Relationships among Hydrogen Peroxide Concentration, Catalase, Glucose Oxidase, and Antimicrobial Activities of Honeys
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Honey Samples
2.3. Catalase and Glucose Oxidase Activity
2.4. Hydrogen Peroxide Concentration
2.5. Antimicrobial Activity
2.6. Statistical Analysis
3. Results and Discussion
3.1. Catalase and Glucose Oxidase Activity
3.2. Hydrogen Peroxide Concentration
- (1)
- Samples exhibiting the expected behavior, with H2O2 mainly being produced by the enzymatic pathway: (a) samples with high GOx activity and non-detected or low CAT activity with a medium-to-high H2O2 concentration (i.e., H1, H4, H6, H7, C); (b) samples with low GOx activity, showing low H2O2, regardless of the CAT activity (i.e., HD1, HD3, M1, M2, LV2), and (c) samples with high GOx activity and medium CAT activity with a medium-to-high H2O2 concentration (H2, H5, HD2, HD5).
- (2)
- Samples showing a lack of statistical correlation between GOx and H2O2 [23]: samples with high GOx and high CAT with medium-to-low H2O2 concentration (i.e., H8, HD4, M3). In these samples, although GOx would be able to produce H2O2, there is high CAT activity that breaks down H2O2, and therefore the catalase activity neutralizes H2O2.
- (3)
- Samples in which other factors could be responsible for H2O2 decomposition, such as metal-containing enzymes (i.e., superoxide dismutase), Fenton reaction in the presence of transition metals, ascorbic acid (can be oxidized by H2O2 to dehydroascorbic acid), light, and heat [17,42]: samples with medium-to-high GOx activity and non-detected or low CAT with a low H2O2 concentration (i.e., H3, H10, HB).
- (4)
- Samples showing medium-to-low GOx activity and high H2O2 concentration (H9, M4, LV1, and HH). In these samples, despite GOx being low, the GOX activity was enough to produce H2O2, there being a lack of or low CAT activity, as well as other pathways responsible for H2O2 decomposition, so that it is likely that H2O2 was kept for longer. Likewise, H2O2 could also be generated by other pathways, such as polyphenols, that in the presence of transition metals are involved in the generation of H2O2, through REDOX processes experienced by nectar, as well as by various fungi and yeasts such as Aspergillus sp. and Penicillum sp., Saccharomyces sp. [15,17,20,44].
3.3. Antimicrobial Activity
3.4. Modeling the Antimicrobial Activity by Means Multiple Regression Models
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hazrati, M.; Mehrabani, D.; Japoni, A.; Montasery, H.; Azarpira, N.; Hamidian-shirazi, A.R.; Tanideh, N. Effect of honey on healing of Pseudomonas aeruginosa infected burn wounds in rat. J. Appl. Anim. Res. 2010, 37, 161–165. [Google Scholar] [CrossRef]
- World Health Organization. WHO Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed. Available online: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 19 March 2024).
- Bogdanov, S. A Short History of Honey. The Book of Honey, Chapter 1. 2011. Available online: https://www.bee-hexagon.net/english/bee-products/downloads-honey-book/ (accessed on 19 March 2024).
- Wang, H.; Li, L.; Lin, X.; Bai, W.; Xiao, G.; Liu, G. Composition, functional properties and safety of honey: A review. J. Sci. Food Agric. 2023, 103, 6767–6779. [Google Scholar] [CrossRef] [PubMed]
- Dunford, C.R.; Cooper, P.; Molan, P.; White, R. The use of honey in wound treatment. Nurs. Stand. 2000, 15, 63. [Google Scholar] [CrossRef] [PubMed]
- Subrahmanyam, M. Topical application of honey for burn wound treatment-an overview. Ann. Burn. Fire Disasters 2007, 20, 137. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3188068/ (accessed on 8 April 2024).
- Majtan, J. Honey: An inmunomodulator in wound healing. Wound Repair Regen. 2014, 22, 187–192. [Google Scholar] [CrossRef]
- Hossain, M.L.; Lim, L.Y.; Hammer, K.; Hettiarachchi, D.; Locher, C. Honey-based medicinal formulations: A critical review. Appl. Sci. 2021, 11, 5159. [Google Scholar] [CrossRef]
- Feknous, N.; Boumendjel, M. Natural bioactive compounds of honey and their antimicrobial activity. Czech J. Food Sci. 2022, 40, 163–178. [Google Scholar] [CrossRef]
- Molan, P.C. The antibacterial activity of honey. Bee World 1992, 73, 59–76. [Google Scholar] [CrossRef]
- Almasaudi, S. The antibacterial activities of honey. Saudi J. Biol. Sci. 2021, 28, 2188–2196. [Google Scholar] [CrossRef]
- Nolan, V.C.; Harrison, J.; Cox, J.A.G. Dissecting the antimicrobial composition of honey. Antibiotics 2019, 8, 251. [Google Scholar] [CrossRef]
- Godocikova, J.; Bugarova, V.; Kast, C.; Majtan, V.; Majtan, J. Antibacterial potential of Swiss honeys and characterization of their bee-derived bioactive compounds. J. Sci. Food Agric. 2020, 100, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Weston, R.J. The contribution of catalase and other natural products to the antibacterial activity of honey: A review. Food Chem. 2000, 71, 235–239. [Google Scholar] [CrossRef]
- Bucekova, M.; Jardekova, L.; Jurivoca, V.; Bugarova, V.; Di Marco, G.; Gismondi, A.; Leonardi, D.; Farkasovska, J.; Godocikova, J.; Laho, M.; et al. Antibacterial activity of different blossom honeys: New findings. Molecules 2019, 24, 1573. [Google Scholar] [CrossRef] [PubMed]
- Khataybeh, B.; Jaradat, Z.; Ababneh, Q. Anti-bacterial, anti-biofilm and anti-quorum sensing activities of honey: A review. J. Ethnopharmacol. 2023, 317, 116830. [Google Scholar] [CrossRef] [PubMed]
- Brudzynski, K. A current perspective on hydrogen peroxide production in honey. A review. Food Chem. 2020, 332, 127229. [Google Scholar] [CrossRef] [PubMed]
- White, J.W.; Subers, M.H.; Schepartz, A.I. The identification of inhibine, the antibacterial factor in honey, as hydrogen peroxide and its origin in a honey glucose-oxidase system. Biochim. Biophys. Acta 1963, 73, 57–70. [Google Scholar] [CrossRef]
- Brudzynski, K. Effect of hydrogen peroxide on antibacterial activities of Canadian honeys. Can J. Microbiol. 2006, 52, 1228–1237. [Google Scholar] [CrossRef] [PubMed]
- Bucekova, M.; Valachova, I.; Kohutova, L.; Prochazka, E.; Klaudiny, J.; Majtan, J. Honeybee glucose oxidase-its expression in honeybee workers and comparative analyses of its content and H2O2-mediated antibacterial activity in natural honeys. Naturwissenschaften 2014, 101, 661–670. [Google Scholar] [CrossRef] [PubMed]
- Sagona, S.; Turchi, B.; Fratini, F.; Giusti, M.; Torracca, B.; Biondi, C.; Nuvoloni, R.; Cerri, D.; Felicioli, A. Antimicrobial activity of fifteen Italian honeys against Paenibacillus larvae ATCC 9545. J. Hellenic Vet. Med. Soc. 2017, 68, 547–556. [Google Scholar] [CrossRef]
- European Commission. Honey Market Presentation. Expert Group for Agricultural Markets. 2023. Available online: https://ec.europa.eu/info/food-farming-fisheries/animals-and-animal-products/animal-products/honey_en. (accessed on 19 March 2024).
- Bugarova, V.; Godocikova, J.; Bucekova, M.; Brodschneider, R.; Majtan, J. Effects of the carbohydrate sources nectar, sucrose and invert sugar on antibacterial activity of honey and bee-processed syrups. Antibiotics 2021, 10, 985. [Google Scholar] [CrossRef]
- Louveaux, J.; Maurizio, A.; Vorwohl, G. International Commission for Bee Botany of IUBS. In Methods of Melissopalynology. Bee World 1978, 59, 139–157. [Google Scholar] [CrossRef]
- Marcazzan, G.L.; Mucignat-Caretta, C.; Marchese, C.M.; Piana, M.L. A review of methods for honey sensory analysis. J. Apic. Res. 2018, 57, 75–87. [Google Scholar] [CrossRef]
- Persano Oddo, L.; Piro, R. Main European unifloral honeys: Descriptive sheets. Apidologie 2004, 35, 38–81. [Google Scholar] [CrossRef]
- Piana, M.L.; Persano Oddo, L.; Bentabol, A.; Bruneau, E.; Bogdanov, S.; Guyot Declerck, C. Sensory analysis applied to honey: State of the art. Apidologie 2004, 35, 26–37. [Google Scholar] [CrossRef]
- Terradillos, L.A.; Muniategui, S.; Sancho, M.T.; Huidobro, J.F.; Simal-Lozano, J. An alternative method for analysis of honey sediment. Bee Sci. 1994, 3, 86–93. Available online: https://www.researchgate.net/publication/235423715_An_Alternative_Method_For_Analysis_Of_Honey_Sediment (accessed on 8 April 2024).
- Von der Ohe, W.; Persano Oddo, L.; Piana, M.L.; Morlot, M.; Martin, P. Harmonized methods of melissopalynology. Apidologie 2004, 35, 18–25. [Google Scholar] [CrossRef]
- Huidobro, J.F.; Sánchez, M.P.; Muniategui, S.; Sancho, M.T. Precise method for the measurement of catalase activity in honey. J. AOAC Int. 2005, 88, 800–804. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Castro, M. Evolución de la Actividad de las Principales Enzimas de la miel “Producto Galego de Calidade-Mel de Galicia”. Ph.D. Thesis, Santiago de Compostela University, Santiago de Compostela, Spain, 1999. Available online: https://dialnet.unirioja.es/servlet/tesis?codigo=71751 (accessed on 19 March 2024).
- Schepartz, A.; Subers, M. Catalase in honey. J. Apic. Res. 1966, 5, 37–43. [Google Scholar] [CrossRef]
- International Honey Commission. Harmonised Methods of the International Honey Commission. 2009. World Network of Honey Science. Available online: https://www.ihc-platform.net/ihcmethods2009.pdf (accessed on 24 April 2024).
- Codex Alimentarius. Standard for Honey. 2001. FAO, World Health Organization. CXS, 12-1981. Available online: http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B12-1981%252FCXS_012e.pdf (accessed on 24 April 2024).
- EU Monitor. Council Directive 2001/110/EC of 20 December 2001 Relating to Honey. Off. J. Eur. Communities 2002, L10, 47–52. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32001L0110&from=EN (accessed on 10 April 2024).
- Strelec, I.; Crevar, B.; Kovaç, T.; Rajs, B.B.; Primorac, L.; Flanjak, I. Glucose oxidase activity and hydrogen peroxide accumulation in Croatian honeys. Croat. J. Food Sci. Technol. 2018, 10, 33–41. [Google Scholar] [CrossRef]
- Flanjak, I.; Strelec, I.; Kenjerić, D.; Primorac, L. Croatian produced unifloral honeys characterized according to the protein and proline content and enzyme activities. J. Apic. Sci. 2016, 60, 39–48. [Google Scholar] [CrossRef]
- Şahin, H.; Kolayli, S.; Beykaya, M. Comparison of the activity of invertase and glucose-oxidase of raw and commercial honey as a distinguishing parameter. Uludag Bee J. 2020, 20, 13–23. [Google Scholar] [CrossRef]
- Faúndez, X.; Báez, M.E.; Martínez, M.; Zúñiga-López, M.C.; Espinoza, J.; Fuentes, E. Evaluation of the generation of reactive oxygen species and antibacterial activity of honey as a function of its phenolic and mineral composition. Food Chem. 2023, 426, 136561. [Google Scholar] [CrossRef]
- Farkasovska, J.; Bugarova, V.; Godocikova, J.; Majtan, V.; Majtan, J. The role of hydrogen peroxide in the antibacterial activity of different floral honeys. Eur. Food Res. Technol. 2019, 245, 2739–2744. [Google Scholar] [CrossRef]
- Lin, T.; Huang, L.; Cheng, N.; Wang, Y.; Ning, Z.; Huang, S.; Wu, Y.; Chen, T.; Su, S.; Lin, Y. The in vitro and in vivo antibacterial activities of uniflorous honey from a medicinal plant, Scrophularia ningpoensis Hemsl., and characterization of its chemical profile with UPLC-MS/MS. J. Ethnopharmacol. 2022, 296, 115499. [Google Scholar] [CrossRef] [PubMed]
- Dustman, J.H. Messung von Wasserstoffperoxid und enzymaktivität in mitteleneuropäischen honigen. Z. Bienenforsch. 1967, 9, 66–73. [Google Scholar]
- Madras-Majewska, B. Selected mechanisms of the antimicrobial effect of honey in the aspect of drug resistance of bacteria. Med. Weter 2022, 78, 597–605. [Google Scholar] [CrossRef]
- Bucekova, M.; Buriova, M.; Pekarik, L.; Majtan, V.; Majtan, J. Phytochemicals-mediated production of hydrogen peroxide is crucial for high antibacterial activity of honeydew honey. Sci. Rep. 2018, 8, 9061. [Google Scholar] [CrossRef]
- Bucekova, M.; Godocikova, J.; Gueyte, R.; Chambrey, C.; Majtan, J. Characterisation of physicochemical parameters and antibacterial properties of New Caledonian honeys. PLoS ONE 2023, 18, e0293730. [Google Scholar] [CrossRef]
- Tsavea, E.; Vardaka, F.P.; Savvidaki, E.; Kellil, A.; Kanelis, D.; Bucekova, M.; Grigorakis, S.; Godocikova, J.; Gotsiou, P.; Dimou, M.; et al. Physicochemical characterization and biological properties of pne honey produced across Greece. Foods 2022, 11, 943. [Google Scholar] [CrossRef]
- Di Marco, G.; Gismondi, A.; Panzanella, L.; Canuti, L.; Impei, S.; Leonardi, D.; Canini, A. Botanical influence on phenolic profile and antioxidant level of Italian honeys. J. Food Sci. Technol. 2018, 55, 4042–4050. [Google Scholar] [CrossRef] [PubMed]
- Alevia, M.; Rasines, S.; Cantero, L.; Sancho, M.T.; Fernández-Muiño, M.A.; Osés, S.M. Chemical extraction and gastrointestinal digestion of honey: Influence on its antioxidant, antimicrobial and anti-inflammatory activities. Foods 2021, 10, 1412. [Google Scholar] [CrossRef] [PubMed]
- Moussa, A.; Noureddine, D.; Mohamed, H.S.; Abdelmelek, M.; Saad, A. Antibacterial activity of various honey types of Algeria Against Staphylococcus aureus and Streptococcus pyogenes. Asian Pac. J. Trop. Med. 2012, 5, 773–776. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, A.; Karanmolah, K.S.; Mahnaie, M.P.; Mousavi, F.; Moghadam, P.M.; Mahmoudi, H. Antibacterial activity of honey against methicillin-resistant and sensitive Staphylococcus aureus isolated from patients with diabetic foot ulcer. Open Microbiol. J. 2020, 14, 260–265. [Google Scholar] [CrossRef]
Honey | Botanical Origin | Scientific Name |
---|---|---|
H1 | Ling heather | Calluna vulgaris |
H2 | Ling heather | Calluna vulgaris |
H3 | Ling heather | Calluna vulgaris |
H4 | Ling heather | Calluna vulgaris |
H5 | Ling heather | Calluna vulgaris |
H6 | Ling heather | Calluna vulgaris |
H7 | Ling heather | Calluna vulgaris |
H8 | Ling heather | Calluna vulgaris |
H9 | Ling heather | Calluna vulgaris |
H10 | Ling heather | Calluna vulgaris |
HB | Ling heather and Broom | Calluna vulgaris, Retama sp. |
HD1 | Honeydew | |
HD2 | Honeydew | |
HD3 | Honeydew | |
HD4 | Honeydew | |
HD5 | Honeydew | |
M1 | Multifloral | |
M2 | Multifloral | |
M3 | Multifloral | |
M4 | Multifloral | |
LV1 | Lavender | Lavandula sp. |
LV2 | Lavender | Lavandula sp. |
HH | Holly | Ilex aquifolium |
C | Cornflower | Centaurea cyanus |
CAT | GOx | H2O2 | MIC | MBC | % Inh. (5%) | |
---|---|---|---|---|---|---|
CAT | ||||||
GOx | 0.2894 * | |||||
H2O2 | −0.2175 | −0.1157 | ||||
MIC | 0.6411 *** | −0.0086 | −0.0919 | |||
MBC | 0.4368 ** | −0.1252 | −0.1480 | 0.7193 *** | ||
% Inh. (5%) | −0.3784 ** | 0.1733 | −0.0298 | −0.4841 *** | −0.5125 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osés, S.M.; Rodríguez, C.; Valencia, O.; Fernández-Muiño, M.A.; Sancho, M.T. Relationships among Hydrogen Peroxide Concentration, Catalase, Glucose Oxidase, and Antimicrobial Activities of Honeys. Foods 2024, 13, 1344. https://doi.org/10.3390/foods13091344
Osés SM, Rodríguez C, Valencia O, Fernández-Muiño MA, Sancho MT. Relationships among Hydrogen Peroxide Concentration, Catalase, Glucose Oxidase, and Antimicrobial Activities of Honeys. Foods. 2024; 13(9):1344. https://doi.org/10.3390/foods13091344
Chicago/Turabian StyleOsés, Sandra M., Carlos Rodríguez, Olga Valencia, Miguel A. Fernández-Muiño, and M. Teresa Sancho. 2024. "Relationships among Hydrogen Peroxide Concentration, Catalase, Glucose Oxidase, and Antimicrobial Activities of Honeys" Foods 13, no. 9: 1344. https://doi.org/10.3390/foods13091344
APA StyleOsés, S. M., Rodríguez, C., Valencia, O., Fernández-Muiño, M. A., & Sancho, M. T. (2024). Relationships among Hydrogen Peroxide Concentration, Catalase, Glucose Oxidase, and Antimicrobial Activities of Honeys. Foods, 13(9), 1344. https://doi.org/10.3390/foods13091344