Comparison of Structural, Physicochemical, and Functional Properties of Blueberry Residue Dietary Fiber Extracted by Wet Ball Milling and Cross-Linking Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction of Blueberry Residue DF
Preparation of Blueberry Residue
2.3. WB Extraction of Blueberry Residue DF
2.4. C Extraction of Blueberry Residue DF
2.5. Proximate Composition
2.6. Scanning Electron Microscopy (SEM)
2.7. FTIR Spectroscopy
2.8. Thermal Stability
2.9. X-Ray Diffraction (XRD) Analysis
2.10. Rheological Measurements
2.11. Particle Size and Zeta Potential Determination
2.12. Monosaccharides Determination
2.13. Hydration Properties
2.14. Functional Properties
2.15. Statistical Analysis
3. Results and Discussion
3.1. DF Extraction Yield and Proximate Composition
3.2. SEM
3.3. FTIR
3.4. Thermal Properties
3.5. XRD
3.6. Viscosity
3.7. Particle Size and Zeta Potential
3.8. Molar Ratio of Monosaccharide Components
3.9. Hydration and Functional Properties
3.9.1. WHC, OHC, and WSC
3.9.2. BAC
3.9.3. CAC
3.9.4. GAC
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stull, A.J.; Cassidy, A.; Djousse, L.; Johnson, S.A.; Krikorian, R.; Lampe, J.W.; Mukamal, K.J.; Nieman, D.C.; Porter Starr, K.N.; Rasmussen, H.; et al. The state of the science on the health benefits of blueberries: A perspective. Front. Nutr. 2024, 11, 1415737. [Google Scholar]
- Song, H.N.; Park, M.S.; Youn, H.S.; Park, S.J.; Hogstrand, C. Nutritional compositions and antioxidative activities of two blueberry varieties cultivated in South Korea. Food Sci. Preserv. 2014, 21, 790–798. [Google Scholar]
- Stevenson, D.; Scalzo, J. Anthocyanin composition and content of blueberries from around the world. J. Berry Res. 2012, 2, 179–189. [Google Scholar] [CrossRef]
- Sivapragasam, N.; Neelakandan, N.; Rupasinghe, H.V. Potential health benefits of fermented blueberry: A review of current scientific evidence. Trends Food Sci. Technol. 2023, 132, 103–120. [Google Scholar]
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef]
- Ameer, K.; Shahbaz, H.M.; Kwon, J.H. Green extraction methods for polyphenols from plant matrices and their byproducts: A review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 295–315. [Google Scholar]
- Lei, L.; Yang, H.; Chen, J.; Zhao, M.; Chen, B.; Zhou, J. Development and utilization of blueberry pomace: A review. China Brew. 2017, 36, 17–22. [Google Scholar]
- He, Y.; Wang, B.; Wen, L.; Wang, F.; Yu, H.; Chen, D.; Su, X.; Zhang, C. Effects of dietary fiber on human health. Food Sci. Hum. Wellness 2022, 11, 1–10. [Google Scholar]
- Jha, R.; Mishra, P. Dietary fiber in poultry nutrition and their effects on nutrient utilization, performance, gut health, and on the environment: A review. J. Anim. Sci. Biotechnol. 2021, 12, 51. [Google Scholar]
- Yusuf, K.; Saha, S.; Umar, S. Health benefits of dietary fiber for the management of inflammatory bowel disease. Biomedicines 2022, 10, 1242. [Google Scholar] [CrossRef] [PubMed]
- Marczak, A.; Mendes, A.C. Dietary Fibers: Shaping Textural and Functional Properties of Processed Meats and Plant-Based Meat Alternatives. Foods. 2024, 13, 1952. [Google Scholar] [CrossRef]
- Han, X.; Yang, D.; Zhang, S.; Liu, X.; Zhao, Y.; Song, C.; Sun, Q. Characterization of insoluble dietary fiber from Pleurotus eryngii and evaluation of its effects on obesity-preventing or relieving effects via modulation of gut microbiota. J. Future Foods 2023, 3, 55–66. [Google Scholar] [CrossRef]
- Zhang, S.; Xua, X.; Cao, X.; Liu, T. The structural characteristics of dietary fibers from Tremella fuciformis and their hypolipidemic effects in mice. Food Sci. Hum. Wellness 2023, 12, 503–511. [Google Scholar] [CrossRef]
- Maphosa, Y.; Jideani, V.A. Dietary fiber extraction for human nutrition—A review. Food Rev. Int. 2016, 32, 98–115. [Google Scholar]
- Jiang, G.; Ameer, K.; Ramachandraiah, K.; Feng, X.; Tan, C.; Cai, N. Effects of synergistic application of Viscozyme L–wet ball milling on structural, physicochemical and functional properties of insoluble dietary fiber from ginseng residue. LWT 2024, 209, 116777. [Google Scholar] [CrossRef]
- Kanwar, P.; Yadav, R.B.; Yadav, B.S. Cross-linking, carboxymethylation and hydroxypropylation treatment to sorghum dietary fiber: Effect on physicochemical, micro structural and thermal properties. Int. J. Biol. Macromol. 2023, 233, 123638. [Google Scholar] [CrossRef]
- Liu, X.; Suo, K.; Wang, P.; Li, X.; Hao, L.; Zhu, J.; Yi, J.; Kang, Q.; Huang, J.; Lu, J. Modification of wheat bran insoluble and soluble dietary fibers with snail enzyme. Food Sci. Hum. Wellness 2021, 10, 356–361. [Google Scholar] [CrossRef]
- Liu, T.; Wang, N.; Xu, X.; Wang, D. Effect of high quality dietary fiber of Hericium erinaceus on lowering blood lipid in hyperlipi demia mice. J. Future Foods 2022, 2, 61–68. [Google Scholar] [CrossRef]
- Niu, L.; Guo, Q.; Xiao, J.; Li, Y.; Deng, X.; Sun, T.; Liu, X.; Xiao, C. The effect of ball milling on the structure, physicochemical and functional properties of insoluble dietary fiber from three grain bran. Food Res. Int. 2023, 163, 112263. [Google Scholar] [CrossRef]
- Raza, H.; Ameer, K.; Zaaboul, F.; Sharif, H.R.; Ali, B.; Shoaib, M.; Akhtar, W.; Zhang, L. Effects of ball-milling on physicochemical, thermal and functional properties of extruded chickpea (Cicer arietinum L.) powder. CyTA-J. Food 2019, 17, 563–573. [Google Scholar] [CrossRef]
- Wang, C.C.R.; Ciou, J.Y.; Chiang, P.Y. Effect of micronization on functional properties of the water caltrop (Trapa taiwanensis Nakai) pericarp. Food Chem. 2009, 113, 970–974. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC; Association of Official Analytical Chemists: Arlington, VA, USA, 2000. [Google Scholar]
- Jiang, G.; Ramachandraiah, K.; Wu, Z.; Ameer, K. The influence of different extraction methods on the structure, rheological, thermal and functional properties of soluble dietary fiber from Sanchi (Panax notoginseng) flower. Foods 2022, 11, 1995. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.; Ameer, K.; Ramachandraiah, K.; Feng, X. Impact of water combined wet ball milling extraction and functional evaluation of dietary fiber from papaya (Carica papaya L). Food Chem. X 2024, 22, 101435. [Google Scholar] [PubMed]
- Raza, H.; Ameer, K.; Ma, H.; Liang, Q.; Ren, X. Structural and physicochemical characterization of modified starch from arrowhead tuber (Sagittaria sagittifolia L.) using tri-frequency power ultrasound. Ultrason. Sonochem. 2021, 80, 105826. [Google Scholar]
- He, Y.; Li, W.; Zhang, X.; Li, T.; Ren, D.; Lu, J. Physicochemical, functional, and microstructural properties of modified insoluble dietary fiber extracted from rose pomace. J. Food Sci. Technol. 2020, 57, 1421–1429. [Google Scholar]
- Luo, X.; Wang, Q.; Zheng, B.; Lin, L.; Chen, B.; Zheng, Y.; Xiao, J. Hydration properties and binding capacities of dietary fibers from bamboo shoot shell and its hypolipidemic effects in mice. Food Chem. Toxicol. 2017, 109, 1003–1009. [Google Scholar]
- Wang, K.; Li, M.; Wang, Y.; Liu, Z.; Ni, Y. Effects of extraction methods on the structural characteristics and functional properties of dietary fiber extracted from kiwifruit (Actinidia deliciosa). Food Hydrocoll. 2021, 110, 106162. [Google Scholar]
- Zhang, W.; Zeng, G.; Pan, Y.; Chen, W.; Huang, W.; Chen, H.; Li, Y. Properties of soluble dietary fiber-polysaccharide from papaya peel obtained through alkaline or ultrasound-assisted alkaline extraction. Carbohydr. Polym. 2017, 172, 102–112. [Google Scholar]
- Liu, Y.; Zhang, H.; Yi, C.; Quan, K.; Lin, B. Chemical composition, structure, physicochemical and functional properties of rice bran dietary fiber modified by cellulase treatment. Food Chem. 2021, 342, 128352. [Google Scholar]
- Ma, M.M.; Mu, T.H. Effects of extraction methods and particle size distribution on the structural, physicochemical, and functional properties of dietary fiber from deoiled cumin. Food Chem. 2016, 194, 237–246. [Google Scholar]
- Cui, S.W.; Phillips, G.O.; Blackwell, B.; Nikiforuk, J. Characterisation and properties of Acacia senegal (L.) Willd. var. senegal with enhanced properties (Acacia (sen) SUPERGUM™): Part 4. Spectroscopic characterisation of Acacia senegal var. senegal and Acacia (sen) SUPERGUM™ arabic. Food Hydrocoll. 2007, 21, 347–352. [Google Scholar]
- Merci, A.; Urbano, A.; Grossmann, M.V.E.; Tischer, C.A.; Mali, S. Properties of microcrystalline cellulose extracted from soybean hulls by reactive extrusion. Food Res. Int. 2015, 73, 38–43. [Google Scholar]
- Gu, M.; Fang, H.; Gao, Y.; Su, T.; Niu, Y.; Yu, L. Characterization of enzymatic modified soluble dietary fiber from tomato peels with high release of lycopene. Food Hydrocoll. 2020, 99, 105321. [Google Scholar]
- Zheng, Y.; Li, Y.; Xu, J.; Gao, G.; Niu, F. Adsorption activity of coconut (Cocos nucifera L.) cake dietary fibers: Effect of acidic treatment, cellulase hydrolysis, particle size and pH. RSC Adv. 2018, 8, 2844–2850. [Google Scholar]
- Si, J.; Yang, C.; Ma, W.; Chen, Y.; Xie, J.; Qin, X.; Hu, X.; Yu, Q. Screen of high efficiency cellulose degrading strains and effects on tea residues dietary fiber modification: Structural properties and adsorption capacities. Int. J. Biol. Macrom. 2022, 220, 337–347. [Google Scholar]
- Zheng, Y.; Li, Y. Physicochemical and functional properties of coconut (Cocos nucifera L) cake dietary fibres: Effects of cellulase hydrolysis, acid treatment and particle size distribution. Food Chem. 2018, 257, 135–142. [Google Scholar] [CrossRef]
- Yang, T.; Yan, H.L.; Tang, C.H. Wet media planetary ball milling remarkably improves functional and cholesterol-binding properties of okara. Food Hydrocoll. 2021, 111, 106386. [Google Scholar]
- Qi, J.; Yokoyama, W.; Masamba, K.G.; Majeed, H.; Zhong, F.; Li, Y. Structural and physico-chemical properties of insoluble rice bran fiber: Effect of acid–base induced modifications. RSC Adv. 2015, 5, 79915–79923. [Google Scholar]
- Zhang, Y.; Liao, J.S.; Qi, J.R. Functional and structural properties of dietary fiber from citrus peel affected by the alkali combined with high-speed homogenization treatment. LWT-Food Sci. Technol. 2020, 128, 109397. [Google Scholar]
- Chen, B.; Cai, Y.; Liu, T.; Huang, L.; Deng, X.; Zhao, Q.; Zhao, M. Improvements in physicochemical and emulsifying properties of insoluble soybean fiber by physical- chemical treatments. Food Hydrocoll. 2019, 93, 167–175. [Google Scholar]
- Agoda-Tandjawa, G.; Mazoyer, J.; Wallecan, J.; Langendorff, V. Effects of sucrose addition on the rheological properties of citrus peel fiber suspensions before and after drying. Food Hydrocoll. 2020, 101, 105473. [Google Scholar]
- Zhu, Y.; Ji, X.; Yuen, M.; Yuen, T.; Yuen, H.; Wang, M.; Smith, D.; Peng, Q. Effects of ball milling combined with cellulase treatment on physicochemical properties and in vitro hypoglycemic ability of sea buckthorn seed meal insoluble dietary fiber. Front. Nutr. 2022, 8, 820672. [Google Scholar]
- Bhatt, S.; Gupta, M. Exploration of soluble dietary fiber extraction technique for enhancing physicochemical and structural properties of mango and pomegranate peel. Biomass Convers. Bior. 2024, 14, 2545–2560. [Google Scholar]
- Song, L.W.; Qi, J.R.; Liao, J.S.; Yang, X.Q. Enzymatic and enzyme-physical modification of citrus fiber by xylanase and planetary ball milling treatment. Food Hydrocoll. 2021, 121, 107015. [Google Scholar] [CrossRef]
- Yan, J.; Lv, Y.; Ma, S. Wheat bran enrichment for flour products: Challenges and solutions. J. Food Process. Preserv. 2022, 46, e16977. [Google Scholar]
- Hazarika, B.J.; Sit, N. Effect of dual modification with hydroxypropylation and cross-linking on physicochemical properties of taro starch. Carbohydr. Polym. 2016, 140, 269–278. [Google Scholar]
- Zheng, Y.; Xu, B.; Shi, P.; Tian, H.; Li, Y.; Wang, X.; Wu, S.; Liang, P. The influences of acetylation, hydroxypropylation, enzymatic hydrolysis and crosslinking on improved adsorption capacities and in vitro hypoglycemic properties of millet bran dietary fibre. Food Chem. 2022, 368, 130883. [Google Scholar]
- Ma, M.; Mu, T.; Sun, H.; Zhang, M.; Chen, J.; Yan, Z. Optimization of extraction efficiency by shear emulsifying assisted enzymatic hydrolysis and functional properties of dietary fiber from deoiled cumin (Cuminum cyminum L.). Food Chem. 2015, 179, 270–277. [Google Scholar]
DF Yield (%) | DF Yield (%) | Ash (%) | Fat (%) | |
---|---|---|---|---|
BR | - | 0.94 ± 0.05a | 2.70 ± 0.16a | 0.26 ± 0.03a |
C-DF | 71.78 ± 1.61a | 0.44 ± 0.04c | 1.69 ± 0.05c | 0.13 ± 0.01c |
WB-DF | 40.62 ± 1.24b | 0.54 ± 0.04b | 1.90 ± 0.09b | 0.17 ± 0.01b |
Apparent Viscosity 25 1/s [γ̇, mPa s] | Consistency Coefficient [K, mPa s] | Flow Behavior Index [n, -] | |
---|---|---|---|
BR | 19.87 ± 2.14c | 183.10 ± 3.86c | 0.32 ± 0.04a |
C-DF | 33.80 ± 4.18b | 387.94 ± 5.95b | 0.27 ± 0.02a |
WB-DF | 77.08 ± 3.97a | 697.35 ± 6.94a | 0.31 ± 0.03a |
Particle Size (nm) | ζ-Potential (mV) | |
---|---|---|
BR | 531.2 ± 23.5a | −20.1 ± 4.30a |
C-DF | 570 ± 24.2a | −28.7 ± 1.68b |
WB-DF | 451 ± 16.8b | −34.0 ± 4.13c |
Man | Rha | GalA | Glc | Gal | Xyl | |
---|---|---|---|---|---|---|
BR | 1.00 | 3.00 | 5.80 | 40.00 | 2.43 | 1.23 |
C-DF | 1.00 | 3.75 | 17.99 | 10.05 | 3.25 | 2.52 |
WB-DF | 1.00 | 3.08 | 14.90 | 5.87 | 3.13 | 2.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, G.; Ameer, K.; Ramachandraiah, K.; Feng, X.; Jin, X.; Tan, Q.; Huang, X. Comparison of Structural, Physicochemical, and Functional Properties of Blueberry Residue Dietary Fiber Extracted by Wet Ball Milling and Cross-Linking Methods. Foods 2025, 14, 1196. https://doi.org/10.3390/foods14071196
Jiang G, Ameer K, Ramachandraiah K, Feng X, Jin X, Tan Q, Huang X. Comparison of Structural, Physicochemical, and Functional Properties of Blueberry Residue Dietary Fiber Extracted by Wet Ball Milling and Cross-Linking Methods. Foods. 2025; 14(7):1196. https://doi.org/10.3390/foods14071196
Chicago/Turabian StyleJiang, Guihun, Kashif Ameer, Karna Ramachandraiah, Xiaoyu Feng, Xiaolu Jin, Qiaolin Tan, and Xianfeng Huang. 2025. "Comparison of Structural, Physicochemical, and Functional Properties of Blueberry Residue Dietary Fiber Extracted by Wet Ball Milling and Cross-Linking Methods" Foods 14, no. 7: 1196. https://doi.org/10.3390/foods14071196
APA StyleJiang, G., Ameer, K., Ramachandraiah, K., Feng, X., Jin, X., Tan, Q., & Huang, X. (2025). Comparison of Structural, Physicochemical, and Functional Properties of Blueberry Residue Dietary Fiber Extracted by Wet Ball Milling and Cross-Linking Methods. Foods, 14(7), 1196. https://doi.org/10.3390/foods14071196