Supercritical CO2 Treatment to Modify Techno-Functional Properties of Proteins Extracted from Tomato Seeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pomace and Tomato Seed Meals
2.2. Chemical Composition Analysis
2.3. Tomato Seed Meal Degreasing
2.4. Protein Extraction, Yield and Quantitation
2.5. Electrophoretic Pattern: SDS-PAGE and 2D PAGE Analysis
2.6. Techno-Functional Properties
2.6.1. Water and Oil Absorption
2.6.2. Foaming Properties
2.6.3. Emulsifying Properties
2.7. Fourier Transform Infrared Spectroscopy (FT-IR)
2.8. Statistical Analysis
3. Results
3.1. Fresh Tomato Pomace Yield and Chemical Composition
3.2. Protein Extracts and SDS-PAGE Assays
3.3. Techno-Functional Properties
3.4. Structural Analysis
4. Discussion
4.1. Protein Extracts and SDS-PAGE Assays
4.2. Techno-Functional Properties and Structures of Some Proteins Were Affected by scCO2 Treatment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, I.A. Foreword. In Sustainable Management of Arthropod Pests of Tomato; Waqas, W., Gerald, E.B., Thomas, M.P., Eds.; Academic Press: Cambridge, MA, USA, 2017; p. XV. [Google Scholar] [CrossRef]
- Maldonado-Torres, R.; Morales-Camacho, J.I.; López-Valdez, F.; Huerta-González, L.; Luna-Suárez, S. Assessment of techno-functional and nutraceutical potential of tomato (Solanum lycopersicum) seed meal. Molecules 2020, 25, 4235. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Chen, S.; Li, H.; Paengkoum, S.; Taethaisong, N.; Meethip, W.; Surakhunthod, J.; Sinpru, B.; Sroichak, T.; Archa, P.; et al. Sustainable Valorization of Tomato Pomace (Lycopersicon esculentum) in Animal Nutrition: A Review. Animals 2022, 12, 3294. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Oberoi, H.S.; Dhillon, G.S. Fruit and vegetable processing waste: Renewable feed stocks for enzyme production. In Agro-Industrial Wastes as Feedstock for Enzyme Production; Academic Press: Cambridge, MA, USA, 2016; pp. 23–59. [Google Scholar] [CrossRef]
- Eslami, E.; Carpentieri, S.; Pataro, G.; Ferrari, G. A Comprehensive Overview of Tomato Processing By-Product Valorization by Conventional Methods versus Emerging Technologies. Foods 2023, 12, 166. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahman, A.H.Y. The chemical constituents of tomato seeds. Food Chem. 1982, 9, 315–318. [Google Scholar] [CrossRef]
- Rossini, G.; Toscano, G.; Duca, D.; Corinaldesi, F.; Foppa Pedretti, E.; Riva, G. Analysis of the characteristics of the tomato manufacturing residues finalized to the energy recovery. Biomass Bioenergy 2013, 51, 177–182. [Google Scholar] [CrossRef]
- Sogi, D.S.; Bhullar, J.K. Shelf life studies and refining of tomato seed oil. J. Food Sci. Technol. 2000, 37, 542–544. [Google Scholar]
- Shevkani, K.; Singh, N.; Kaur, A.; Rana, J.C. Structural and functional characterization of kidney bean and field pea protein extracts: A comparative study. Food Hydrocoll. 2015, 43, 679–689. [Google Scholar] [CrossRef]
- Madia, V.N.; De Vita, D.; Ialongo, D.; Tudino, V.; De Leo, A.; Scipione, L.; Di Santo, R.; Costi, R.; Messore, A. Recent advances in recovery of lycopene from tomato waste: A potent antioxidant with endless benefits. Molecules 2021, 26, 4495. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Jun Xue, S.; Jiang, Y.; Ye, X. Supercritical-fluid extraction of lycopene from tomatoes. In Separation, Extraction and Concentration Processes in the Food, Beverage and Nutraceutical Industries; Rizvi, S.S.H., Ed.; Woodhead Publishing: Philadelphia, PA, USA, 2010; pp. 619–640. [Google Scholar]
- Yu, T.; Niu, L.; Iwahashi, H. High-pressure carbon dioxide used for pasteurization in food industry. Food Eng. Rev. 2020, 12, 364–380. [Google Scholar] [CrossRef]
- Roche, J.; Royer, C.A. Lessons from pressure denaturation of proteins. J. R. Soc. Interface 2018, 15, 20180244. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of AOAC International; AOAC: Rockville, MD, USA, 2000. [Google Scholar]
- Conde-Hernández, L.A.; Espinosa-Victoria, J.R.; Trejo, A.; Guerrero-Beltrán, J.A. CO2-supercritical extraction, hydrodistillation and steam distillation of essential oil of rosemary (Rosmarinus officinalis). J. Food Eng. 2017, 200, 81–86. [Google Scholar] [CrossRef]
- Delgado-García, Y.I.; Luna-Suárez, S.; López-Malo, A.; Morales-Camacho, J.I. Effect of supercritical carbon dioxide on physicochemical and techno-functional properties of amaranth flour. Chem. Eng. Process 2022, 178, 109031. [Google Scholar] [CrossRef]
- Walker, J.M. The Protein Protocols Handbook, 3rd ed.; Humana Press: Totowa, NJ, USA, 2009. [Google Scholar]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Morán, Y.; Morales-Camacho, J.I.; Delgado-Macuil, R.; Rosas-Cárdenas, F.D.F.; Luna-Suárez, S. Improvement of techno-functional properties of acidic subunit from amaranth 11S globulin modified by bioactive peptide insertions. Electron. J. Biotechnol. 2023, 61, 45–53. [Google Scholar] [CrossRef]
- Fidantsi, A.; Doxastakis, G. Emulsifying and foaming properties of amaranth seed protein extracts. Colloids Surf. B 2001, 21, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Mingyu, H.; Na, W.; Mingda, L.; Changling, W.; Yang, L.; Fei, T.L. Spectroscopic analysis of the effect of vitamin B12-soy protein isolate on the soy protein isolate structure. J. Mol. Liq. 2021, 325, 115148. [Google Scholar] [CrossRef]
- Kong, J.; Yu, S. Fourier Transform Infrared Spectroscopic Analysis of Protein Secondary Structures. Acta Biochim. Biophys. 2007, 39, 549–559. [Google Scholar] [CrossRef] [PubMed]
- Puray, J.J.; Villaber, R.A. Extraction, characterization, and vascular response of proteins from catfish (Clarias batrachus L.) mucus. Food Chem. 2023, 3, 100444. [Google Scholar] [CrossRef]
- Hu, T.G.; Feng-Xiang, T.; Lu, L.; Ke-Jing, A.; Bo, Z.; Jin, W.; Ji-Jun, W.; Geng-Sheng, X.; Yuan-Shan, Y.; Yu-Juan, X. Structural elucidation and physicochemical properties of litchi polysaccharide with the promoting effect on exopolysaccharide production by Weissella confusa. Int. J. Biol. Macromol. 2023, 253, 126944. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Gautam, J.; Mohd, A.; Mohd, M.; Abdullah, A.; Aysha, F.; Nazia, S. Quantum Computational, Spectroscopic (FT-IR, FT-Raman, NMR, and UV–Vis) Hirshfeld Surface and Molecular Docking-Dynamics Studies on 5-Hydroxymethyluracil (Monomer and Trimer). Molecules 2023, 28, 2116. [Google Scholar] [CrossRef]
- Coates, J. Interpretation of infrared spectra, a practical approach. In Encyclopedia of Analytical Chemistry; Meyers, R.A., Ed.; John Wiley & Sons Ltd.: Chicheste, UK, 2006. [Google Scholar] [CrossRef]
- Ganim, Z.; Chung, H.S.; Smith, A.W.; Deflores, L.P.; Jones, K.C.; Tokmakoff, A. Amide I two-dimensional infrared spectroscopy of proteins. Acc. Chem. Res. 2008, 41, 432–441. [Google Scholar] [CrossRef] [PubMed]
- González, M.; Cid, M.C.; Lobo, M.G. Usage of tomato (Lycopersicum esculentum Mill.) seeds in Health. In Nuts and Seeds in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2011; pp. 1123–1132. [Google Scholar] [CrossRef]
- Sarkar, A.; Kaul, P. Evaluation of tomato processing by-products: A comparative study in a pilot scale setup. J. Food Process Eng. 2014, 37, 299–307. [Google Scholar] [CrossRef]
- Shao, D.; Atungulo, G.G.; Pan, Z.; Yue, T.; Zhang, A.; Chen, X. Separation methods and chemical and nutritional characteristics of tomato pomace. Trans. ASABE 2013, 56, 261–268. [Google Scholar] [CrossRef]
- Liadakis, G.N.; Tzia, C.; Oreopoulou, V.; Thomopoulos, C.D. Protein isolation from tomato seed meal, extraction optimization. J. Food Sci. 1995, 60, 477–482. [Google Scholar] [CrossRef]
- Saldivar, S.O.S. CEREALS | Dietary Importance. In Encyclopedia of Food Sciences and Nutrition; Academic Press: Cambridge, MA, USA, 2003; pp. 1027–1033. [Google Scholar] [CrossRef]
- Allen, L.H. Legumes. In Encyclopedia of Human Nutrition, 3rd ed.; Caballero, B., Ed.; Academic Press: Cambridge, MA, USA, 2013; Volume 3–4, pp. 74–79. [Google Scholar] [CrossRef]
- Salunkhe, D.; Kadam, S.; Chavan, J. Postharvest Biotechnology of Food Legumes; CRC Press: Boca Raton, FL, USA, 1985; pp. 1–35. [Google Scholar]
- Sogi, D.S.; Arora, M.S.; Garg, S.K.; Bawa, A.S. Fractionation and electrophoresis of tomato waste seed proteins. Food Chem. 2002, 76, 449–454. [Google Scholar] [CrossRef]
- Zayas, J.F. Solubility of Proteins. In Functionality of Proteins in Food; Zayas, J.F., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–21. [Google Scholar] [CrossRef]
- Seena, S.; Sridhar, K.R. Physicochemical, functional and cooking properties of under explored legumes, Canavalia of the southwest coast of India. Food Res. Int. 2005, 38, 803–814. [Google Scholar] [CrossRef]
- Shao, D.; Atungulu, G.G.; Pan, Z.; Yue, T.; Zhang, A.; Fan, Z. Characteristics of isolation and functionality of protein from tomato pomace produced with different industrial processing methods. Food Bioprocess. Technol. 2014, 7, 532–541. [Google Scholar] [CrossRef]
- Mechmeche, M.; Kachouri, F.; Ksontini, H.; Hamdi, M. Production of bioactive peptides from tomato seed isolate by Lactobacillus plantarum fermentation and enhancement of antioxidant activity. Food Biotechnol. 2017, 31, 94–113. [Google Scholar] [CrossRef]
- Sarkar, A.; Kamaruddin, H.; Bentley, A.; Wang, S. Emulsion stabilization by tomato seed protein isolate: Influence of pH, ionic strength and thermal treatment. Food Hydrocoll. 2016, 57, 160–168. [Google Scholar] [CrossRef]
- Smith, D.M. Protein separation and characterization procedures. In Food Analysis; Nielsen, S.S., Ed.; Food Science Text Series; Springer: Cham, Switzerland, 2017; pp. 431–453. [Google Scholar] [CrossRef]
- Farrell, H.M.; Qi, P.X.; Brown, E.M.; Cooke, P.H.; Tunick, M.H.; Wickham, E.D.; Unruh, J.J. Molten globule structures in milk proteins: Implications for potential new structure-function relationships. J. Dairy Sci. 2002, 85, 459–471. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Q.; Jin, M. Enhanced functionalities of whey proteins treated with supercritical carbon dioxide. J. Dairy Sci. 2008, 91, 490–499. [Google Scholar] [CrossRef]
- Awolu, O.O.; Osemeke, R.O.; Ifesan, B.O.T. Antioxidant, functional and rheological properties of optimized composite flour, consisting wheat and amaranth seed, brewers’ spent grain and apple pomace. J. Food Sci. Technol. 2016, 53, 1151–1163. [Google Scholar] [CrossRef] [PubMed]
- Özyurt, V.H.; Tetik, I.; Ötleş, S. Influence of process conditions on ultrasound-assisted protein extraction from cold pressed tomato seed waste. J. Food Process. Preserv. 2021, 45, e16079. [Google Scholar] [CrossRef]
- Gratacós-Cubarsí, M.; Lametsch, R. Determination of changes in protein conformation caused by pH and temperature. Meat Sci. 2008, 80, 545–549. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Hao, J.; Xie, Q.; Pi, X.; Peng, Z.; Sun, Y.; Cheng, J. pH-induced physiochemical and structural changes of milk proteins mixtures and its effect on foaming behavior. Int. J. Biol. Macromol. 2024, 254, 127838. [Google Scholar] [CrossRef] [PubMed]
- Aderinola, T.A.; Alashi, A.M.; Nwachukwu, I.D.; Fagbemi, T.N.; Enujiugha, V.N.; Aluko, R.E. In vitro digestibility, structural and functional properties of Moringa oleifera seed proteins. Food Hydrocoll. 2020, 101, 105574. [Google Scholar] [CrossRef]
- Kheto, A.; Sehrawat, R.; Gul, K.; Kumar, L. Effect of extraction pH on amino acids, nutritional, in-vitro protein digestibility, intermolecular interactions, and functional properties of guar germ proteins. Food Chem. 2024, 444, 138628. [Google Scholar] [CrossRef] [PubMed]
- Chandi, K.; Sogi, D. Functional properties of rice bran protein concentrates. J. Food Eng. 2007, 79, 592–597. [Google Scholar] [CrossRef]
- Olawuni, I.A.; Uruakpa, F.O.; Uzoma, A. Unripe Plantain Flours. In Therapeutic, Probiotic, and Unconventional Foods; Alexandru, M.G., Alina, M.H., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 341–366. [Google Scholar] [CrossRef]
- Tang, Q.; Roos, Y.H.; Miao, S. Plant Protein versus Dairy Proteins: A pH-Dependency Investigation on Their Structure and Functional Properties. Foods 2023, 12, 368. [Google Scholar] [CrossRef]
- Zhang, R.; Fang, X.; Feng, Z.; Chen, M.; Qiu, X.; Sun, J.; Wu, M.; He, J. Protein from rapeseed for food applications: Extraction, sensory quality, functional and nutritional properties. Food Chem. 2024, 439, 138109. [Google Scholar] [CrossRef] [PubMed]
- Batish, I.; Brits, D.; Valencia, P.; Miyai, C.; Rafeeq, S.; Xu, Y.; Galanopoulos, M.; Sismour, E.; Ovissipour, R. Effects of enzymatic hydrolysis on the functional properties, antioxidant activity and protein structure of black soldier fly (Hermetia illucens) protein. Insects 2020, 11, 876. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Faber, I.; Berton-Carabin, C.C.; Nikiforidis, C.V.; Linden, E.V.; Sagis, L.M.C. Foams and air-water interfaces stabilised by mildly purified rapeseed proteins after defatting. Food Hydrocoll. 2021, 112, 106270. [Google Scholar] [CrossRef]
- Mao, X.; Hua, Y. Composition, structure and functional properties of protein concentrates and extracts produced from walnut (Juglans regia L.). Int. Mol. Sci. 2012, 13, 1561–1581. [Google Scholar] [CrossRef] [PubMed]
- Dunford, N.T.; Temelli, F.; Leblanc, E.L. Supercritical CO2 extraction of oil and residual roteins from atlantic mackerel (Scomber scombrus) as affected by moisture content. J. Food Sci. 1997, 62, 289–294. [Google Scholar] [CrossRef]
- Morais, A.R.C.; Costa Lopes, A.M.; Bogel-Łukasik, R. Carbon dioxide in biomass processing: Contributions to the green biorefinery concept. Chem. Rev. 2015, 115, 3–27. [Google Scholar] [CrossRef] [PubMed]
- Rogalinski, T.; Liu, K.; Albrecht, T.; Brunner, G. Hydrolysis kinetics of biopolymers in subcritical water. J. Supercrit. Fluids 2008, 46, 335–341. [Google Scholar] [CrossRef]
- Long, S.; Linlin, Z.; Meihu, M. Study of high pressure carbon dioxide on the physicochemical, interfacial and rheological properties of liquid whole egg. Food Chem. 2021, 337, 127989. [Google Scholar] [CrossRef]
- Melgosa, R.; Trigueros, E.; Sanz, M.T.; Cardeira, M.; Rodrigues, L.; Fernández, N.; Matias, A.; Bronze, M.R.; Marques, M.; Paiva, A.; et al. Supercritical CO2 and subcritical water technologies for the production of bioactive extracts from sardine (Sardina pilchardus) waste. J. Supercrit. Fluids 2020, 164, 104943. [Google Scholar] [CrossRef]
- Rivas-Vela, C.I.; Castaño-Tostado, E.; Cardador-Martínez, A.; Amaya-Llano, S.L.; Castillo-Herrera, G. Subcritical water hydrolysis for the obtention of bioactive peptides from a grasshopper Sphenarium purpurascens protein concentrate. J. Supercrit. Fluids 2023, 197, 105893. [Google Scholar] [CrossRef]
- Striolo, A.; Favaro, A.; Elvassore, N.; Bertucco, A.; Di Noto, V. Evidence of conformational changes for protein films exposed to high -pressure CO2 by FT-IR spectorscopy. J. Supercrit. Fluids 2003, 27, 283–295. [Google Scholar] [CrossRef]
- Ma, M.; Ren, Y.; Xie, W.; Zhou, D.; Tang, S.; Kuang, M.; Wang, Y.; Du, S. Physicochemical and functional properties of protein isolate obtained from cottonseed meal. Food Chem. 2018, 240, 856–862. [Google Scholar] [CrossRef] [PubMed]
- Lima, J.C.; Seixas, F.A.V.; Coimbra, J.S.R.; Pimentel, T.C.; Barão, C.E.; Cardozo-Filho, L. Continuous fractionation of whey protein extracts by using supercritical carbon dioxide. J. CO2 Util. 2019, 30, 112–122. [Google Scholar] [CrossRef]
Component | g/100 g Tomato Seed Meal |
---|---|
Protein | 28.44 ± 0.19 |
Fat | 18.34 ± 0.21 |
Moisture | 8.18 ± 0.26 |
Crude fiber | 26.19 ± 1.36 |
Ash | 3.9 ± 0.14 |
* Carbohydrates | 14.95 * |
Factor | FC | EC | WHC | OHC | ES |
---|---|---|---|---|---|
Defatting | |||||
CO2 | 21.0 ± 9.0 A | 27.0 ± 5.9 A | 0.9 ± 0.2 A | 3.6 ± 0.6 A | 43.7 ± 10.8 A |
Hex | 5.4 ± 1.7 B | 5.1 ± 2.2 B | 0.8 ± 0.3 A | 2.9 ± 0.5 B | 0.9 ± 0.02 B |
Protein extraction | |||||
Salt | 0.9 ± 0.02 B | 8.4 ± 1.9 B | 1.2 ± 0.3 A | 3.8 ± 0.7 A | 38.7 ± 12.3 A |
Water | 25.6 ± 8.2 A | 23.8 ± 6.9 A | 0.5 ± 0.1 B | 2.8 ± 0.5 B | 6.0 ± 1.5 B |
pH | |||||
pH 5 | 6.3 ± 1.8 B | 14.6 ± 5.7 B | 0.2 ± 0.02 B | 1.4 ± 0.05 B | 17.4 ± 7.1 B |
pH 7 | 20.1 ± 9.1 A | 17.6 ± 5.4 A | 1.5 ± 0.2 A | 5.1 ± 0.4 A | 27.2 ± 12.1 A |
Significance | |||||
Defatting | ** | ** | NS | ** | ** |
Protein extraction | ** | ** | ** | ** | ** |
pH | ** | ** | ** | ** | ** |
Property | TSMH | TSMC | ||||||
---|---|---|---|---|---|---|---|---|
PEWHpH5 | PEWHpH7 | PESHpH5 | PESHpH7 | PEWCpH5 | PEWCpH7 | PESCpH5 | PESCpH7 | |
WHC * | 0.3 ± 0.0C | 0.5 ± 0.1C | 0.2 ± 0.03C | 2.4 ± 0.3A | 0.3 ± 0.0C | 1.2 ± 0.07B | 0.2 ± 0.0C | 2.0 ± 0.1A |
OHC + | 1.3 ± 0.05C | 3.2 ± 0.5B | 1.5 ± 0.05C | 5.9 ± 0.5A | 1.3 ± 0.0C | 5.2 ± 0.4A | 1.6 ± 0.1BC | 6.2 ± 0.3A |
FC (%) « | 13.3 ± 3.3B | 6.7 ± 1.6BC | 0.9 ± 0.06C | 0.9 ± 0.05C | 10.0 ± 0.0B | 72.2 ± 2.7A | 0.9 ± 0.05C | 0.9 ± 0.03C |
EC (%) α | 0.9 ± 0.03D | 0.9 ± 0.05D | 0.9 ± 0.03D | 17.8 ± 1.1B | 46.7 ± 3.3A | 46.7 ± 1.6A | 10.0 ± 0.0C | 4.8 ± 0.2CD |
ES (%) β | 0.9 ± 0.02C | 0.9 ± 0.05C | 0.9 ± 0.05C | 0.9 ± 0.05C | 11.3 ± 1.2C | 10.7 ± 0.3C | 56.7 ± 6.6B | 96.3 ± 3.7A |
Secondary Structure | TSMH | TSMC | ||
---|---|---|---|---|
PEWH | PESH | PEWC | PESC | |
Helix (%) | 19.2 ± 1.3 | 8.0 ± 1.2 | 24.4 ± 1.8 | NS |
Sheet (%) | 33.2 ± 1.5 | 48.7 ± 1.4 | 33.5 ± 1.1 | 48.5 ± 1.4 |
Turns (%) | 31.7 ± 1.9 | 32.0 ± 2.1 | 25.3 ± 1.6 | 30.4 ± 1.3 |
Unordered (%) | 15.9 ± 1.6 | 11.3 ± 1.7 | 16.8 ± 1.1 | 21.1 ± 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mateo-Roque, P.; Morales-Camacho, J.I.; Jara-Romero, G.J.; Rosas-Cárdenas, F.d.F.; Huerta-González, L.; Luna-Suárez, S. Supercritical CO2 Treatment to Modify Techno-Functional Properties of Proteins Extracted from Tomato Seeds. Foods 2024, 13, 1045. https://doi.org/10.3390/foods13071045
Mateo-Roque P, Morales-Camacho JI, Jara-Romero GJ, Rosas-Cárdenas FdF, Huerta-González L, Luna-Suárez S. Supercritical CO2 Treatment to Modify Techno-Functional Properties of Proteins Extracted from Tomato Seeds. Foods. 2024; 13(7):1045. https://doi.org/10.3390/foods13071045
Chicago/Turabian StyleMateo-Roque, Paola, Jocksan I. Morales-Camacho, Guadalupe Janet Jara-Romero, Flor de Fátima Rosas-Cárdenas, Luis Huerta-González, and Silvia Luna-Suárez. 2024. "Supercritical CO2 Treatment to Modify Techno-Functional Properties of Proteins Extracted from Tomato Seeds" Foods 13, no. 7: 1045. https://doi.org/10.3390/foods13071045
APA StyleMateo-Roque, P., Morales-Camacho, J. I., Jara-Romero, G. J., Rosas-Cárdenas, F. d. F., Huerta-González, L., & Luna-Suárez, S. (2024). Supercritical CO2 Treatment to Modify Techno-Functional Properties of Proteins Extracted from Tomato Seeds. Foods, 13(7), 1045. https://doi.org/10.3390/foods13071045