The Effect of Frying Conditions on the Physical and Chemical Quality Attributes of Clearhead Icefish (Protosalanx hyalocranius) During Deep Frying and Air Frying
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Regents
2.2. Preparation of Frying Clearhead Icefish
2.3. Water Content
2.4. Oil Content
2.5. Volumetric Shrinkage
2.6. Color
2.7. Texture
2.8. Thiobarbituric Reactive Substances (TBARS)
2.9. Sensory Evaluation
2.10. Statistical Analysis
3. Results and Discussion
3.1. Water and Oil Content
3.2. Volumetric Shrinkage
3.3. Color
3.4. Texture
3.5. TBARS
3.6. Appearance and Sensory Evaluation
3.7. Correlation Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, C.C.; Chen, L.; McClements, D.J.; Liu, W.M.; Long, J.; Qiu, C.; Wang, Y.; Yang, Z.Y.; Xu, Z.L.; Meng, M.; et al. Utilization of plant extracts to control the safety and quality of fried foods—A review. Compr. Rev. Food Sci. F. 2023, 22, 2310–2345. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Sun, F.D.; Xia, X.F.; Liu, Q. Excessive oil absorption and maillard reaction products in fried muscle foods: Formation mechanisms, potential health risks and mitigation strategies. Food Chem. 2025, 468, 142456. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Wu, G.C.; Lu, Y.; Li, P.Y.; Qi, X.G.; Zhang, H.; Wang, X.G.; Jin, Q.Z. Comparative analysis of the effects of novel electric field frying and conventional frying on the quality of frying oil and oil absorption of fried shrimps. Food Control. 2021, 128, 108195. [Google Scholar] [CrossRef]
- Chu, J.; Lin, S.; Fu, B.; Meng, X.; Qiang, J.; Zhang, S. Effects of deep, air and vacuum frying on oyster quality and protein-mediated mechanism analysis via TMT quantitative proteomics. Food Chem. 2024, 460, 140654. [Google Scholar] [CrossRef]
- Yu, X.; Li, L.; Xue, J.; Wang, J.; Song, G.; Zhang, Y.; Shen, Q. Effect of air-frying conditions on the quality attributes and lipidomic characteristics of surimi during processing. Innov. Food Sci. Emerg. 2020, 60, 102305. [Google Scholar] [CrossRef]
- Ran, X.; Lin, D.; Zheng, L.; Li, Y.; Yang, H. Kinetic modelling of the mass and heat transfer of a plant-based fishball alternative during deep-fat frying and air frying and the changes in physicochemical properties. J. Food Eng. 2023, 350, 111457. [Google Scholar] [CrossRef]
- Wang, Q.L.; Yang, Q.; Kong, X.P.; Chen, H.Q. Effect of pre-drying and post-frying holding treatments on the oil absorption and quality of fried batter-coated peanuts. Food Chem. 2024, 443, 138617. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Kim, H.Y. Effect of lyophilized chive (Allium wakegi Araki) supplementation to the frying batter mixture on quality attributes of fried chicken breast and tenderloin. Food Chem. X 2022, 13, 100216. [Google Scholar] [CrossRef]
- Salehi, F.; Ghazvineh, S.; Amiri, M. Effect of basil seed gum coating and ultrasound pretreatment on frying time, oil uptake, hardness, color indexes, and sensory properties of potato slices. Ultrason. Sonochem. 2024, 110, 107035. [Google Scholar] [CrossRef]
- Han, P.; Zhang, Q.; Wang, X.; Zhou, P.; Dong, S.; Zha, F.; Zeng, M. Formation of advanced glycation end products in sturgeon patties affected by pan-fried and deep-fried conditions. Food Res. Int. 2022, 162, 112105. [Google Scholar] [CrossRef]
- Qin, R.; Wu, R.; Shi, H.; Jia, C.; Rong, J.; Liu, R. Formation of AGEs in fish cakes during air frying and other traditional heating methods. Food Chem. 2022, 391, 133213. [Google Scholar] [CrossRef] [PubMed]
- GB 5009.3-2016; Determination of moisture content in foods. China Standard Press: Beijing, China, 2016.
- GB 5009.6-2016; Determination of oil content in foods. China Standard Press: Beijing, China, 2016.
- Li, P.Y.; Wu, G.C.; Yang, D.; Zhang, H.; Qi, X.G.; Jin, Q.Z.; Wang, X.G. Effect of multistage process on the quality, water and oil distribution and microstructure of French fries. Food Res. Int. 2020, 137, 109229. [Google Scholar] [CrossRef] [PubMed]
- Bouaziz, F.; Koubaa, M.; Neifar, M.; Zouari-Ellouzi, S.; Besbes, S.; Chaari, F.; Kamoun, A.; Chaabouni, M.; Chaabouni, S.E.; Ghorbel, R.E. Feasibility of using almond gum as coating agent to improve the quality of fried potato chips: Evaluation of sensorial properties. LWT Food Sci. Techno. 2016, 65, 800–807. [Google Scholar] [CrossRef]
- Li, Y.; Rui, L.T.; Zhang, H.; Xia, X.F. Enhanced oxidative stability and quality of chilled mirror carp fillet using an antioxidant film of chitosan/clove essential oil nanoemulsion. Food Biosci. 2024, 61, 105018. [Google Scholar] [CrossRef]
- Bhuiyan, M.; Ngadi, M.O. Impact of batter solid-water ratio and frying time on meat-analog based coated fried food. LWT Food Sci. Technol. 2024, 191, 115647. [Google Scholar] [CrossRef]
- Chen, Y.W.; Cai, W.Q.; Shi, Y.G.; Dong, X.P.; Bai, F.; Shen, S.K.; Jiao, R.; Zhang, X.Y.; Zhu, X. Effects of different salt concentrations and vacuum packaging on the shelf-stability of Russian sturgeon (Acipenser gueldenstaedti) stored at 4 °C. Food Control. 2020, 109, 106865. [Google Scholar] [CrossRef]
- Shi, S.; Xu, X.W.; Ren, Y.M.; Zhang, H.; Du, X.; Li, H.J.; Xia, X.F. Beeswax coating improves the hydrophobicity of sodium alginate/anthocyanin/cellulose nanocrystal indicator film. Food Hydrocoll. 2023, 144, 108930. [Google Scholar] [CrossRef]
- Zhao, M.N.; Li, Y.; Bai, X.; Feng, J.; Xia, X.F.; Li, F.F. Inhibitory Effect of Guava Leaf Polyphenols on Advanced Glycation End Products of Frozen Chicken Meatballs (−18 °C) and Its Mechanism Analysis. Foods 2022, 11, 2509. [Google Scholar] [CrossRef]
- Castro-López, R.; Mba, O.I.; Gómez-Salazar, J.A.; Cerón-García, A.; Ngadi, M.O.; Sosa-Morales, M.E. Evaluation of chicken nuggets during air frying and deep-fat frying at different temperatures. Int. J. Gastron. Food Sci. 2023, 31, 100631. [Google Scholar] [CrossRef]
- Verma, V.; Singh, V.; Chauhan, O.P.; Yadav, N. Comparative evaluation of conventional and advanced frying methods on hydroxymethylfurfural and acrylamide formation in French fries. Innov. Food Sci. Emerg. Technol. 2023, 83, 103233. [Google Scholar] [CrossRef]
- Fang, M.; Huang, G.J.; Sung, W.C. Mass transfer and texture characteristics of fish skin during deep-fat frying, electrostatic frying, air frying and vacuum frying. LWT Food Sci. Technol. 2021, 137, 110494. [Google Scholar] [CrossRef]
- Wang, Q.L.; Yang, Q.; Kong, X.P.; Chen, H.Q. The addition of resistant starch and protein to the batter reduces oil uptake and improves the quality of the fried batter-coated nuts. Food Chem. 2024, 438, 137992. [Google Scholar] [CrossRef]
- Gouyo, T.; Rondet, É.; Mestres, C.; Hofleitner, C.; Bohuon, P. Microstructure analysis of crust during deep-fat or hot-air frying to understand French fry texture. J. Food Eng. 2021, 298, 110484. [Google Scholar] [CrossRef]
- Patra, A.; Prasath, V.A.; Sutar, P.P.; Pandian, N.K.S.; Pandiselvam, R. Evaluation of effect of vacuum frying on textural properties of food products. Food Res. Int. 2022, 162, 112074. [Google Scholar] [CrossRef] [PubMed]
- Li, P.Y.; Wu, G.C.; Yang, D.; Zhang, H.; Qi, X.G.; Jin, Q.Z.; Wang, X.G. Analysis of quality and microstructure of freshly potato strips fried with different oils. LWT Food Sci. Technol. 2020, 133, 110038. [Google Scholar] [CrossRef]
- Wang, Z.; Cai, R.; Yang, X.; Gao, Z.; Yuan, Y.; Yue, T. Changes in aroma components and potential Maillard reaction products during the stir-frying of pork slices. Food Control 2021, 123, 107855. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Wu, Z.X.; Zhao, G.H.; Li, D.Y.; Liu, Y.X.; Qin, L.; Jiang, P.F.; Zhou, D.Y. Effect of air frying and baking on physicochemical properties and digestive properties of scallop (Patinopecten yessoensis) adductor muscle. Food Biosci. 2023, 52, 102460. [Google Scholar] [CrossRef]
- Wang, X.C.; McClements, D.J.; Xu, Z.L.; Meng, M.; Qiu, C.; Long, J.; Jin, Z.Y.; Chen, L. Recent advances in the optimization of the sensory attributes of fried foods: Appearance, flavor, and texture. Trends Food Sci. Technol. 2023, 138, 297–309. [Google Scholar] [CrossRef]
- Sanz, T.; Primo-Martín, C.; Vliet, T.V. Characterization of crispness of French fries by fracture and acoustic measurements, effect of pre-frying and final frying times. Food Res. Int. 2007, 40, 63–70. [Google Scholar] [CrossRef]
- Iliassafov, L.; Shimoni, E. Predicting the sensory crispness of coated turkey breast by its acoustic signature. Food Res. Int. 2007, 40, 827–834. [Google Scholar] [CrossRef]
- Yao, Y.S.; Wang, X.M.; Cui, H.P.; Hayat, K.; Zhang, X.M.; Ho, C.T. Improved tenderness and water retention of pork pieces and its underlying molecular mechanism through the combination of low-temperature preheating and traditional cooking. Food Chem. 2023, 421, 136137. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.; Wang, Y.; Huang, X.; Dong, X.; Zhou, D.; Qi, L.; Qin, L. The formation and conversion of characteristic aroma profiles and key harmful substances in different high-temperature processing of hairtail (Trichiurus Haumela). Food Res. Int. 2024, 187, 114323. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.A.; Shi, B.; Shi, H.; Zhu, Z.; Khan, A.; Zhao, D.; Cheng, K.W. Attenuation of heterocyclic amine formation and lipid and protein oxidation in air-fried fish fillets by marination with selected legume seed extracts. Food Chem. 2024, 435, 137592. [Google Scholar] [CrossRef]
- Kong, X.P.; Yang, Q.; Wang, Q.L.; Chen, H.Q. Effects of ball milling treated wheat flour and maltodextrin on the texture and oil absorption properties of fried batter-coated cashews and almonds. Food Chem. 2024, 460, 140627. [Google Scholar] [CrossRef]
- Oloruntoba, D.; Ampofo, J.; Ngadi, M. Effect of ultrasound pretreated hydrocolloid batters on quality attributes of fried chicken nuggets during post-fry holding. Ultrason. Sonochem. 2022, 91, 106237. [Google Scholar] [CrossRef] [PubMed]
- Bhuiyan, M.H.R.; Ngadi, M. Thermomechanical transitions of meat-analog based fried foods batter coating. Food Chem. 2024, 447, 138953. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Fan, L. Effect of pore characteristics on oil absorption behavior during frying of potato chips. Innov. Food Sci. Emerg. Technol. 2020, 66, 102508. [Google Scholar] [CrossRef]
- Ding, Y.; Zhou, T.; Liao, Y.; Lin, H.; Deng, S.; Zhang, B. Comparative studies on the physicochemical and volatile flavour properties of traditional deep fried and circulating-air fried hairtail (Trichiurus lepturus). Foods 2022, 11, 2710. [Google Scholar] [CrossRef]
Frying Methods | Frying Parameters | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Deep frying | 160 °C | 170 °C | 180 °C | |||||||||
0 min | 2 min | 3 min | 4 min | 0 min | 2 min | 3 min | 4 min | 0 min | 2 min | 3 min | 4 min | |
80.79 ± 0.54 A | 48.77 ± 2.35 B,a | 28.48 ± 2.06 C,a | 22.75 ± 0.36 D,a | 80.79 ± 0.54 A | 36.27 ± 0.26 B,b | 22.56 ± 1.36 C,b | 15.50 ± 0.64 D,b | 80.79 ± 0.54 A | 22.53 ± 1.04 B,c | 18.47 ± 0.71 C,c | 11.17 ± 1.24 D,c | |
Air frying | 180 °C | 190 °C | 200 °C | |||||||||
0 min | 7 min | 8 min | 9 min | 0 min | 7 min | 8 min | 9 min | 0 min | 7 min | 8 min | 9 min | |
80.79 ± 0.54 A | 38.42 ± 0.25 B,a | 29.90 ± 0.26 C,a | 29.34 ± 0.67 C,a | 80.79 ± 0.54 A | 30.82 ± 1.24 B,b | 26.97 ± 0.71 C,b | 23.85 ± 1.15 D,b | 80.79 ± 0.54 A | 28.21 ± 0.71 B,c | 18.12 ± 0.59 C,c | 13.41 ± 0.31 D,c |
Frying Methods | Frying Parameters | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Deep frying | 160 °C | 170 °C | 180 °C | |||||||||
0 min | 2 min | 3 min | 4 min | 0 min | 2 min | 3 min | 4 min | 0 min | 2 min | 3 min | 4 min | |
4.63 ± 0.20 B | 17.92 ± 1.05 A,b | 19.05 ± 1.09 A,b | 18.57 ± 1.85 A,a | 4.63 ± 0.20 B | 23.64 ± 0.33 A,a | 21.77 ± 0.88 A,a | 22.35 ± 1.66 A,a | 4.63 ± 0.20 B | 25.05 ± 0.93 A,a | 23.50 ± 0.55 A,B,a | 21.93 ± 1.13 B,a | |
Air frying | 180 °C | 190 °C | 200 °C | |||||||||
0 min | 7 min | 8 min | 9 min | 0 min | 7 min | 8 min | 9 min | 0 min | 7 min | 8 min | 9 min | |
4.63 ± 0.20 C | 6.02 ± 0.46 B,b | 6.55 ± 0.62 B,b | 6.77 ± 0.35 A,a | 4.63 ± 0.20 B | 7.64 ± 0.34 A,a | 7.77 ± 0.48 A,a | 7.95 ± 0.36 A,a | 4.63 ± 0.20 C | 8.25 ± 0.73 B,a | 9.00 ± 0.15 A,B,a | 9.21 ± 0.14 A,a |
Frying Methods | Temperature (°C) | Time (min) | Color | Texture | Flavor | Overall Acceptability |
---|---|---|---|---|---|---|
Deep frying | 160 | 2 | 5.26 ± 0.45 B,a | 4.27 ± 0.35 C,b | 7.21 ± 0.54 A,a | 6.53 ± 0.75 B,b |
3 | 5.63 ± 0.64 B,b | 5.98 ± 0.65 B,b | 7.54 ± 0.29 A,a | 6.55 ± 0.45 B,b | ||
4 | 7.93 ± 0.53 A,a | 7.83 ± 0.66 A,a | 8.04 ± 0.83 A,a | 8.56 ± 0.36 A,a | ||
170 | 2 | 5.33 ± 0.62 B,a | 5.04 ± 0.64 B,a,b | 7.45 ± 0.68 A,a | 6.93 ± 0.67 A,a,b | |
3 | 7.66 ± 0.51 A,a | 7.80 ± 0.75 A,a | 8.05 ± 0.58 A,a | 7.29 ± 0.63 A,a | ||
4 | 7.10 ± 0.71 A,a,b | 7.21 ± 0.54 A,a | 7.65 ± 0.74 A,a | 7.45 ± 0.75 A,a | ||
180 | 2 | 6.21 ± 0.56 A,a | 5.77 ± 0.49 A,a | 7.55 ± 0.76 A,a | 7.03 ± 0.46 A,a | |
3 | 6.55 ± 0.61 A,a,b | 7.02 ± 0.57 A,a,b | 8.46 ± 0.73 A,a | 7.65 ± 0.65 A,a | ||
4 | 6.12 ± 0.55 A,b | 6.43 ± 0.64 A,a | 8.32 ± 0.46 A,a | 6.54 ± 0.16 A,a | ||
Air frying | 180 | 7 | 4.54 ± 0.45 B,a | 4.05 ± 0.43 A,a | 6.05 ± 0.37 A,a | 5.35 ± 0.65 A,b |
8 | 4.67 ± 0.32 B,a | 4.55 ± 0.54 A,a | 6.67 ± 0.64 A,a | 5.45 ± 0.68 A,b | ||
9 | 6.77 ± 0.59 A,a | 5.04 ± 0.64 A,a | 6.99 ± 0.69 A,a | 5.77 ± 0.47 A,a | ||
190 | 7 | 5.02 ± 0.64 A,a | 4.69 ± 0.20 A,a | 6.75 ± 0.58 A,a | 5.64 ± 0.76 A,a,b | |
8 | 6.02 ± 0.71 A,a | 5.95 ± 0.86 A,a | 6.88 ± 0.64 A,a | 7.43 ± 0.56 A,a | ||
9 | 5.79 ± 0.52 A,a | 5.99 ± 0.75 A,a | 6.87 ± 0.65 A,a | 6.54 ± 0.83 A,a | ||
200 | 7 | 5.55 ± 0.65 A,a | 5.12 ± 0.65 A,a | 6.34 ± 0.68 A,a | 7.03 ± 0.54 A,a | |
8 | 5.49 ± 0.68 A,a | 5.99 ± 0.65 A,a | 6.85 ± 0.65 A,a | 7.01 ± 0.54 A,a | ||
9 | 6.39 ± 0.57 A,a | 6.04 ± 0.59 A,a | 6.75 ± 0.57 A,a | 6.54 ± 0.73 A,a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Xia, X.; Yu, G. The Effect of Frying Conditions on the Physical and Chemical Quality Attributes of Clearhead Icefish (Protosalanx hyalocranius) During Deep Frying and Air Frying. Foods 2025, 14, 920. https://doi.org/10.3390/foods14060920
Li Y, Xia X, Yu G. The Effect of Frying Conditions on the Physical and Chemical Quality Attributes of Clearhead Icefish (Protosalanx hyalocranius) During Deep Frying and Air Frying. Foods. 2025; 14(6):920. https://doi.org/10.3390/foods14060920
Chicago/Turabian StyleLi, Ying, Xiufang Xia, and Guoping Yu. 2025. "The Effect of Frying Conditions on the Physical and Chemical Quality Attributes of Clearhead Icefish (Protosalanx hyalocranius) During Deep Frying and Air Frying" Foods 14, no. 6: 920. https://doi.org/10.3390/foods14060920
APA StyleLi, Y., Xia, X., & Yu, G. (2025). The Effect of Frying Conditions on the Physical and Chemical Quality Attributes of Clearhead Icefish (Protosalanx hyalocranius) During Deep Frying and Air Frying. Foods, 14(6), 920. https://doi.org/10.3390/foods14060920