Sustainable Alternative Media for the Production of Lipolytic Cells and Fatty Acid Concentrates: Integration of the Enzyme and Food Industries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganism
2.2. Materials
2.3. Enzymatic Activity
2.4. Culture Medium and Experimental Conditions
2.4.1. Culture Medium
2.4.2. Experimental Conditions for Submerged Cultivation
2.5. Lipase Production Assessment
2.6. Evaluation of Residual Soybean Oil and Textured Soybean Protein in Lipase Production
2.7. Hydrolysis of Residual Oil in Stirred Tank Reactors with Conventional Heating and Ultrasound Bath
2.8. Statistical Analysis
3. Results
3.1. Evaluation of Alternative Culture Media as Sources of Carbon and Nitrogen
3.2. Application and Influence of Residual Soybean Oil on Lipase Production: Cultivation in Wastewater of Textured Soy Protein
3.3. Hydrolysis of Residual Oil with Conventional Heating and Using an Ultrasonic Bath in Stirred Tank Reactors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vivek, K.; Sandhia, G.S.; Subramaniyan, S.J.B.A. Extremophilic lipases for industrial applications: A general review. Biotechnol. Adv. 2022, 60, 108002. [Google Scholar] [CrossRef]
- Remonatto, D.; Miotti, R.H., Jr.; Monti, R.; Bassan, J.C.; de Paula, A.V. Applications of immobilized lipases in enzymatic reactors: A review. Process Biochem. 2022, 114, 1–20. [Google Scholar] [CrossRef]
- Strategymrc. Lipase Market. 2024. Available online: https://www.strategymrc.com/report/lipase-market (accessed on 16 January 2025).
- Cavalcante, F.T.T.; Neto, F.S.; de Aguiar Falcão, I.R.; da Silva Souza, J.E.; de Moura Junior, L.S.; da Silva Sousa, P.; Rocha, T.G.; de Sousa, I.G.; de Lima Gomes, P.H.; de Souza, M.C.M. Opportunities for improving biodiesel production via lipase catalysis. Fuel 2021, 288, 119577. [Google Scholar] [CrossRef]
- Rabbani, G.; Ahmad, E.; Ahmad, A.; Khan, R.H. Structural features, temperature adaptation and industrial applications of microbial lipases from psychrophilic, mesophilic and thermophilic origins. Int. J. Biol. Macromol. 2023, 225, 822–839. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Feng, Y.; Wang, G.; Wang, Z.; Bilal, M.; Lv, H.; Jia, S.; Cui, J. Production and use of immobilized lipases in/on nanomaterials: A review from the waste to biodiesel production. Int. J. Biol. Macromol. 2020, 152, 207–222. [Google Scholar] [CrossRef]
- Jadhav, J.V.; Anbu, P.; Yadav, S.; Pratap, A.P.; Kale, S.B. Sunflower Acid Oil--Based Production of Rhamnolipid Using Pseudomonas aeruginosa and Its Application in Liquid Detergents. J. Surfactants Deterg. 2019, 22, 463–476. [Google Scholar] [CrossRef]
- Reis, W.D.S.M.; Ferreira, R.D.M.; Pereira, E.B. Immobilization of commercial lipase onto different supports: Characterization and application in esterification reaction. Int. J. Eng. Res. Sci. 2020, 6, 15–24. [Google Scholar] [CrossRef]
- Fernandes, K.V.; Papadaki, A.; Da Silva, J.A.C.; Fernandez-Lafuente, R.; Koutinas, A.A.; Freire, D.M.G. Enzymatic esterification of palm fatty-acid distillate for the production of polyol esters with biolubricant properties. Ind. Crops Prod. 2018, 116, 90–96. [Google Scholar] [CrossRef]
- Moreira, D.K.T.; de Pádua Gandra, R.L.; Zuin, J.C.; Ract, J.N.R.; Ribeiro, A.P.B.; Macedo, J.A.; Gambero, A.; Akil, E.; Torres, A.G.; Macedo, G.A. Synthesis and characterization of structured lipid rich in behenic acid by enzymatic interesterification. Food Bioprod. Process 2020, 122, 303–310. [Google Scholar] [CrossRef]
- Kim, B.H.; Hwang, J.; Akoh, C.C. Liquid microbial lipase—Recent applications and expanded use through immobilization. Curr. Opin. Food Sci. 2023, 50, 100987. [Google Scholar] [CrossRef]
- Bharathi, D.; Rajalakshmi, G. Microbial lipases: An overview of screening, production and purification. Biocatal. Agric. Biotech. 2019, 22, 101368. [Google Scholar] [CrossRef]
- Cesário, L.M.; Pires, G.P.; Pereira, R.F.S.; Fantuzzi, E.; da Silva Xavier, A.; Cassini, S.T.A.; de Oliveira, J.P. Optimization of lipase production using fungal isolates from oily residues. BMC Biotechnol. 2021, 21, 65. [Google Scholar] [CrossRef] [PubMed]
- Greco-Duarte, J.; de Almeida, F.P.; de Godoy, M.G.; Lins, U.; Freire, D.M.G.; Gutarra, M.L.E. Simultaneous lipase production and immobilization: Morphology and physiology study of Penicillium simplicissimum in submerged and solid-state fermentation with polypropylene as an inert support. Enzyme Micro. Technol. 2023, 164, 110173. [Google Scholar] [CrossRef] [PubMed]
- Silva Almeida, C.; Simão Neto, F.; da Silva Sousa, P.; da Silva Aires, F.I.; de Matos Filho, J.R.; Gama Cavalcante, A.L.; Junior, P.G.d.S.; Melo, R.L.F.; dos Santos, J.C.S. Enhancing Lipase Immobilization via Physical Adsorption: Advancements in Stability, Reusability, and Industrial Applications for Sustainable Biotechnological Processes. ACS Omega 2024, 9, 46698–46732. [Google Scholar] [CrossRef]
- de Castro, F.F.; Pinheiro, A.B.P.; Nassur, C.B.; Barbosa-Tessmann, I.P. Mycelium-bound lipase from a locally isolated strain of Aspergillus westerdijkiae. Biocatal. Agric. Biotechnol. 2017, 10, 321–328. [Google Scholar] [CrossRef]
- Marotti, B.S.; Cortez, D.V.; Gonçalves, D.B.; Castro, H.F.D. Screening of species from the genus Penicillium producing cell bound lipases to be applied in the vegetable oil hydrolysis. Quím. Nova 2017, 40, 427–435. [Google Scholar] [CrossRef]
- Preto, A.O.; Reis, W.S.; Carvalho, A.K.D.; Pereira, E.B. Exploring Whole-cells of Rhizopus oryzae for Efficient Synthesis of Emollient Esters: Bioesters for Cosmetics. J. Braz. Chem. Soc. 2024, 35, e-20230185. [Google Scholar] [CrossRef]
- Fibriana, F.; Upaichit, A.; Cheirsilp, B. Turning waste into valuable products: Utilization of agroindustrial oily wastes as the low-cost media for microbial lipase production. J. Phys. Conf. Ser. 2021, 1918, 052028. [Google Scholar] [CrossRef]
- Akinduyite, A.E.; O Abu, G.; K Agwa, O. Optimization of Submerged Fermentation Parameters for Enhanced Lipase Production from Newly Isolated Lipolytic Yeasts using Agro Waste Substrates. J. Adv. Microbiol. 2022, 22, 51–63. [Google Scholar] [CrossRef]
- Sasi, M.; Kumar, S.; Hasan, M.; Garcia-Gutierrez, E.; Kumari, S.; Prakash, O.; Nain, L.; Sachdev, A.; Dahuja, A. Current trends in the development of soy-based foods containing probiotics and paving the path for soy-synbiotics. Crit. Rev. Food Sci. Nutr. 2023, 63, 9995–10013. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Chakraborty, S. Synbiotic Foods: Significance, Applications, and Acceptance; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar]
- Qin, P.; Wang, T.; Luo, Y. A review on plant-based proteins from soybean: Health benefits and soy product development. J. Agric. Food Res. 2022, 7, 100265. [Google Scholar] [CrossRef]
- Gupta, A.; Sanwal, N.; Bareen, M.A.; Barua, S.; Sharma, N.; Olatunji, O.J.; Nirmal, N.P.; Sahu, J.K. Trends in functional beverages: Functional ingredients, processing technologies, stability, health benefits, and consumer perspective. Food Res. Int. 2023, 170, 113046. [Google Scholar] [CrossRef] [PubMed]
- Valdes, C.; Gillespie, J.; Dohlman, E. Soybean Production, Marketing Costs, and Export Competitiveness in Brazil and the United States; U.S. Department of Agriculture, Economic Research Service: Washington, DC, USA, 2023; pp. 1–32. Available online: https://10.22004/ag.econ.340506 (accessed on 16 January 2025).
- Karp, S.G.; de Souza Vandenberghe, L.P.; Pagnoncelli, M.G.B.; Vásquez, Z.S.; Martínez-Burgos, W.J.; Prado, F.; Herrmann, L.W.; Letti, L.A.J.; Mezzalira, F.; Soccol, C.R.; et al. Integrated processing of soybean in a circular bioeconomy. In Biomass, Biofuels, Biochemicals; Elsevier: Amsterdam, The Netherlands, 2022; pp. 189–216. [Google Scholar] [CrossRef]
- Szymczak, T.; Cybulska, J.; Podleśny, M.; Frąc, M. Various perspectives on microbial lipase production using agri-food waste and renewable products. Agriculture 2021, 11, 540. [Google Scholar] [CrossRef]
- Almaraz-Sánchez, I.; Amaro-Reyes, A.; Acosta-Gallegos, J.A.; Mendoza-Sánchez, M. Processing Agroindustry By—Products for Obtaining Value—Added Products and Reducing Environmental Impact. J. Chem. 2022, 2022, 3656932. [Google Scholar] [CrossRef]
- Nile, S.H.; Venkidasamy, B.; Samynathan, R.; Nile, A.; Shao, K.; Chen, T.; Sun, M.; Khan, M.U.; Dutta, N.; Thiruvengadam, M.; et al. Soybean processing wastes: Novel insights on their production, extraction of isoflavones, and their therapeutic properties. J. Agric. Food Chem. 2021, 70, 6849–6863. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Krishnaswamy, K. Sustainable zero-waste processing system for soybeans and soy by-product valorization. Trends Food Sci. Technol. 2022, 128, 331–344. [Google Scholar] [CrossRef]
- Spalvins, K.; Ivanovs, K.; Blumberga, D. Single cell protein production from waste biomass: Review of various agricultural by-products. Agron. Re. 2018, 16, 14931508. [Google Scholar] [CrossRef]
- Lima, R.T.; Alves, A.M.; de Paula, A.V.; de Castro, H.F.; Andrade, G.S. Mycelium-bound lipase from Penicillium citrinum as biocatalyst for the hydrolysis of vegetable oils. Biocatal. Agric. Biotechnol. 2019, 22, 101410. [Google Scholar] [CrossRef]
- Reis, W.S.; Matias, A.B.; Mendes, A.A.; de Castro, H.F.; Pereira, E.B. Production and characterization of whole-cell Rhizopus oryzae CCT3759 to be applied as biocatalyst in vegetable oils hydrolysis. Catal. Lett. 2022, 152, 1–11. [Google Scholar] [CrossRef]
- Pereira, D.G.; Kilikian, B.V. Effect of yeast extract on growth kinetics of Monascus purpureus. Appl. Biochem. Biotechnol. 2001, 91, 311–316. [Google Scholar] [CrossRef]
- Rooney, D.; Weatherley, L.R. The effect of reaction conditions upon lipase catalysed hydrolysis of high oleate sunflower oil in a stirred liquid–liquid reactor. Process Biochem. 2001, 36, 947–953. [Google Scholar] [CrossRef]
- Hama, S.; Tamalampudi, S.; Fukumizu, T.; Miura, K.; Yamaji, H.; Kondo, A.; Fukuda, H. Lipase localization in Rhizopus oryzae cells immobilized within biomass support particles for use as whole-cell biocatalysts in biodiesel-fuel production. J. Biosci. Bioeng. 2006, 101, 328–333. [Google Scholar] [CrossRef]
- Andrade, G.S.; Freitas, L.; Oliveira, P.C.; de Castro, H.F. Screening, immobilization and utilization of whole-cell biocatalysts to mediate the ethanolysis of babassu oil. J. Mol. Catal. B Enzym. 2012, 84, 183–188. [Google Scholar] [CrossRef]
- Colla, L.M.; Primaz, A.L.; Benedetti, S.; Loss, R.A.; Lima, M.D.; Reinehr, C.O.; Bertolin, T.E.; Costa, J.A.V. Surface response methodology for the optimization of lipase production under submerged fermentation by filamentous fungi. Braz. J. Microbiol. 2016, 47, 461–467. [Google Scholar] [CrossRef] [PubMed]
- de Castro, T.F.; Cortez, D.V.; Gonçalves, D.B.; Bento, H.B.; Gonçalves, R.L.; Costa-Silva, T.A.; Gambarato, B.C.; de Castro, H.F.; de Carvalho, A.K.F. Biotechnological valorization of mycelium-bound lipase of Penicillium purpurogenum in hydrolysis of high content lauric acid vegetable oils. Process Saf. Environ. Prot. 2022, 161, 498–505. [Google Scholar] [CrossRef]
- Braz, C.A.; Carvalho, A.K.; Bento, H.B.; Reis, C.E.; De Castro, H.F. Production of value-added microbial metabolites: Oleaginous fungus as a tool for valorization of dairy by-products. BioEnergy Res. 2020, 13, 963–973. [Google Scholar] [CrossRef]
- Matias, A.B.; Reis, W.S.M.; Costa-Silva, T.A.; Bento, H.B.; de Carvalho, A.K.; Pereira, E.B. Mycelium-bound lipase as skillful biocatalysts: Production of fatty acid concentrates from waste oils for the food industry. Catal. Commun. 2023, 184, 106787. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Y.; Chin, K.L.; Qi, Y. Vegetable soybean: Seed composition and production research. Ital. J. Agron. 2017, 12, 872. [Google Scholar] [CrossRef]
- Costa, G.E.A.; da Silva Queiroz-Monici, K.; Reis, S.M.P.M.; de Oliveira, A.C. Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chem. 2006, 94, 327–330. [Google Scholar] [CrossRef]
- Andrade, G.S.; Carvalho, A.K.; Romero, C.M.; Oliveira, P.C.; de Castro, H.F. Mucor circinelloides whole-cells as a biocatalyst for the production of ethyl esters based on babassu oil. Bioprocess Biosyst. Eng. 2014, 37, 2539–2548. [Google Scholar] [CrossRef]
- Bento, H.B.; Carvalho, A.K.; Reis, C.E.R.; De Castro, H.F. Microbial biodiesel production: From sucrose-based carbon sources to alkyl esters via enzymatic transesterification. Process Saf. Environ. Prot. 2019, 121, 349–356. [Google Scholar] [CrossRef]
- Reis, C.E.R.; Valle, G.F.; Bento, H.B.; Carvalho, A.K.; Alves, T.M.; de Castro, H.F. Sugarcane by-products within the biodiesel production chain: Vinasse and molasses as feedstock for oleaginous fungi and conversion to ethyl esters. Fuel 2020, 277, 118064. [Google Scholar] [CrossRef]
- Bento, H.B.; Carvalho, A.K.; Reis, C.E.; De Castro, H.F. Single cell oil production and modification for fuel and food applications: Assessing the potential of sugarcane molasses as culture medium for filamentous fungus. Ind. Crops Prod. 2020, 145, 112141. [Google Scholar] [CrossRef]
- Carvalho, A.K.F.; Bento, H.B.; Reis, C.E.; De Castro, H.F. Sustainable enzymatic approaches in a fungal lipid biorefinery based in sugarcane bagasse hydrolysate as carbon source. Bioresour. Technol. 2019, 276, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Kumar, R.; Sabapathy, S.N.; Bawa, A.S. Functional and edible uses of soy protein products. Compr. Rev. Food Sci. Food Saf. 2008, 7, 14–28. [Google Scholar] [CrossRef]
- Karr-Lilienthal, L.K.; Kadzere, C.T.; Grieshop, C.M.; Fahey, G.C., Jr. Chemical and nutritional properties of soybean carbohydrates as related to nonruminants: A review. Livest. Prod. Sci. 2005, 97, 1–12. [Google Scholar] [CrossRef]
- Krzyzanowski, F.C.; França-Neto, J.D.B.; Henning, F.A. Importance of the lignin content in the pod wall and seed coat on soybean seed physiological and health performances. J. Seed Sci. 2023, 45, e202345006. [Google Scholar] [CrossRef]
- Cortez, D.V.; Castro, H.F.D.; Andrade, G.S. Potential catalytic of mycelium-bound lipase of filamentous fungi in biotransformation processes. Quím. Nova 2017, 40, 85–96. [Google Scholar] [CrossRef]
- Hama, S.; Yamaji, H.; Kaieda, M.; Oda, M.; Kondo, A.; Fukuda, H. Effect of fatty acid membrane composition on whole-cell biocatalysts for biodiesel-fuel production. Biochem. Eng. J. 2004, 21, 155–160. [Google Scholar] [CrossRef]
- Sun, T.; Du, W.; Zeng, J.; Dai, L.; Liu, D. Exploring the effects of oil inducer on whole-cell-mediated methanolysis for biodiesel production. Process Biochem. 2010, 45, 514–518. [Google Scholar] [CrossRef]
- Zeng, J.; Du, W.; Liu, X.; Liu, D.; Dai, L. Study on the effect of cultivation parameters and pretreatment on Rhizopus oryzae cell-catalyzed transesterification of vegetable oils for biodiesel production. J. Mol. Catal. B Enzym. 2006, 43, 15–18. [Google Scholar] [CrossRef]
- Liu, X.; Hoshino, N.; Wang, S.; Masui, E.; Chen, J.; Zhang, H. A novel evaluation index for predicting the degradation rate of frying oils based on their fatty acid composition. Eur. J. Lipid Sci. Technol. 2018, 120, 1700528. [Google Scholar] [CrossRef]
- Nunes, P.M.; Fraga, J.L.; Ratier, R.B.; Rocha-Leão, M.H.M.; Brígida, A.I.; Fickers, P.; Amaral, P.F. Waste soybean frying oil for the production, extraction, and characterization of cell-wall-associated lipases from Yarrowia lipolytica. Bioprocess Biosyst. Eng. 2021, 44, 809–818. [Google Scholar] [CrossRef] [PubMed]
- Çağatay, Ş.; Aksu, Z. Use of different kinds of wastes for lipase production: Inductive effect of waste cooking oil on activity. J. Biosci. Bioeng. 2021, 132, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Zarevúcka, M. Olive Oil as Inductor of Microbial Lipase. In Olive Oil-Constituents, Quality, Health Properties and Bioconversions; InTech Europe: Rijeka, Croatia, 2012; pp. 457–470. [Google Scholar]
- Wang, Y.; Wang, Q.; Sabaghi, S.; Kaboli, A.; Soltani, F.; Kang, K.; Kongvarhodom, C.; Fatehi, P. Dual lignin-derived polymeric system for peptone removal from simulated wastewater. Environ. Pollut. 2024, 343, 123142. [Google Scholar] [CrossRef]
- Mulinari, J.; Venturin, B.; Sbardelotto, M.; Agnol, A.D.; Scapini, T.; Camargo, A.F.; Baldissarelli, D.; Modkovski, T.; Rossetto, V.; Rosa, C.D.; et al. Ultrasound-assisted hydrolysis of waste cooking oil catalyzed by homemade lipases. Ultrason. Sonochem. 2017, 35, 313–318. [Google Scholar] [CrossRef]
- Bhangu, S.K.; Gupta, S.; Ashokkumar, M. Ultrasonic enhancement of lipase-catalysed transesterification for biodiesel synthesis. Ultrason. Sonochem. 2017, 34, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Mojtabavi, S.; Hervé, M.; Forootanfar, H.; Jafari-Nodoushan, H.; Sharifian, G.; Samadi, N.; Ameri, A.; Faramarzi, M.A. A survey on the stabilizing effect of osmolytes on the ultrasound-irradiated lipase for efficient enzymatic hydrolysis of coconut oil. Colloids Surf. B Biointerfaces 2022, 220, 112910. [Google Scholar] [CrossRef]
- Vartolomei, A.; Calinescu, I.; Vinatoru, M.; Gavrila, A.I. A parameter study of ultrasound assisted enzymatic esterification. Sci. Rep. 2022, 12, 1421. [Google Scholar] [CrossRef]
- Gonçalves, K.M.; Sutili, F.K.; Leite, S.G.; de Souza, R.O.; Leal, I.C.R. Palm oil hydrolysis catalyzed by lipases under ultrasound irradiation–The use of experimental design as a tool for variables evaluation. Ultrason. Sonochem. 2012, 19, 232–236. [Google Scholar] [CrossRef]
- Liow, M.Y.; Chan, E.S.; Ng, W.Z.; Song, C.P. Enhancing efficiency of ultrasound-assisted biodiesel production catalyzed by Eversa® Transform 2.0 at low lipase concentration: Enzyme characterization and process optimization. Int. J. Biol. Macromol. 2024, 271, 132538. [Google Scholar] [CrossRef] [PubMed]
- Zenevicz, M.C.P.; Jacques, A.; Furigo, A.F., Jr.; Oliveira, J.V.; de Oliveira, D. Enzymatic hydrolysis of soybean and waste cooking oils under ultrasound system. Ind. Crops Prod. 2016, 80, 235–241. [Google Scholar] [CrossRef]
Protein Source | Medium Concentration (%) | Specific Productivity (U/g·h) | Volumetric Productivity (U/L·h) | Total Biomass Activity (U) |
---|---|---|---|---|
Lentil | 25% | 1.34 | 6.83 | 50.45 |
50% | 1.70 | 9.21 | 79.09 | |
100% | 1.89 | 14.38 | 89.41 | |
Soybean | 25% | 1.29 | 13.53 | 23.73 |
50% | 1.47 | 19.00 | 28.69 | |
100% | 1.62 | 21.27 | 44.35 | |
Soy Protein | 50% | 2.07 | 20.02 | 144.17 |
100% | 1.87 | 13.97 | 100.58 | |
Conventional | *** | 2.40 | 23.59 | 169.84 |
Assay Protocol | Extracellular Hydrolytic Activity | Specific Productivity (U/g·h) | Volumetric Productivity (U/L·h) | Total Biomass Activity (U) |
---|---|---|---|---|
Soy Protein (50%) + No Oil | 4.22 | 1.01 | 3.02 | 21.77 |
Soy Protein (50%) + Soy Oil | 18.42 | 2.27 | 23.24 | 167.34 |
Soy Protein (100%) + No Oil | 8.63 | 1.55 | 11.94 | 85.94 |
Soy Protein (100%) + Soy Oil | 9.56 | 1.92 | 15.12 | 108.89 |
Heating System | Hydrolysis (%) | v (mmol/L·h) |
---|---|---|
Convencional | 31.03 ± 0.40 | 27.92 |
Ultrasound | 43.36 ± 0.11 | 70.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reis, W.S.M.; Preto, A.O.; Sant’Ana, G.M.; Tessaro, I.; Ferreira, A.L.G.; Pereira, E.B.; Carvalho, A.K.F. Sustainable Alternative Media for the Production of Lipolytic Cells and Fatty Acid Concentrates: Integration of the Enzyme and Food Industries. Foods 2025, 14, 990. https://doi.org/10.3390/foods14060990
Reis WSM, Preto AO, Sant’Ana GM, Tessaro I, Ferreira ALG, Pereira EB, Carvalho AKF. Sustainable Alternative Media for the Production of Lipolytic Cells and Fatty Acid Concentrates: Integration of the Enzyme and Food Industries. Foods. 2025; 14(6):990. https://doi.org/10.3390/foods14060990
Chicago/Turabian StyleReis, Willian S. M., Arthur O. Preto, Giovanna M. Sant’Ana, Ikaro Tessaro, Ana L. G. Ferreira, Ernandes B. Pereira, and Ana K. F. Carvalho. 2025. "Sustainable Alternative Media for the Production of Lipolytic Cells and Fatty Acid Concentrates: Integration of the Enzyme and Food Industries" Foods 14, no. 6: 990. https://doi.org/10.3390/foods14060990
APA StyleReis, W. S. M., Preto, A. O., Sant’Ana, G. M., Tessaro, I., Ferreira, A. L. G., Pereira, E. B., & Carvalho, A. K. F. (2025). Sustainable Alternative Media for the Production of Lipolytic Cells and Fatty Acid Concentrates: Integration of the Enzyme and Food Industries. Foods, 14(6), 990. https://doi.org/10.3390/foods14060990