Effects of Extraction Temperature of Protein from Date Palm Pollen on the Astringency Taste of Tea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Proximate Composition and Bio-Active Compounds of Date Palm Pollen
2.2.1. Chemical Composition Analysis
2.2.2. Polyphenols Extraction and Determination
2.2.3. Determination of Flavonoids
2.3. Preparation of Date Palm Pollen Protein Concentrates by Isoelectric Participate Method
2.4. Determination of Date Palm Pollen Protein Properties
Determination of Extraction and Protein Yields
2.5. Scanning Electronic Microscopy (SEM)
2.6. Differential Scanning Calorimetry (DSC)
2.7. Surface Tension Measurement
2.8. Sensory Evaluation
2.9. Preparation of Protein Solution and Tea Polyphenol Solution
Particle Size Measurements
2.10. Fourier Transform Infrared (FTIR) Spectroscopy
2.11. Circular Dichroism (CD) Measurement
2.12. UV–Vis Absorption Spectra
2.13. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition and Bio-Active Components
3.1.1. Chemical Composition
3.1.2. Bio-Active Components of DPP
3.2. Effect of Temperature on Protein Extraction and Yield from DPP
3.3. Scanning Electron Microscopy (SEM)
3.4. The Effect of Temperature on Differential Scanning Calorimetry (DSC)
3.5. The Effect of Temperature on Surface Tension
3.6. Descriptive Sensory Evaluation
3.7. Analysis of the Interaction Between DPP and EGCG
3.8. FTIR-ATR Analysis
3.9. Circular Dichroism Analysis (CD)
3.10. Ultraviolet–Visible (UV–VIS) Spectrophotometry
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fan, F.Y.; Huang, C.S.; Tong, Y.L.; Guo, H.W.; Zhou, S.J.; Ye, J.H.; Gong, S.Y. Widely targeted metabolomics analysis of white peony teas with different storage time and association with sensory attributes. Food Chem. 2021, 362, 130257. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Cao, Q.Q.; Granato, D.; Xu, Y.Q.; Ho, C.T. Association between chemistry and taste of tea: A review. Trends Food Sci. Technol. 2020, 101, 139–149. [Google Scholar] [CrossRef]
- Yi, H.D.; Jia, R.W.; Xiao, Q.C. Interactions between tea polyphenols and nutrients in food. Compr. Rev. Food Sci. Food Saf. 2023, 22, 3130–3150. [Google Scholar] [CrossRef]
- Dong, Z.B.; Lu, J.L.; Sun, Q.L.; Dong, J.J.; Liang, Y.R. Advances on research of haze- active proteins in beverage. Food Ferment. Ind. 2009, 35, 136–139. Available online: http://sf1970.cnif.cn/EN/Y2009/V35/I5/136 (accessed on 25 May 2009).
- Buitimea-Cantúa, N.E.; Gutiérrez-Uribe, J.A.; Serna-Saldívar, S.O. Phenolic–protein interactions: Effects on food properties and health benefits. J. Med. Food 2017, 21, 188–198. [Google Scholar] [CrossRef]
- Yildirim-Elikoglu, S.; Erdem, Y.K. Interactions between milk proteins and polyphenols: Binding mechanisms, related changes, and the future trends in the dairy industry. Food Rev. Int. 2017, 34, 665–697. [Google Scholar] [CrossRef]
- Jöbstl, E.; O’Connell, J.; Fairclough, J.P.A.; Williamson, M.P. Molecular model for astringency produced by polyphenol/protein interactions. Biomacromolecules 2004, 5, 942–949. [Google Scholar] [CrossRef]
- Bandyopadhyay, P.; Ghosh, A.K.; Ghosh, C. Recent developments on polyphenol–protein interactions: Effects on tea and coffee taste, antioxidant properties and the digestive system. Food Funct. 2012, 3, 592–605. [Google Scholar] [CrossRef]
- Ge, G.; Guo, W.; Zheng, J.; Zhao, M.; Sun, W. Effect of interaction between tea polyphenols with soymilk protein on inactivation of soybean trypsin inhibitor. Food Hydrocoll. 2021, 111, 106177. [Google Scholar] [CrossRef]
- Hassan, H. Chemical composition and nutritional value of palm pollen grains. Glob. J. Biotechnol. Biochem. 2011, 6, 1–7. [Google Scholar]
- Ge, G.; Zhao, J.; Zheng, J.; Zhou, X.; Zhao, M.; Sun, W. Green tea polyphenols bind to soy proteins and decrease the activity of soybean trypsin inhibitors (STIs) in heated soymilk. Food Funct. 2022, 13, 6726–6736. [Google Scholar] [CrossRef]
- Sebii, H.; Karra, S.; Bchir, B.; Ghribi, A.M.; Danthine, S.; Blecker, C.; Besbes, S. Effect of sonication pretreatment on physico-chemical, surface and thermal properties of date palm pollen protein concentrate. LWT 2019, 106, 128–136. [Google Scholar] [CrossRef]
- Karra, S.; Sebii, H.; Bouaziz, A.M.; Blecker, C.; Danthine, S.; Attia, H.; Besbes, S. Effect of sonication pre-treatment on physico-chemical, surface, thermal and functional properties of fibro proteic extracts from male date palm flowers. J. Food Process. Preserv. 2020, 44, 14963. [Google Scholar] [CrossRef]
- AOAC. Association of Official Analytical Chemists. Official Methods of Analysis, 22nd ed.; AOAC International: Washington, DC, USA, 2023. [Google Scholar]
- Sebii, H.; Karra, S.; Bchir, B.; Ghribi, A.M.; Danthine, S.; Blecker, C.; Attia, H.; Besbes, S. Physico-chemical, surface and thermal properties of date palm pollen as a novel nutritive ingredient. Adv. Food Tech. Nutri. Sci. Open J. 2019, 5, 84–91. [Google Scholar] [CrossRef]
- Serea, C.; Barna, O. Phenolic content and antioxidant activity in oat. Anal. Food Sci. Technol. 2011, 12, 164–168. [Google Scholar]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Yang, W.; Liu, F.; Xu, C.; Yuan, F.; Gao, Y. Molecular interaction between (−)-epigallocatechin-3-gallate and bovine lactoferrin using multi-spectroscopic method and isothermal titration calorimetry. Food Res. Int. 2014, 64, 141–149. [Google Scholar] [CrossRef]
- Zhong, S.; Luo, L.; Pittia, P.; Xie, J.; Wen, H.; Luo, W.; Zeng, L. Studies on the effects of preheated β-lactoglobulin on the physicochemical properties of theaflavin-3,3’-digallate and the interaction mechanism. Food Hydrocoll. 2024, 154, 110087. [Google Scholar] [CrossRef]
- Shahin, F.M.I. Utilization of date palm pollen as natural source for producing function bakery product. Egypt. J. Agric. Res. 2014, 92, 1457–1470. [Google Scholar] [CrossRef]
- Abdel-Shaheed, M.M.; Abdalla, E.S.; Khalil, A.F.; El-Hadidy, E.M. Effect of Egyptian Date Palm Pollen (Phoenix dactylifera L.) and Its Hydroethanolic Extracts on Serum Glucose and Lipid Profiles in Induced Diabetic Rats. Food Nutr. Sci. 2021, 12, 147–161. [Google Scholar] [CrossRef]
- Salomón-Torres, R.; Krueger, R.; García-Vázquez, J.P.; Villa-Angulo, R.; Villa-Angulo, C.; Ortiz-Uribe, N.; Sol-Uribe, J.A.; Samaniego-Sandoval, L. Date Palm Pollen: Features, Production, Extraction and Pollination Methods. Agronomy 2021, 11, 504. [Google Scholar] [CrossRef]
- Daoud, A.; Malika, D.; Bakari, S.; Hfaiedh, N.; Mnafgui, K.; Kadri, A.; Gharsallah, N. Assessment of polyphenol composition, antioxidant and antimicrobial properties of various extracts of Date Palm Pollen (DPP) from two Tunisian cultivars. Arab. J. Chem. 2019, 12, 3075–3086. [Google Scholar] [CrossRef]
- LeBlanc, B.W.; Davis, O.K.; Boue, S.; DeLucca, A.; Deeby, T. Antioxidant activity of Sonoran Desert bee pollen. Food Chem. 2009, 115, 1299–1305. [Google Scholar] [CrossRef]
- Karra, S.; Sebii, H.; Jardak, M.; Bouaziz, M.A.; Hamadi Attia, H.; Blecker, C.; Besbes, S. Male date palm flowers: Valuable nutritional food ingredients and alternative antioxidant source and antimicrobial agent. South Afr. J. Bot. 2020, 131, 181–187. [Google Scholar] [CrossRef]
- Chandrapala, J.; Zisu, B.; Palmer, M.; Kentish, S.; Ashokkumar, M. Effects of ultrasounds on the thermal and structural characteristics of proteins in reconstituted whey protein concentrate. Ultrason. Sonochem. 2011, 18, 951–957. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.R.; Xu, L.; Xiang, R.; Liu, X.M.; Zhu, M.J. Effects of mulberry polyphenols on oxidation stability of sarcoplasmic and myofibrillar proteins in dried minced pork slices during processing and storage. Meat Sci. 2020, 160, 107973. [Google Scholar] [CrossRef]
- Kasprzyk, I.; Depciuch, J.; Grabek-Lejko, D.; Parlinska-Wojtan, M. FTIR-ATR spectroscopy of pollen and honey as a tool for unifloral honey authentication. The case study of rape honey. Food Control 2018, 84, 33–40. [Google Scholar] [CrossRef]
- Andrade, J.; Pereira, C.G.; de Almeida, J.C., Jr.; Viana, C.C.R.; de Oliveira Neves, L.N.; da Silva, P.H.F.; dos Anjos, V.D.C. FTIR-ATR determination of protein content to evaluate whey protein concentrate adulteration. LWT-Food Sci. Technol. 2019, 99, 166–172. [Google Scholar] [CrossRef]
- Ye, J.; Fan, F.; Xu, X.; Liang, Y. Interactions of black and green tea polyphenols with whole milk. Food Res. Int. 2013, 53, 449–455. [Google Scholar] [CrossRef]
- Yu, X.; Cai, X.; Li, S.; Luo, L.; Wang, J.; Wang, M.; Zeng, L. Studies on the interactions of theaflavin-3,3′-digallate with bovine serum albumin: Multispectroscopic analysis and molecular docking. Food Chem. 2022, 366, 130422. [Google Scholar] [CrossRef] [PubMed]
- Qiu, C.J.; Xia, W.S.; Jiang, Q.X. Pressure-induced changes of silver carp (Hypophthalmichthys molitrix) myofibrillar protein structure. Eur. Food Res. Technol. 2014, 238, 753–761. [Google Scholar] [CrossRef]
- Kanakis, C.; Hasni, I.; Bourassa, P.; Tarantilis, P.; Polissiou, M.; Tajmir-Riahi, H.-A. Milk β-lactoglobulin complexes with tea polyphenols. Food Chem. 2011, 127, 1046–1055. [Google Scholar] [CrossRef]
- Wu, X.; He, W.; Yao, L.; Zhang, H.; Liu, Z.; Wang, W.; Ye, Y.; Cao, J. Characterization of binding interactions of (−)-epigallocatechin-3-gallate from green tea and lipase. J. Agric. Food Chem. 2013, 61, 8829–8835. [Google Scholar] [CrossRef]
- Chong Tan, C.; Qian-Da Xu, Q.; Nan Chen, N.; Qiang He, Q.; Qun Sun, Q.; Zeng, W. Cross-linking effects of EGCG on myofibrillar protein from common carp (Cyprinus carpio) and the action mechanism. J. Food Biochem. 2022, 46, e14416. [Google Scholar] [CrossRef]
- Cong, J.; Cui, J.; Zhang, H.; Dzah, C.S.; He, Y.; Duan, Y. Binding affinity, antioxidative capacity and in vitro digestion of complexes of grape seed procyanidins and pork, chicken and fish protein. Food Res. Int. 2020, 136, 109530. [Google Scholar] [CrossRef]
- Abdollahi, K.; Ince, C.; Condict, L.; Hung, A.; Kasapis, S. Combined spectroscopic and molecular docking study on the pH dependence of molecular interactions between β-lactoglobulin and ferulic acid. Food Hydrocoll. 2020, 101, 105461. [Google Scholar] [CrossRef]
- You, Y.; Yang, L.; Chen, H.; Xiong, L.; Yang, F. Effects of (−)-Epigallocatechin-3-gallate on the Functional and Structural Properties of Soybean Protein Isolate. J. Agric. Food Chem. 2021, 69, 2306–2315. [Google Scholar] [CrossRef]
- Haslam, E.; Williamson, M.P.; Baxter, N.J.; Charlton, A.J. Astringency and Polyphenol Protein Interactions. In Phytochemicals in Human Health Protection, Nutrition, and Plant Defense; Recent Advances in Phytochemistry; Springer: Berlin/Heidelberg, Germany, 1999; Volume 33, p. 289. [Google Scholar]
Components | Values |
---|---|
Moisture content (%) | 7.13 ± 0.35 |
Ash content (%) | 2.91 ± 0.13 |
Fiber content (%) | 2.67 ± 0.22 |
Fat content (%) | 20.00 ± 0.01 |
Protein content (%) | 34.42 ± 0.58 |
Carbohydrate content (%) | 32.88 ± 0.14 |
Polyphenols content (mg/100 g) | 227.46 ± 0.16 |
Flavonoids content (mg/100 g) | 6.37 ± 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed, R.; Xie, J.; Wei, F.; Luo, L.; Luo, W.; Zeng, L. Effects of Extraction Temperature of Protein from Date Palm Pollen on the Astringency Taste of Tea. Foods 2025, 14, 508. https://doi.org/10.3390/foods14030508
Mohamed R, Xie J, Wei F, Luo L, Luo W, Zeng L. Effects of Extraction Temperature of Protein from Date Palm Pollen on the Astringency Taste of Tea. Foods. 2025; 14(3):508. https://doi.org/10.3390/foods14030508
Chicago/Turabian StyleMohamed, Rania, Jizhou Xie, Fang Wei, Liyong Luo, Wei Luo, and Liang Zeng. 2025. "Effects of Extraction Temperature of Protein from Date Palm Pollen on the Astringency Taste of Tea" Foods 14, no. 3: 508. https://doi.org/10.3390/foods14030508
APA StyleMohamed, R., Xie, J., Wei, F., Luo, L., Luo, W., & Zeng, L. (2025). Effects of Extraction Temperature of Protein from Date Palm Pollen on the Astringency Taste of Tea. Foods, 14(3), 508. https://doi.org/10.3390/foods14030508