coffee residue: Characterization of the products obtained via slow pyrolysis. Ind. Crops Prod. 2020, 154, 112731. [Google Scholar] [CrossRef]
- Ballesteros, L.F.; Teixeira, J.A.; Mussatto, S.I. Chemical, Functional, and Structural Properties of Spent Coffee Grounds and Coffee Silverskin. Food Bioprocess Technol. 2014, 7, 3493–3503. [Google Scholar] [CrossRef]
- Nolasco, A.; Squillante, J.; Velotto, S.; D’Auria, G.; Ferranti, P.; Mamone, G.; Errico, M.E.; Avolio, R.; Castaldo, R.; Cirillo, T.; et al. Valorization of coffee industry wastes: Comprehensive physicochemical characterization of coffee silverskin and multipurpose recycling applications. J. Clean. Prod. 2022, 370, 133520. [Google Scholar] [CrossRef]
- Nolasco, A.; Squillante, J.; Esposito, F.; Velotto, S.; Romano, R.; Aponte, M.; Giarra, A.; Toscanesi, M.; Montella, E.; Cirillo, T. Coffee Silverskin: Chemical and Biological Risk Assessment and Health Profile for Its Potential Use in Functional Foods. Foods 2022, 11, 2834. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Nie, Y.; Lu, X.; Zhang, X.; He, H.; Pan, F.; Zhou, L.; Liu, X.; Ji, X.; Zhang, S. Cascade utilization of lignocellulosic biomass to high-value products. Green Chem. 2019, 21, 3499–3535. [Google Scholar] [CrossRef]
- Procentese, A.; Raganati, F.; Olivieri, G.; Russo, M.E.; Marzocchella, A. Combined antioxidant-biofuel production from coffee silverskin. Appl. Microbiol. Biotechnol. 2019, 103, 1021–1029. [Google Scholar] [CrossRef] [PubMed]
- Iriondo-DeHond, A.; Aparicio García, N.; Fernandez-Gomez, B.; Guisantes-Batan, E.; Velázquez Escobar, F.; Blanch, G.P.; San Andres, M.I.; Sanchez-Fortun, S.; del Castillo, M.D. Validation of coffee by-products as novel food ingredients. Innov. Food Sci. Emerg. Technol. 2019, 51, 194–204. [Google Scholar] [CrossRef]
- Ma, X.; Chen, W.; Yan, T.; Wang, D.; Hou, F.; Miao, S.; Liu, D. Comparison of citrus pectin and apple pectin in conjugation with soy protein isolate (SPI) under controlled dry-heating conditions. Food Chem. 2020, 309, 125501. [Google Scholar] [CrossRef] [PubMed]
- Reichembach, L.H.; de Oliveira Petkowicz, C.L. Extraction and characterization of a pectin from coffee (Coffea arabica L.) pulp with gelling properties. Carbohydr. Polym. 2020, 245, 116473. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Fan, Z.; Wu, Y.; Jiang, Z.; Shi, R. Eco-friendly extraction and physicochemical properties of pectin from jackfruit peel waste with subcritical water. J. Sci. Food Agric. 2019, 99, 5283–5292. [Google Scholar] [CrossRef]
- Freitas, C.M.P.; Sousa, R.C.S.; Dias, M.M.S.; Coimbra, J.S.R. Extraction of pectin from passion fruit peel. Food Eng. Rev. 2020, 12, 460–472. [Google Scholar] [CrossRef]
- Chan, S.-Y.; Choo, W.-S. Effect of extraction conditions on the yield and chemical properties of pectin from cocoa husks. Food Chem. 2013, 141, 3752–3758. [Google Scholar] [CrossRef]
- Pereira, P.H.F.; Oliveira, T.Í.S.; Rosa, M.F.; Cavalcante, F.L.; Moates, G.K.; Wellner, N.; Waldron, K.W.; Azeredo, H.M.C. Pectin extraction from pomegranate peels with citric acid. Int. J. Biol. Macromol. 2016, 88, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Oloye, M.T.; Jabar, J.M.; Adetuyi, A.O.; Lajide, L. Extraction and characterization of pectin from fruit peels of Irvingia gabonensis and pulp of Cola milleni and Theobroma cacao as precursor for industrial applications. Biomass Convers. Biorefinery 2021, 13, 2125–2133. [Google Scholar] [CrossRef]
- Freitas, C.M.P.; Coimbra, J.S.R.; Souza, V.G.L.; Sousa, R.C.S. Structure and applications of pectin in food, biomedical, and pharmaceutical industry: A review. Coatings 2021, 11, 922. [Google Scholar] [CrossRef]
- Chaturvedi, K.; Sharma, N.; Yadav, S.K. Composite edible coatings from commercial pectin, corn flour and beetroot powder minimize post-harvest decay, reduces ripening and improves sensory liking of tomatoes. Int. J. Biol. Macromol. 2019, 133, 284–293. [Google Scholar]
- Panahirad, S.; Naghshiband-Hassani, R.; Mahna, N. Pectin-based edible coating preserves antioxidative capacity of plum fruit during shelf life. Food Sci. Technol. Int. 2020, 26, 583–592. [Google Scholar] [CrossRef] [PubMed]
- Espitia, P.J.P.; Du, W.-X.; de Jesús Avena-Bustillos, R.; Soares, N.d.F.F.; McHugh, T.H. Edible films from pectin: Physical-mechanical and antimicrobial properties—A review. Food Hydrocoll. 2014, 35, 287–296. [Google Scholar] [CrossRef]
- Xiong, Y.; Li, S.; Warner, R.D.; Fang, Z. Effect of oregano essential oil and resveratrol nanoemulsion loaded pectin edible coating on the preservation of pork loin in modified atmosphere packaging. Food Control 2020, 114, 107226. [Google Scholar] [CrossRef]
- Li, N.; Zhou, S.; Yang, X.; Lin, D. Applications of natural polysaccharide-based pH-sensitive films in food packaging: Current research and future trends. Innov. Food Sci. Emerg. Technol. 2022, 82, 103200. [Google Scholar] [CrossRef]
- Canché-López, K.C.; Toledo-López, V.M.; Vargas y Vargas, M.d.L.; Chan-Matú, D.I.; Madera-Santana, T.J. Characterization of chitosan edible coatings made with natural extracts of Solanum lycopersicum and Moringa oleifera for preserving fresh pork tenderloin. J. Food Meas. Charact. 2023, 17, 2233–2246. [Google Scholar] [CrossRef]
- Rodriguez-Garcia, I.; Cruz-Valenzuela, M.R.; Silva-Espinoza, B.A.; Gonzalez-Aguilar, G.A.; Moctezuma, E.; Gutierrez-Pacheco, M.M.; Tapia-Rodriguez, M.R.; Ortega-Ramirez, L.A.; Ayala-Zavala, J.F. Oregano (Lippia graveolens) essential oil added within pectin edible coatings prevents fungal decay and increases the antioxidant capacity of treated tomatoes. J. Sci. Food Agric. 2016, 96, 3772–3778. [Google Scholar] [CrossRef]
- Divya, K.; Smitha, V.; Jisha, M.S. Antifungal, antioxidant and cytotoxic activities of chitosan nanoparticles and its use as an edible coating on vegetables. Int. J. Biol. Macromol. 2018, 114, 572–577. [Google Scholar] [CrossRef]
- Zambrano-Zaragoza, M.L.; González-Reza, R.; Mendoza-Muñoz, N.; Miranda-Linares, V.; Bernal-Couoh, T.F.; Mendoza-Elvira, S.; Quintanar-Guerrero, D. Nanosystems in edible coatings: A novel strategy for food preservation. Int. J. Mol. Sci. 2018, 19, 705. [Google Scholar] [CrossRef]
- Yan, M.R.; Hsieh, S.; Ricacho, N. Innovative food packaging, food quality and safety, and consumer perspectives. Processes 2022, 10, 747. [Google Scholar] [CrossRef]
- INC International Nut and Dried Fruit Council. Nut & Dried Fruits Statistical Yearbook 2020/2021; INC International Nut and Dried Fruit Council: Reus, Spain, 2018. [Google Scholar]
- Jahanban-Esfahlan, A.; Jahanban-Esfahlan, R.; Tabibiazar, M.; Roufegarinejad, L.; Amarowicz, R. Recent advances in the use of walnut (Juglans regia L.) shell as a valuable plant-based bio-sorbent for the removal of hazardous materials. RSC Adv. 2020, 10, 7026–7047. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Zhang, Y.; Guo, Y.; Yue, J. Isolation and characterization of nanocellulose with a novel shape from walnut (Juglans regia L.) shell agricultural waste. Polymers 2019, 11, 1130. [Google Scholar] [CrossRef]
- Vieira, V.; Pereira, C.; Abreu, R.M.V.; Calhelha, R.C.; Alves, M.J.; Coutinho, J.A.P.; Ferreira, O.; Barros, L.; Ferreira, I.C.F.R. Hydroethanolic extract of Juglans regia L. green husks: A source of bioactive phytochemicals. Food Chem. Toxicol. 2020, 137, 111189. [Google Scholar] [CrossRef]
- Romano, R.; Aiello, A.; Meca, G.; De Luca, L.; Pizzolongo, F.; Masi, P. Recovery of bioactive compounds from walnut (Juglans regia L.) green husk by supercritical carbon dioxide extraction. Int. J. Food Sci. Technol. 2021, 56, 4658–4668. [Google Scholar] [CrossRef]
- Di Michele, A.; Pagano, C.; Allegrini, A.; Blasi, F.; Cossignani, L.; Di Raimo, E.; Faieta, M.; Oliva, E.; Pittia, P.; Primavilla, S. Hazelnut shells as source of active ingredients: Extracts preparation and characterization. Molecules 2021, 26, 6607. [Google Scholar] [CrossRef] [PubMed]
- Cardullo, N.; Leanza, M.; Muccilli, V.; Tringali, C. Valorization of agri-food waste from pistachio hard shells: Extraction of polyphenols as natural antioxidants. Resources 2021, 10, 45. [Google Scholar] [CrossRef]
- Gil, F.; Hernández, A.F.; Martín-Domingo, M.C. Toxic contamination of nutraceuticals and food ingredients. In Nutraceuticals, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1145–1158. [Google Scholar]
- Gil, F.; Hernández, A.F.; Martín-Domingo, M.C. Toxic contamination of nutraceuticals and food ingredients. In Nutraceuticals, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 825–837. [Google Scholar]
- Socas-Rodríguez, B.; Álvarez-Rivera, G.; Valdés, A.; Ibáñez, E.; Cifuentes, A. Food by-products and food wastes: Are they safe enough for their valorization? Trends Food Sci. Technol. 2021, 114, 133–147. [Google Scholar] [CrossRef]
- Siddiqui, R.A.; Moghadasian, M.H. Nutraceuticals and nutrition supplements: Challenges and opportunities. Nutrients 2020, 12, 1593. [Google Scholar] [CrossRef] [PubMed]
- Moscetti, R.; Berhe, D.H.; Agrimi, M.; Haff, R.P.; Liang, P.; Ferri, S.; Monarca, D.; Massantini, R. Pine nut species recognition using NIR spectroscopy and image analysis. J. Food Eng. 2021, 292, 110357. [Google Scholar] [CrossRef]
- Calama, R.; Gordo, J.; Madrigal, G.; Mutke, S.; Conde, M.; Montero, G.; Pardos, M. Enhanced tools for predicting annual stone pine (Pinus pinea L.) cone production at tree and forest scale in Inner Spain. For. Syst. 2016, 25, e079. [Google Scholar] [CrossRef]
- Alalwan, T.A.; Mohammed, D.; Hasan, M.; Sergi, D.; Ferraris, C.; Gasparri, C.; Rondanelli, M.; Perna, S. Almond, Hazelnut, and Pistachio Skin: An Opportunity for Nutraceuticals. Nutraceuticals 2022, 2, 300–310. [Google Scholar] [CrossRef]
- Baldini, M.; Fabietti, F.; Giammarioli, S.; Onori, R.; Orefice, L.; Stacchini, A. Rapporti ISTISAN 96/34. In Metodi di Analisi Utilizzati per Il Controllo Chimico Degli Alimenti; Istituto Superiore di Sanitd: Rome, Italy, 1996; pp. 41–43. [Google Scholar]
- Association of Official Analytical Chemist. Official Methods of Analysis; Association of Official Analytical Chemist: Washington, DC, USA, 1990. [Google Scholar]
- Romano, R.; Giordano, A.; Chianese, L.; Addeo, F.; Musso, S.S. Triacylglycerols, fatty acids and conjugated linoleic acids in Italian Mozzarella di Bufala Campana cheese. J. Food Compos. Anal. 2011, 24, 244–249. [Google Scholar] [CrossRef]
- Manzo, N. On the Possibility to Trace Frozen Curd in Buffalo Mozzarella PDO Cheese. Ph.D. Thesis, Università Degli Studi di Napoli Federico II, Napoli, Italy, 2017. [Google Scholar]
- Nota, G.; Naviglio, D.; Romano, R.; Sabia, V.; Musso, S.S.; Improta, C. Determination of the wax ester content in olive oils. Improvement in the method proposed by EEC Regulation 183/93. J. Agric. Food Chem. 1999, 47, 202–205. [Google Scholar] [CrossRef] [PubMed]
- Nota, G.; Musso, S.S.; Romano, R.; Naviglio, D.; Improta, C. Idrolisi rapida degli esteri degli steroli nei grassi. Riv. Ital. Delle Sostanze Grasse 1995, 72, 315–316. [Google Scholar]
- European Committee for Standardization. Foods of Plant Origin–Multimethod for the Determination of Pesticide Residues Using GC- and LC-Based Analysis Following Acetonitrile Extraction/Partitioning and Clean-Up by Dispersive SPE–Modular QuEChERS–Method; European Committee for Standardization: Geneva, Switzerland, 2018. [Google Scholar]
- R Foundation for Statistical Computing. R: A Language and Environment for Statistical Computing [Computer Software], Version 4.1.2.; R Foundation for Statistical Computing: Vienna, Austria, 2021.
- Barral-Martinez, M.; Fraga-Corral, M.; Garcia-Perez, P.; Simal-Gandara, J.; Prieto, M.A. Almond by-products: Valorization for sustainability and competitiveness of the industry. Foods 2021, 10, 1793. [Google Scholar] [CrossRef] [PubMed]
- Sales-Campos, H.; Reis de Souza, P.; Crema Peghini, B.; Santana da Silva, J.; Ribeiro Cardoso, C. An overview of the modulatory effects of oleic acid in health and disease. Mini Rev. Med. Chem. 2013, 13, 201–210. [Google Scholar]
- Arsic, A.; Stojanovic, A.; Mikic, M. Oleic acid-health benefits and status in plasma phospholipids in the Serbian population. Serbian J. Exp. Clin. Res. 2019, 20, 3–8. [Google Scholar] [CrossRef]
- Meshgi, V.; Asadi-Gharneh, H.A. Oil content and fatty acid profile of some pine nuts species (Pinus spp.). J. Nuts 2019, 10, 71–78. [Google Scholar]
- Whelan, J.; Fritsche, K. Linoleic acid. Adv. Nutr. 2013, 4, 311–312. [Google Scholar] [CrossRef] [PubMed]
- Froyen, E.; Burns-Whitmore, B. The effects of linoleic acid consumption on lipid risk markers for cardiovascular disease in healthy individuals: A review of human intervention trials. Nutrients 2020, 12, 2329. [Google Scholar] [CrossRef] [PubMed]
- Crupi, R.; Cuzzocrea, S. Role of EPA in inflammation: Mechanisms, effects, and clinical relevance. Biomolecules 2022, 12, 242. [Google Scholar] [CrossRef]
- Abreu-Naranjo, R.; Ramirez-Huila, W.N.; Mera, J.J.R.; Banguera, D.V.; León-Camacho, M. Physico-chemical characterisation of Capparis scabrida seed oil and pulp, a potential source of eicosapentaenoic acid. Food Biosci. 2020, 36, 100624. [Google Scholar] [CrossRef]
- Teixeira, G.L.; Avila, S.; Silveira, J.L.M.; Ribani, M.; Ribani, R.H. Chemical, thermal and rheological properties and stability of sapucaia (Lecythis pisonis) nut oils: A potential source of vegetable oil in industry. J. Therm. Anal. Calorim. 2018, 131, 2105–2121. [Google Scholar] [CrossRef]
- Kanlayavattanakul, M.; Lourith, N.; Chaikul, P. Valorization of spent coffee grounds as the specialty material for dullness and aging of skin treatments. Chem. Biol. Technol. Agric. 2021, 8, 55. [Google Scholar] [CrossRef]
- Nergiz, C.; Dönmez, I. Chemical composition and nutritive value of Pinus pinea L. seeds. Food Chem. 2004, 86, 365–368. [Google Scholar] [CrossRef]
- Chai, Y.; Li, A.; Wai, S.C.; Song, C.; Zhao, Y.; Duan, Y.; Zhang, B.; Lin, Q. Cuticular wax composition changes of 10 apple cultivars during postharvest storage. Food Chem. 2020, 324, 126903. [Google Scholar] [CrossRef]
- Miraliakbari, H.; Shahidi, F. Lipid class compositions, tocopherols and sterols of tree nut oils extracted with different solvents. J. Food Lipids 2008, 15, 81–96. [Google Scholar] [CrossRef]
- Babu, S.; Jayaraman, S. An update on β-sitosterol: A potential herbal nutraceutical for diabetic management. Biomed. Pharmacother. 2020, 131, 110702. [Google Scholar] [CrossRef] [PubMed]
- Bresson, J.-L.; Flynn, A.; Heinonen, M.; Hulshof, K.; Korhonen, H.; Lagiou, P.; Løvik, M.; Marchelli, R.; Martin, A.; Moseley, B. Plant Sterols and Blood Cholesterol Scientific substantiation of a health claim related to plant sterols and lower/reduced blood cholesterol and reduced risk of (coronary) heart disease pursuant to Article 14 of Regulation (EC) No 1924/2006 Scientific Opi. EFSA J. 2008, 781, 1–12. [Google Scholar]
- Mohammed, D.; Freije, A.; Abdulhussain, H.; Khonji, A.; Hasan, M.; Ferraris, C.; Gasparri, C.; Aziz Aljar, M.A.; Ali Redha, A.; Giacosa, A. Analysis of the Antioxidant Activity, Lipid Profile, and Minerals of the Skin and Seed of Hazelnuts (Corylus avellana L.), Pistachios (Pistacia vera) and Almonds (Prunus dulcis)—A Comparative Analysis. AppliedChem 2023, 3, 110–118. [Google Scholar] [CrossRef]
- Wickner, S.; Camberg, J.L.; Doyle, S.M.; Johnston, D.M. Molecular chaperones. In Reference Module in Life Sciences; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Pizzanelli, S.; Calucci, L.; Forte, C.; Borsacchi, S. Studies of Organic Matter in Composting, Vermicomposting, and Anaerobic Digestion by 13C Solid-State NMR Spectroscopy. Appl. Sci. 2023, 13, 2900. [Google Scholar] [CrossRef]
- Horikawa, Y.; Hirano, S.; Mihashi, A.; Kobayashi, Y.; Zhai, S.; Sugiyama, J. Prediction of lignin contents from infrared spectroscopy: Chemical digestion and lignin/biomass ratios of Cryptomeria japonica. Appl. Biochem. Biotechnol. 2019, 188, 1066–1076. [Google Scholar] [CrossRef] [PubMed]
- Monagas, M.; Garrido, I.; Lebrón-Aguilar, R.; Bartolome, B.; Gómez-Cordovés, C. Almond (Prunus dulcis (Mill.) DA Webb) skins as a potential source of bioactive polyphenols. J. Agric. Food Chem. 2007, 55, 8498–8507. [Google Scholar] [CrossRef] [PubMed]
- Petrechen, G.P.; Arduin, M.; Ambrósio, J.D. Morphological characterization of Brazil nut tree (Bertholletia excelsa) fruit pericarp. J. Renew. Mater. 2019, 7, 683–692. [Google Scholar] [CrossRef]
- Ortega, F.; Versino, F.; López, O.V.; García, M.A. Biobased composites from agro-industrial wastes and by-products. Emergent Mater. 2022, 5, 873–921. [Google Scholar] [CrossRef] [PubMed]
- Sung, S.H.; Chang, Y.; Han, J. Development of polylactic acid nanocomposite films reinforced with cellulose nanocrystals derived from coffee silverskin. Carbohydr. Polym. 2017, 169, 495–503. [Google Scholar] [CrossRef]
- Garcia, C.V.; Kim, Y.-T. Spent coffee grounds and coffee silverskin as potential materials for packaging: A review. J. Polym. Environ. 2021, 29, 2372–2384. [Google Scholar] [CrossRef]
Fatty Acid | Values (%) |
---|---|
Palmitic acid (C16:0) | 19.98 ± 0.22 |
Stearic acid (C18:0) | 6.06 ± 0.28 |
Oleic acid (C18:1n9c) | 35.33 ± 0.28 |
Linoleic acid (C18:2n6c) | 18.34 ± 0.82 |
Arachidic acid (AA) (C20:0) | 10.77 ± 0.60 |
Tricosanoic acid (C23:0) | 8.38 ± 0.50 |
Eicosapentaenoic acid (EPA) (C20:5n3) | 1.14 ± 0.04 |
∑SFA | 45.19 |
∑MUFA | 35.33 |
∑PUFA | 19.48 |
Omega 6/Omega 3 | 16.11 |
Essential, Toxic, and Rare Earth Elements | Mean ± SD Concentration (mg/kg) |
---|---|
Calcium, Ca | 301 ± 8.42 |
Magnesium, Mg | 1485 ± 102.14 |
Sodium, Na | 1556 ± 181.02 |
Potassium, K | 4306 ± 294.16 |
Selenium, Se | <LOQ |
Cobalt, Co | 0.12 ± 0.08 |
Iron, Fe | 244.73 ± 90.50 |
Zinc, Zn | 28.36 ± 17.55 |
Copper, Cu | 11.10 ± 8.42 |
Chromium, Cr | 0.16 ± 0.15 |
Cadmium, Cd | 0.12 ± 0.18 |
Molybdenum, Mo | 0.86 ± 0.20 |
Antimony, Sb | <LOQ |
Boron, B | 38.9 ± 7.02 |
Arsenic, As | 0.14 ± 0.20 |
Manganese, Mn | 25.06 ± 17.31 |
Mercury, Hg | 0.30 ± 0.11 |
Nickel, Ni | 1.36 ± 1.41 |
Lead, Pb | <LOQ |
Beryllium, Be | <LOQ |
Aluminum, Al | 55.6 ± 25.32 |
Tin, Sn | <LOQ |
Thallium, Tl | <LOQ |
Vanadium, V | <LOQ |
Barium, Ba | 9.04 ± 2.09 |
Yttrium, Y | <LOQ |
Lanthanum, La | 0.06 ± 0.03 |
Cerium, Ce | 0.08 ± 0.04 |
Praseodymium, Pr | <LOQ |
Neodymium, Nd | <LOQ |
Samarium, Sm | <LOQ |
Europium, Eu | <LOQ |
Gadolinium, Gd | <LOQ |
Terbium, Tb | <LOQ |
Dysprosium, Dy | <LOQ |
Holmium, Ho | <LOQ |
Erbium, Er | <LOQ |
Thulium, Tm | <LOQ |
Ytterbium, Yb | <LOQ |
Lutetium, Lu | <LOQ |
Polycyclic Aromatic Hydrocarbons | Mean ± SD Concentration (mg/kg) |
---|---|
Naphthalene | <LOQ |
Acenaphtilene | <LOQ |
Acenaphthene | <LOQ |
Fluorene | 0.12 ± 0.06 |
Anthracene | <LOQ |
Phenanthrene | <LOQ |
Fluoranthene | <LOQ |
Pyrene | <LOQ |
Chrysene | <LOQ |
Benzo(b)fluoranthene | <LOQ |
Benzo(k)fluoranthene | <LOQ |
Benzo(a)pyrene | <LOQ |
Indeno[1,2,3-cd]pyrene | <LOQ |
Dibenz[a,h]anthracene | <LOQ |
Benzo[ghi]perylene | <LOQ |
Uniprot ID | E-Value | Peptides | Species | Protein Name |
---|---|---|---|---|
V9VGU0 | 6.70 × 10−9 | 4 | Pinus koraiensis | Vicilin Pin k 2.0101 |
Q41017 | 7.10 × 10−11 | 3 | Pinus strobus | Pine globulin 1 |
A0A103XGC0 | 3.70 × 10−8 | 1 | Cynara scolymus | Aspartate aminotransferase |
A0A5C0ZT38 | 3.30 × 10−8 | 1 | Pinus banksiana | Class VII chitinase |
O65719 | 3.60 × 10−10 | 1 | Arabidopsis thaliana | Heat shock 70 kDa protein 3 |
P50218 | 1.30 × 10−8 | 1 | Nicotiana tabacum | Isocitrate dehydrogenase [NADP] |
Q40933 | 5.80 × 10−9 | 1 | Pseudotsuga menziesii | Legumin-like storage protein |
A0A067KQG0 | 1.90 × 10−10 | 1 | Jatropha curcas | LNS2 domain-containing protein |
Q40924 | 4.10 × 10−9 | 1 | Pseudotsuga menziesii | Luminal binding protein |
Q6S3D6 | 1.20 × 10−9 | 1 | Populus tomentosa | Phosphoglucomutase |
O04386 | 8.30 × 10−8 | 1 | Chlamydomonas incerta | Tubulin beta chain |
A0A0L9TDU8 | 4.40 × 10−10 | 1 | Phaseolus angularis | Uncharacterized protein |
A0A2G2XQ03 | 1.90 × 10−10 | 1 | Capsicum baccatum | Uncharacterized protein |
A0A6A6K508 | 1.90 × 10−10 | 1 | Hevea brasiliensis | Uncharacterized protein |
Uniprot ID | Peptide | Start | End | E-Value | Species | Protein Name |
---|---|---|---|---|---|---|
A0A067KQG0 | IPDEMNM | 813 | 819 | 1.90 × 10−10 | JATCU | LNS2 domain-containing protein |
A0A0L9TDU8 | ATAGDTHLGGEDIDNR | 165 | 180 | 4.40 × 10−10 | PHAAN | Uncharacterized protein |
A0A103XGC0 | ASGSLDQDASSVR | 234 | 246 | 3.70 × 10−8 | CYNCS | Aspartate aminotransferase |
A0A2G2XQ03 | IPEDMNM | 93 | 99 | 1.90 × 10−10 | CAPBA | Uncharacterized protein |
A0A5C0ZT38 | SGFGTTGTSDDNKRELA | 66 | 82 | 3.30 × 10−8 | PINBN | Class VII chitinase |
A0A6A6K508 | LPDEMMN | 643 | 649 | 1.90 × 10−10 | HEVBR | Uncharacterized protein |
O04386 | MDLEPGTMDSVR | 66 | 77 | 8.30 × 10−8 | CHLIN | Tubulin beta chain |
O65719 | ATAGDTHLGGEDFDNR | 227 | 242 | 3.60 × 10−10 | ARATH | Heat shock 70 kDa protein 3 |
P50218 | IKVENPIVEMDGDEMTR | 6 | 22 | 1.30 × 10−8 | TOBAC | Isocitrate dehydrogenase [NADP] |
Q40924 | STSGDTHLGGEDFDQR | 263 | 278 | 4.10 × 10−9 | PSEMZ | Luminal binding protein |
Q40933 | HNADNPEDADIYVR | 328 | 341 | 5.80 × 10−9 | PSEMZ | Legumin-like storage protein |
Q41017 | LSTHEPSESESIR | 26 | 38 | 3.00 × 10−8 | PINST | Pine globulin 1 |
Q41017 | HNADNPEDADVYVR | 300 | 313 | 4.00 × 10−8 | PINST | Pine globulin 1 |
Q41017 | LSTHEPSESESIRSE | 26 | 40 | 7.10 × 10−11 | PINST | Pine globulin 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nolasco, A.; Squillante, J.; Velotto, S.; D’Auria, G.; Ferranti, P.; Mamone, G.; Errico, M.E.; Avolio, R.; Castaldo, R.; De Luca, L.; et al. Exploring the Untapped Potential of Pine Nut Skin By-Products: A Holistic Characterization and Recycling Approach. Foods 2024, 13, 1044. https://doi.org/10.3390/foods13071044
Nolasco A, Squillante J, Velotto S, D’Auria G, Ferranti P, Mamone G, Errico ME, Avolio R, Castaldo R, De Luca L, et al. Exploring the Untapped Potential of Pine Nut Skin By-Products: A Holistic Characterization and Recycling Approach. Foods. 2024; 13(7):1044. https://doi.org/10.3390/foods13071044
Chicago/Turabian StyleNolasco, Agata, Jonathan Squillante, Salvatore Velotto, Giovanni D’Auria, Pasquale Ferranti, Gianfranco Mamone, Maria Emanuela Errico, Roberto Avolio, Rachele Castaldo, Lucia De Luca, and et al. 2024. "Exploring the Untapped Potential of Pine Nut Skin By-Products: A Holistic Characterization and Recycling Approach" Foods 13, no. 7: 1044. https://doi.org/10.3390/foods13071044
APA StyleNolasco, A., Squillante, J., Velotto, S., D’Auria, G., Ferranti, P., Mamone, G., Errico, M. E., Avolio, R., Castaldo, R., De Luca, L., Romano, R., Esposito, F., & Cirillo, T. (2024). Exploring the Untapped Potential of Pine Nut Skin By-Products: A Holistic Characterization and Recycling Approach. Foods, 13(7), 1044. https://doi.org/10.3390/foods13071044