Use of Inulin and Pumpkin Oil in the Manufacture of High-Quality Mortadella-Style Sausage from Buffalo Meat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fat Replacer
2.2. Antimicrobial Effect of Pumpkin Seed Oil
2.3. Cooked Sausage Preparation
- C (Control): Included cubed pork lard (10%) (1 cm edge), pretreated by immersion in boiling water (90 °C, 5 min) to remove low-melting-point fats, followed by drying with a sterile cotton cloth.
- P: Incorporated pork lard (8%) and pumpkin seed oil (2% v/w) as a partial fat replacer.
- I: Contained pork lard (4%) and inulin (6% w/w) as a partial fat replacer.
- IP: Included pork lard (2%), inulin (6% w/w), and pumpkin seed oil (2% v/w).
2.4. Sampling
2.5. Chemical, Physicochemical, Microbiological, and Sensorial Analyses
2.5.1. Chemical Characterization
2.5.2. Lipid Peroxidation
2.5.3. Microbiological Analyses
2.5.4. Sensorial Characterization
2.6. Statistical Analyses
3. Results and Discussion
3.1. Antimicrobial Effect of Pumpkin Seed Oil on Selected Bacterial Strains
3.2. Pumpkin Seed Oil Amount for Validation in a Cooked Buffalo Meat-Based Sausage
3.3. Effect of Inulin and Pumpkin Seed Oil on Chemical Features
3.4. Effect on Lipid Oxidation Susceptibility
3.5. Effect on Sensorial Features
3.6. Effect on Microbial Features
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aguilera, J.M. Food matrices as delivery units of nutrients in processed foods. J. Food Sci. 2025, 90, e70049. [Google Scholar] [CrossRef]
- Noshirvani, N. Essential Oils as Natural Food Preservatives: Special Emphasis on Antimicrobial and Antioxidant Activities. J. Food Qual. 2024, 2024, 5807281. [Google Scholar] [CrossRef]
- Colautti, A.; Camprini, L.; Ginaldi, F.; Comi, G.; Reale, A.; Coppola, F.; Iacumin, L. Safety traits, genetic and technological characterization of Lacticaseibacillus rhamnosus strains. LWT 2024, 207, 116578. [Google Scholar] [CrossRef]
- Asioli, D.; Aschemann-Witzel, J.; Caputo, V.; Vecchio, R.; Annunziata, A.; Næs, T.; Varela, P. Making Sense of the “Clean Label” Trends: A Review of Consumer Food Choice Behavior and Discussion of Industry Implications. Food Res. Int. 2017, 99, 58–71. [Google Scholar] [CrossRef] [PubMed]
- Bigliardi, B.; Galati, F. Innovation Trends in the Food Industry: The Case of Functional Foods. Trends Food Sci. Technol. 2013, 31, 118–129. [Google Scholar] [CrossRef]
- Van der Weele, C.; Feindt, P.; van der Goot, A.J.; van Mierlo, B.; van Boekel, M. Meat Alternatives: An Integrative Comparison. Trends Food Sci. Technol. 2019, 88, 505–512. [Google Scholar] [CrossRef]
- Coppola, F.; Lombardi, S.J.; Tremonte, P. Edible Insect Meals as Bioactive Ingredients in Sustainable Snack Bars. Foods 2025, 14, 702. [Google Scholar] [CrossRef]
- Carocho, M.; Morales, P.; Ferreira, I.C. Natural Food Additives: Quo Vadis? Trends Food Sci. Technol. 2015, 45, 284–295. [Google Scholar] [CrossRef]
- Macho-González, A.; Garcimartín, A.; Redondo, N.; Cofrades, S.; Bastida, S.; Nova, E.; Benedí, J.; Sánchez-Muniz, F.J.; Mar-cos, A.; López-Oliva, M.E. Carob Fruit Extract-Enriched Meat, as Preventive and Curative Treatments, Improves Gut Micro-biota and Colonic Barrier Integrity in a Late-Stage T2DM Model. Food Res. Int. 2021, 141, 110124. [Google Scholar] [CrossRef]
- Lombardi, S.J.; Pannella, G.; Coppola, F.; Vergalito, F.; Maiuro, L.; Succi, M.; Sorrentino, E.; Tremonte, P.; Coppola, R. Plant-Based Ingredients Utilized as Fat Replacers and Natural Antimicrobial Agents in Beef Burgers. Foods 2024, 13, 3229. [Google Scholar] [CrossRef]
- Domínguez, R.; Lorenzo, J.M.; Pateiro, M.; Munekata, P.E.; Alves dos Santos, B.; Basso Pinton, M.; Bastianello Campagnol, P.C. Main Animal Fat Replacers for the Manufacture of Healthy Processed Meat Products. Crit. Rev. Food Sci. Nutr. 2022, 64, 2513–2532. [Google Scholar] [CrossRef]
- Libera, J.; Iłowiecka, K.; Stasiak, D. Consumption of Processed Red Meat and Its Impact on Human Health: A Review. Int. J. Food Sci. Technol. 2021, 56, 6115–6123. [Google Scholar] [CrossRef]
- Espinales, C.; Baldeón, M.; Bravo, C.; Toledo, H.; Carballo, J.; Romero-Peña, M.; Cáceres, P.J. Strategies for Healthier Meat Foods: An Overview. Prev. Nutr. Food Sci. 2024, 29, 18–30. [Google Scholar] [CrossRef] [PubMed]
- Feddern, V.; Huber, E.; Biasi, V.; Kawski, V.L. Emulsified Meat Product with Fibers for Reducing Fat Content. In Functional Meat Products; Springer: New York, NY, USA, 2023; pp. 81–94. [Google Scholar] [CrossRef]
- Nowak, B.; von Mueffling, T.; Grotheer, J.; Klein, G.; Watkinson, B.M. Energy Content, Sensory Properties, and Microbiological Shelf Life of German Bologna-Type Sausages Produced with Citrate or Phosphate and with Inulin as Fat Replacer. J. Food Sci. 2007, 72, S629–S638. [Google Scholar] [CrossRef]
- Pires, M.A.; Barros, J.C.; Rodrigues, I.; Munekata, P.E.S.; Trindade, M.A. Improving the lipid profile of bologna type sausages with Echium (Echium plantagineum L.) oil and chia (Salvia hispanica L) flour. Lwt 2020, 119, 108907. [Google Scholar] [CrossRef]
- Rodrigues, L.S.; da Silva, J.A.R.; da Silva, W.C.; da Silva, É.B.R.; Belo, T.S.; Sousa, C.E.L.; Rodrigues, T.C.G.d.C.; Silva, A.G.M.E.; Prates, J.A.M.; Lourenço-Júnior, J.d.B. A Review of the Nutritional Aspects and Composition of the Meat, Liver and Fat of Buffaloes in the Amazon. Animals 2024, 14, 1618. [Google Scholar] [CrossRef]
- Di Stasio, L.; Brugiapaglia, A. Current Knowledge on River Buffalo Meat: A Critical Analysis. Animals 2021, 11, 2111. [Google Scholar] [CrossRef] [PubMed]
- Tamburrano, A.; Tavazzi, B.; Callà, C.A.M.; Amorini, A.M.; Lazzarino, G.; Vincenti, S.; Zottola, T.; Campagna, M.C.; Mos-cato, U.; Laurenti, P. Biochemical and Nutritional Characteristics of Buffalo Meat and Potential Implications on Human Health for a Personalized Nutrition. Ital. J. Food Saf. 2019, 8, 8317. [Google Scholar] [CrossRef]
- Maheswarappa, N.B.; Muthupalani, M.; Mohan, K.; Banerjee, R.; Sen, A.R.; Barbuddhe, S.B. Buffalo Meat Processing and Value Addition. In Asiatic Water Buffalo: A Sustainable and Healthy Red Meat Source; Springer Nature: Singapore, 2022; pp. 83–92. [Google Scholar] [CrossRef]
- Haque, A.; Ahmad, S.; Adnan, M.; Khan, M.I.; Ashraf, S.A.; Azad, Z.R.A.A. Fortification of Conventional Buffalo Meat Sausage with Ash Gourd Peel Enhances Shelf Life, Nutritional, Functional and Microstructural Characteristics. NFS J. 2024, 35, 100179. [Google Scholar] [CrossRef]
- Jackson, P.P.J.; Wijeyesekera, A.; Rastall, R.A. Inulin-Type Fructans and Short-Chain Fructooligosaccharides—Their Role within the Food Industry as Fat and Sugar Replacers and Texture Modifiers—What Needs to Be Considered! Food Sci. Nutr. 2023, 11, 17–38. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Manassi, C.F.; Domínguez, R.; Pateiro, M.; Verruck, S.; Lorenzo, J.M. Prebiotic Meat Products. In Functional Meat Products; Springer: New York, NY, USA, 2023; pp. 25–37. [Google Scholar]
- Shams, Z.A.; Wadhawan, N. Inulin a Crucial Component in Food Industry: A Review. Int. J. Trend Sci. Res. Dev. 2021, 5, 742–745. [Google Scholar]
- Shoaib, M.; Shehzad, A.; Omar, M.; Rakha, A.; Raza, H.; Sharif, H.R.; Niazi, S. Inulin: Properties, Health Benefits, and Food Applications. Carbohydr. Polym. 2016, 147, 444–454. [Google Scholar] [CrossRef] [PubMed]
- Montoya, L.; Quintero, N.; Ortiz, S.; Lopera, J.; Millán, P.; Rodríguez-Stouvenel, A. Inulin as a Fat-Reduction Ingredient in Pork and Chicken Meatballs: Its Effects on Physicochemical Characteristics and Consumer Perceptions. Foods 2022, 11, 1066. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, G.F.; Ali, H.S.; Ragab, G.H.; Zaky, A.A. Evaluation of Inulin as a Fat Replacer in Meat Burger. Egypt. J. Chem. 2024, 67, 13–23. [Google Scholar] [CrossRef]
- Aryee, A.N.; Akanbi, T.O.; Nwachukwu, I.D.; Gunathilake, T. Perspectives on Preserving Lipid Quality and Strategies for Value Enhancement. Curr. Opin. Food Sci. 2022, 44, 100802. [Google Scholar] [CrossRef]
- Comi, G.; Colautti, A.; Bernardi, C.E.M.; Stella, S.; Orecchia, E.; Coppola, F.; Iacumin, L. Leuconostoc gelidum Is the Major Species Responsible for the Spoilage of Cooked Sausage Packaged in a Modified Atmosphere, and Hop Extract Is the Best Inhibitor Tested. Microorganisms 2024, 12, 1175. [Google Scholar] [CrossRef]
- Francolino, R.; Martino, M.; Nazzaro, F.; Sirignano, C.; Fratianni, F.; Coppola, F.; De Martino, L.; Formisano, C.; De Feo, V. Chemical Profile and Bioactivities of Three Species of Mentha Growing in the Campania Region, Southern Italy. Plants 2025, 14, 360. [Google Scholar] [CrossRef]
- Coppola, F.; Abdalrazeq, M.; Fratianni, F.; Ombra, M.N.; Testa, B.; Zengin, G.; Ayala Zavala, J.F.; Nazzaro, F. Rosaceae Honey: Antimicrobial Activity and Prebiotic Properties. Antibiotics 2025, 14, 298. [Google Scholar] [CrossRef]
- Nazzaro, F.; Ombra, M.N.; Coppola, F.; De Giulio, B.; d’Acierno, A.; Coppola, R.; Fratianni, F. Antibacterial Activity and Prebiotic Properties of Six Types of Lamiaceae Honey. Antibiotics 2024, 13, 868. [Google Scholar] [CrossRef]
- Nilofar; Zengin, G.; Uba, A.I.; Abul, N.; Gulcin, I.; Koyuncu, I.; Yuksekdag, O.; Ponnaiya, S.K.M.; Tessappan, S.; Nazzaro, F.; et al. A Multifunctional Natural Treasure Based on a “One Stone, Many Birds” Strategy for Designing Health-Promoting Applications: Tordylium apulum. Food Biosci. 2024, 62, 105088. [Google Scholar] [CrossRef]
- Granato, D.; Branco, G.F.; Nazzaro, F.; Cruz, A.G.; Faria, J.A. Functional Foods and Nondairy Probiotic Food Development: Trends, Concepts, and Products. Compreh. Rev. Food Sci. Food Saf. 2010, 9, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Ahmad, S. Influence of Vegetable Oils on pH Profile during Processing of Semidry Fermented Buffalo Meat Sausage. J. Food Process. Preserv. 2018, 9, 2. [Google Scholar] [CrossRef]
- Martínez, E.; Rabadán, A.; Álvarez-Ortí, M.; Mitre, J.; Pardo, J.E. Fat Reduction and Lipid Profile Optimization in Spanish Spreadable Meat Product Using an Oil-in-Water Emulsion. Eur. Food Res. Technol. 2025, 36, 1–12. [Google Scholar] [CrossRef]
- Awad, A.M.; Kumar, P.; Ismail-Fitry, M.R.; Jusoh, S.; Ab Aziz, M.F.; Sazili, A.Q. Overview of Plant Extracts as Natural Preservatives in Meat. J. Food Process. Preserv. 2022, 46, e16796. [Google Scholar] [CrossRef]
- Bellucci, E.R.B.; Bis-Souza, C.V.; Domínguez, R.; Bermúdez, R.; Barretto, A.C.D.S. Addition of Natural Extracts with Antioxidant Function to Preserve the Quality of Meat Products. Biomolecules 2022, 12, 1506. [Google Scholar] [CrossRef]
- Dotto, J.M.; Chacha, J.S. The Potential of Pumpkin Seeds as a Functional Food Ingredient: A Review. Sci. Afr. 2020, 10, e00575. [Google Scholar] [CrossRef]
- Irnawati, I.; Riyanto, S.; Martono, S.; Windarsih, A.; Rohman, A. Physicochemical Properties and Antioxidant Activities of Pumpkin Seed Oil as Affected by Different Origins and Extraction Methods. J. Appl. Pharm. Sci. 2022, 12, 115–122. [Google Scholar] [CrossRef]
- Martínez, E.; Pardo, J.E.; Rabadán, A.; Álvarez-Ortí, M. Effects of Animal Fat Replacement by Emulsified Melon and Pumpkin Seed Oils in Deer Burgers. Foods 2023, 12, 1279. [Google Scholar] [CrossRef]
- Fratianni, F.; Amato, G.; De Feo, V.; d’Acierno, A.; Coppola, R.; Nazzaro, F. Potential Therapeutic Benefits of Unconventional Oils: Assessment of the Potential In Vitro Biological Properties of Some Rubiaceae, Cucurbitaceae, and Brassicaceae Seed Oils. Front. Nutr. 2023, 10, 42–55. [Google Scholar] [CrossRef]
- Barbieri, G.; Bergamaschi, M.; Barbieri, G.; Franceschini, M. Survey of the Chemical, Physical, and Sensory Characteristics of Currently Produced Mortadella Bologna. Meat Sci. 2013, 94, 336–340. [Google Scholar] [CrossRef]
- Available online: https://www.alimentinutrizione.it/tabelle-nutrizionali/110200 (accessed on 7 March 2025).
- Coppola, F.; Nazzaro, F.; Fratianni, F.; Lombardi, S.J.; Grazia, L.; Coppola, R.; Tremonte, P. Pumpkin Oil and Its Effect on the Quality of Naples-Style Salami Produced from Buffalo Meat. Foods 2025, 14, 1077. [Google Scholar] [CrossRef] [PubMed]
- Tremonte, P.; Succi, M.; Reale, A.; Di Renzo, T.; Sorrentino, E.; Coppola, R. Interactions between Strains of Staphylococcus xylosus and Kocuria varians Isolated from Fermented Meats. J. Appl. Microbiol. 2007, 103, 743–751. [Google Scholar] [CrossRef] [PubMed]
- Tremonte, P.; Sorrentino, E.; Succi, M.; Tipaldi, L.; Pannella, G.; Ibanez, E.; Coppola, R. Antimicrobial Effect of Malpighia punicifolia and Extension of Water Buffalo Steak Shelf-Life. J. Food Sci. 2016, 81, M97–M105. [Google Scholar] [CrossRef] [PubMed]
- European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Determination of Minimum Inhibitory Concentrations (MICs) of Antibacterial Agents by Agar Dilution. Clin. Microbiol. Infect. 2000, 6, 509–515. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis, 22nd ed.; AOAC International: Rockville, MD, USA, 2023. [Google Scholar]
- Tremonte, P.; Gambacorta, G.; Pannella, G.; Trani, A.; Succi, M.; La Gatta, B.; Tipaldi, L.; Grazia, L.; Sorrentino, E.; Coppola, R. NaCl Replacement with KCl Affects Lipolysis, Microbiological and Sensorial Features of Soppressata Molisana. Eur. J. Lipid Sci. Technol. 2018, 120, 1700449. [Google Scholar] [CrossRef]
- Tremonte, P.; Pannella, G.; Lombardi, S.J.; Iorizzo, M.; Vergalito, F.; Cozzolino, A.; Maiuro, L.; Succi, M.; Sorrentino, E.; Coppola, R. Low-Fat and High-Quality Fermented Sausages. Microorganisms 2020, 8, 1025. [Google Scholar] [CrossRef]
- Chiavari, C.; Coloretti, F.; Ferri, G.; Nanni, M. Proposta di un metodo per l’analisi sensoriale dei salami. Ind. Aliment. 2007, 46, 27–33. [Google Scholar]
- Guzzo, F.; Scognamiglio, M.; Fiorentino, A.; Buommino, E.; D’Abrosca, B. Plant Derived Natural Products Against Pseudomonas aeruginosa and Staphylococcus aureus: Antibiofilm Activity and Molecular Mechanisms. Molecules 2020, 25, 5024. [Google Scholar] [CrossRef]
- Oulahal, N.; Degraeve, P. Phenolic-Rich Plant Extracts with Antimicrobial Activity: An Alternative to Food Preservatives and Biocides? Front. Microbiol. 2022, 12, 753518. [Google Scholar] [CrossRef]
- Murugan, S.; Senthilvelan, T.; Govindasamy, M.; Thangavel, K. A Comprehensive Review on Exploring the Potential of Phytochemicals and Biogenic Nanoparticles for the Treatment of Antimicrobial-Resistant Pathogenic Bacteria. Curr. Microbiol. 2025, 82, 1–18. [Google Scholar] [CrossRef]
- Amin, M.; Akrami, S.; Haghparasty, F.; Hakimi, A. In Vitro Antibacterial Activities of Essential Oils and Extracts of Six Herbals Against Gram-Positive and Gram-Negative Bacteria. Toxicol. Environ. Health Sci. 2023, 15, 53–60. [Google Scholar] [CrossRef]
- Das, A.; Biswas, S.; Satyaprakash, K.; Bhattacharya, D.; Nanda, P.K.; Patra, G.; Das, A.K. Ratanjot (Alkanna tinctoria L.) Root Extract, Rich in Antioxidants, Exhibits Strong Antimicrobial Activity Against Foodborne Pathogens and Is a Potential Food Preservative. Foods 2024, 13, 2254. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Chen, H.; Wang, R.; Zhong, Q.; Chen, W.; Zhang, M.; He, R.; Chen, W. Membrane Damage and Metabolic Disruption as the Mechanisms of Linalool against Pseudomonas fragi: An Amino Acid Metabolomics Study. Foods 2024, 13, 2501. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, H.; Xu, Z.; Hong, J.; Malroy, J.; Qian, L.; Ji, S.; Zhu, X. Mining the Metabolic Capacity of Clostridium sporogenes Aided by Machine Learning. Angew. Chem. Int. Ed. 2024, 63, e202319925. [Google Scholar] [CrossRef] [PubMed]
- Simões, L.; Fernandes, N.; Caputo, L.; Ramos, E.M.; Piccoli, R.H. Natural Preservatives for Hams: Essential Oil Mixtures and Major Compounds’ Efficacy Against Clostridium sporogenes. J. Food Saf. 2023, 43, e13085. [Google Scholar] [CrossRef]
- Mortazavi, S.M.H.; Kaur, M.; Farahnaky, A.; Torley, P.J.; Osborn, A.M. Microbial and Quality Attributes of Beef Steaks under High-CO2 Packaging: Emitter Pads versus Gas Flushing. Foods 2024, 13, 2913. [Google Scholar] [CrossRef]
- Olszewska, M.A.; Gędas, A.; Simões, M. Antimicrobial Polyphenol-Rich Extracts: Applications and Limitations in the Food Industry. Food Res. Int. 2020, 134, 109214. [Google Scholar] [CrossRef]
- Kowalska-Krochmal, B.; Dudek-Wicher, R. The Minimum Inhibitory Concentration of Antibiotics: Methods, Interpretation, Clinical Relevance. Pathogens 2021, 10, 165. [Google Scholar] [CrossRef]
- Teixeira, R.F.; Balbinot Filho, C.A.; Borges, C.D. Essential Oils as Natural Antimicrobials for Application in Edible Coatings for Minimally Processed Apple and Melon: A Review on Antimicrobial Activity and Characteristics of Food Models. Food Packag. Shelf Life 2022, 31, 100781. [Google Scholar] [CrossRef]
- Boujemaa, I.; El Bernoussi, S.; El Guezzane, C.; Maggi, F.; Caprioli, G.; Bouyahya, A.; Tabyaoui, M. Effect of Roasting in Electric Oven on Oil Quality and Residue from Cucurbita maxima (Marina di Chioggia) and Cucurbita pepo (Calabaza Mercado Verde) Seeds from Morocco. LWT 2024, 193, 115788. [Google Scholar] [CrossRef]
- Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on Nutrition and Health Claims Made on Foods. Off. J. Eur. Union 2007, 12, 3–18.
- Prates, J.A. The Role of Meat Lipids in Nutrition and Health: Balancing Benefits and Risks. Nutrients 2025, 17, 350. [Google Scholar] [CrossRef] [PubMed]
- Hitlamani, V.; Hemraj, T.M.; Inamdar, A.A. Optimizing Fatty Acid Composition in Cookie Formulation Using Vegetable Oil Blends: Impacts on Dough Rheology, Physical Properties, and Sensory Qualities. J. Food Meas. Charact. 2025, 19, 2461–2475. [Google Scholar] [CrossRef]
- Grajzer, M.; Kozłowska, W.; Zalewski, I.; Matkowski, A.; Wiland-Szymańska, J.; Rękoś, M.; Prescha, A. Nutraceutical Prospects of Pumpkin Seeds: A Study on the Lipid Fraction Composition and Oxidative Stability Across Eleven Varieties. Foods 2025, 14, 354. [Google Scholar] [CrossRef] [PubMed]
- Kamińska, W.; Rzyska-Szczupak, K.; Przybylska-Balcerek, A.; Stuper-Szablewska, K.; Dembska, A.; Neunert, G. Behavior at Air/Water Interface and Oxidative Stability of Vegetable Oils Analyzed Through Langmuir Monolayer Technique. Molecules 2025, 30, 170. [Google Scholar] [CrossRef]
- Bashir, K.; Jan, K.; Habib, M.; Jan, S. Pumpkin Seed Protein. In Pumpkin Seed: Newer Perspectives; Springer: Cham, Switzerland, 2025; pp. 49–70. [Google Scholar] [CrossRef]
- Russo, G.L.; Langellotti, A.L.; Di Monaco, R.; Buonocunto, G.; Colonna, F.; Velleca, N.; Masi, P. New Anchovy Burgers: A Sustainable and Nutritious Alternative to Red Meat in Fast Food. Food Prod. Process. Nutr. 2025, 7, 11. [Google Scholar] [CrossRef]
- Lumaga, R.B.; Tagliamonte, S.; De Rosa, T.; Valentino, V.; Ercolini, D.; Vitaglione, P. Consumption of a Sourdough-Leavened Croissant Enriched with a Blend of Fibers Influences Fasting Blood Glucose in a Randomized Controlled Trial in Healthy Subjects. J. Nutr. 2024, 154, 2976–2987. [Google Scholar] [CrossRef]
- Tagliamonte, S.; Puhlmann, M.L.; De Filippis, F.; Guerville, M.; Ercolini, D.; Vitaglione, P. Relationships Between Diet and Gut Microbiome in an Italian and Dutch Cohort: Does the Dietary Protein to Fiber Ratio Play a Role? Eur. J. Nutr. 2024, 63, 741–750. [Google Scholar] [CrossRef]
- Botella-Martínez, C.; Pérez-Álvarez, J.Á.; Fernández-López, J.; Viuda-Martos, M. Innovative Formulation in Pâté Using a Gelled Emulsion of Hemp Oil (Cannabis sativa L.) as Fat Replacer. LWT 2024, 206, 116630. [Google Scholar] [CrossRef]
- Carta, S.; Chessa, R.; Rubattu, R.; Nudda, A.; Battacone, G. The Use of Grape By-Products as a Feed Additive Enhances the Oxidative Stability of Rabbit Meat. Vet. Sci. 2025, 12, 148. [Google Scholar] [CrossRef]
- Echegaray, N.; Pateiro, M.; Nieto, G.; Rosmini, M.R.; Munekata, P.E.S.; Sosa-Morales, M.E.; Lorenzo, J.M. Lipid Oxidation of Vegetable Oils. In Food Lipids; Academic Press: Cambridge, MA, USA, 2022; pp. 127–152. [Google Scholar] [CrossRef]
- Lucas-González, R.; Botella-Martínez, C.; Salgado-Ramos, M.; Pallarés, N.; Martínez-Culebras, P.V.; Barba, F.J.; Fernández-López, J. Upcycling Supercritical-CO2-Defatted Tiger Nut Milk Co-Products into Pork Burgers: A Sustainable Fat Replacer with Enhanced Quality Properties. Future Foods 2025, 11, 100542. [Google Scholar] [CrossRef]
- Sławińska, N.; Olas, B. The Current State of Knowledge about Thermal Processing of Edible Seeds; A Special Emphasis on Their Bioactive Constituents and Antioxidant Activity. Food Chem. 2024, 458, 140526. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Wang, Y.; Zhang, Y.; Yang, Z.; Ma, Z.; Chen, J.; Liu, G. Formation and Regulation Strategies for Volatile Off-Flavor Compounds in Livestock Meat, Poultry Meat, and Their Products: A Comprehensive Review. Trends Food Sci. Technol. 2024, 152, 104689. [Google Scholar] [CrossRef]
- Gadekar, Y.P.; Jairath, G.; Soni, A.; Bhat, R.S.; Yashavanth, B.S.; Ponnampalam, E.N. Utilisation of Pumpkin Seed (Cucurbita maxima) as a Meat Matrix Preservative: Influence on Colour and Lipid Stabilities. Meat Sci. 2025, 223, 109769. [Google Scholar] [CrossRef]
- Devadason, I.P.; Anjaneyulu, A.S.R.; Mendirtta, S.K.; Murthy, T.R.K. Quality and Shelf Life of Buffalo Meat Blocks Processed in Retort Pouches. J. Food Sci. Technol. 2014, 51, 3991–3997. [Google Scholar] [CrossRef]
- Jaberi, R.; Kaban, G.; Kaya, M. Effects of Vacuum and High-Oxygen Modified Atmosphere Packaging on Physico-Chemical and Microbiological Properties of Minced Water Buffalo Meat. Asian-Australas. J. Anim. Sci. 2018, 32, 421. [Google Scholar] [CrossRef] [PubMed]
- Meineri, G.; Longato, E.; Peiretti, P.G. Effects of Diets Containing Linseed Oil or Lard and Supplemented with Pumpkin Seeds on Oxidative Status, Blood Serum Metabolites, Growth Performance, and Meat Quality of Naked Neck Chickens. Can. J. Anim. Sci. 2018, 98, 607–618. [Google Scholar] [CrossRef]
- Zhang, W.; Cao, X.; Liu, S.Q. Aroma Modulation of Vegetable Oils—A Review. Crit. Rev. Food Sci. Nutr. 2020, 60, 1538–1551. [Google Scholar] [CrossRef]
- Yousefi, M.; Khorshidian, N.; Hosseini, H. An Overview of the Functionality of Inulin in Meat and Poultry Products. Nutr. Food Sci. 2018, 48, 819–835. [Google Scholar] [CrossRef]
- Moirangthem, S.; Laskar, S.K.; Das, A.; Upadhyay, S.; Hazarika, R.A.; Mahanta, J.D.; Sangtam, H.M. Effect of Incorporation of Soy Protein Isolate and Inulin on Quality Characteristics and Shelf-Life of Low–Fat Duck Meat Sausages. Anim. Biosci. 2022, 35, 1250. [Google Scholar] [CrossRef]
- Muñoz-González, C.; Brule, M.; Martin, C.; Feron, G.; Canon, F. Influence of Prebiotic Fructans on Retronasal Aroma from Elderly Individuals. Molecules 2021, 26, 2906. [Google Scholar] [CrossRef] [PubMed]
- Arshad, M.S.; Sohaib, M.; Ahmad, R.S.; Nadeem, M.T.; Imran, A.; Arshad, M.U.; Amjad, Z. Ruminant Meat Flavor Influenced by Different Factors with Special Reference to Fatty Acids. Lipids Health Dis. 2018, 17, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhao, Y.; Yao, Y.; Chen, S.; Xu, L.; Wu, N.; Tu, Y. Recent Trends in Design of Healthier Fat Replacers: Type, Replacement Mechanism, Sensory Evaluation Method, and Consumer Acceptance. Food Chem. 2024, 447, 138982. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.; Wu, J. Natural Anti-Adhesive Components Against Pathogenic Bacterial Adhesion and Infection in Gastrointestinal Tract: Case Studies of Helicobacter pylori, Salmonella enterica, Clostridium difficile, and Diarrheagenic Escherichia coli. Crit. Rev. Food Sci. Nutr. 2024, 1–46. [Google Scholar] [CrossRef]
- Tannir, H.; Debs, E.; Mansour, G.; Neugart, S.; El Hage, R.; Khalil, M.I.; Louka, N. Microbial Decontamination of Cuminum cyminum Seeds Using “Intensification of Vaporization by Decompression to the Vacuum”: Effect on Color Parameters and Essential Oil Profile. Foods 2024, 13, 2264. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lombardi, S.J.; Nazzaro, F.; Grazia, L.; Coppola, R.; Fratianni, F.; Pellegrini, M.; Iarusso, I.; Tremonte, P.; Coppola, F. Use of Inulin and Pumpkin Oil in the Manufacture of High-Quality Mortadella-Style Sausage from Buffalo Meat. Foods 2025, 14, 1427. https://doi.org/10.3390/foods14081427
Lombardi SJ, Nazzaro F, Grazia L, Coppola R, Fratianni F, Pellegrini M, Iarusso I, Tremonte P, Coppola F. Use of Inulin and Pumpkin Oil in the Manufacture of High-Quality Mortadella-Style Sausage from Buffalo Meat. Foods. 2025; 14(8):1427. https://doi.org/10.3390/foods14081427
Chicago/Turabian StyleLombardi, Silvia Jane, Filomena Nazzaro, Luigi Grazia, Raffaele Coppola, Florinda Fratianni, Michela Pellegrini, Ilenia Iarusso, Patrizio Tremonte, and Francesca Coppola. 2025. "Use of Inulin and Pumpkin Oil in the Manufacture of High-Quality Mortadella-Style Sausage from Buffalo Meat" Foods 14, no. 8: 1427. https://doi.org/10.3390/foods14081427
APA StyleLombardi, S. J., Nazzaro, F., Grazia, L., Coppola, R., Fratianni, F., Pellegrini, M., Iarusso, I., Tremonte, P., & Coppola, F. (2025). Use of Inulin and Pumpkin Oil in the Manufacture of High-Quality Mortadella-Style Sausage from Buffalo Meat. Foods, 14(8), 1427. https://doi.org/10.3390/foods14081427