Extraction of Oil from Allium iranicum Seed and Evaluation of Its Composition and Quality Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Moisture Content
2.2.2. Oil Extraction from Seeds with Solvent
2.2.3. Oil Extraction Yield
2.2.4. Specific Gravity
2.2.5. Refractive Index
2.2.6. Acid Value
2.2.7. Peroxide Value
2.2.8. Carotenoid Content
2.2.9. Chlorophyll
2.2.10. Fatty Acid Profile
2.2.11. Nutritional Indices
2.2.12. Total Phenolic Compounds
2.2.13. Phytosterols
2.2.14. Measurement of Tocopherols
2.2.15. Triacyclglycerols
2.3. Statistical Analysis
3. Results and Discussion
3.1. Physical and Chemical Properties
3.1.1. Oil Percentage
3.1.2. Specific Gravity
3.1.3. Refractive Index
3.1.4. Acid Value
3.1.5. Peroxide Value
3.1.6. Carotenoid Content
3.1.7. Chlorophyll Content
3.1.8. Total Phenol Content
3.1.9. Fatty Acids
3.2. Nutritional Quality Index
3.2.1. Atherogenicity Index
3.2.2. Thrombogenicity Index
3.2.3. Hypocholesterolemic to Hypercholesterolemic Index
3.3. Phytosterols
3.4. Tocopherols
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miri, S.M.; Afra, R. Allium species growing in Iran: Chemical compositions and pharmacological activity. In Proceedings of the First National Congress and International Fair of Medicinal Plants and Strategies for Persian Medicine that Affect Diabetes, Tehran, Iran, 3 October 2018; pp. 9–11. [Google Scholar]
- Layth Jasim, M.; Chehri, K.; Karimi, I.; Karimi, N. Computational insight into the protective mechanism of Allium iranicum Wendelbo. Alliaceae in a mouse model of Staphylococcosis: Focus on dietary phytocannabinoid trans-caryophyllene. Silico Pharmacol. 2021, 9, 1–9. [Google Scholar]
- Feghhi-Najafabadi, S.; Safaeian, L.; Zolfaghari, B. In vitro antioxidant effects of different extracts obtained from the leaves and seeds of Allium ampeloprasum subsp. persicum. J. Herbmed Pharmacol. 2019, 3, 256–260. [Google Scholar]
- Bareemizadeh, F.; Karimi, N.; Ghasempour, H.R.; Maassoumi, S.M.; Taran, M. Essential oil composition of Allium ampeloprasum L. var. atroviolaceum and Allium iranicum. Int. J. Biosci. 2014, 4, 372–377. [Google Scholar]
- Nickavar, B.; Yousefian, N. Inhibitory effects of six Allium species on α-amylase enzyme activity. Iran. J. Pharm. Res. 2009, 1, 53–57. [Google Scholar]
- Mosavat, S.H.; Ghahramani, L.; Sobhani, Z.; Haghighi, E.R.; Chaijan, M.R.; Heydari, M. The effect of leek (Allium iranicum) leaves extract cream on hemorrhoid patients: A double blind randomized controlled clinical trial. Eur. J. Integr. Med. 2015, 7, 669–673. [Google Scholar]
- AOAC International. Official Methods of Analysis of AOAC International; AOAC International: Rockville, MD, USA, 2000; Volume 17, pp. 1–2. [Google Scholar]
- Bahrami, S.; Torbati, M.; Dadazadeh, A.; Azadmard-Damirchi, S.; Abedinzadeh, S.; Geoffrey, P. Physicochemical characteristics and quality of oil extracted from privet fruits (Ligustrum vulgare L.). J. Food Meas. Charact. 2024, 9, 8031–8040. [Google Scholar]
- Piravi-Vanak, Z.; Dadazadeh, A.; Azadmard-Damirchi, S.; Torbati, M.; Martinez, F. The Effect of Extraction by Pressing at Different Temperatures on Sesame Oil Quality Characteristics. Foods 2024, 10, 1472. [Google Scholar]
- AOCS. Official Methods and Recommended Practices of the AOCS, 7th ed.; AOCS Press: Champaign, IL, USA, 2017. [Google Scholar]
- Li, Y.; Guo, J.; Sun, S. Decreasing acid value of fatty acid ethyl ester products using complex enzymes. Front. Bioeng. Biotechnol. 2024, 12, 1355009. [Google Scholar]
- Şahin, S.; Sayım, E.; Bilgin, M. Effect of olive leaf extract rich in oleuropein on the quality of virgin olive oil. J. Food Sci. Technol 2017, 54, 1721–1728. [Google Scholar]
- Jaber, H.; Ayadi, M.; Makni, J.; Rigane, G.; Sayadi, S.; Bouaziz, M. Stabilization of refined olive oil by enrichment with chlorophyll pigments extracted from Chemlali olive leaves. Eur. J. Lipid Sci. Technol. 2012, 11, 1274–1283. [Google Scholar]
- Wu, Z.; Wang, J.; Zhang, H.; Pan, H.; Li, Z.; Liu, Y.; Miao, X. Longitudinal association of remnant cholesterol with joint arteriosclerosis and atherosclerosis progression beyond LDL cholesterol. BMC Med. 2023, 21, 42. [Google Scholar] [CrossRef] [PubMed]
- Fathi-Achachlouei, B.; Azadmard-Damirchi, S. Milk thistle seed oil constituents from different varieties grown in Iran. J. Am. Oil Chem. Soc. 2009, 86, 643–649. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Santos-Silva, J.; Bessa, R.J.B.; Santos-Silva, F.J.L.P.S. Effect of genotype, feeding system and slaughter weight on the quality of light lambs: II. Fatty acid composition of meat. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
- Caponio, F.; Squeo, G.; Monteleone, J.; Paradiso, V.; Pasqualone, A.; Summo, C. First and second centrifugation of olive paste: Influence of talc addition on yield, chemical composition and volatile compounds of the oils. LWT-Food Sci. Technol. 2015, 64, 439–445. [Google Scholar] [CrossRef]
- Azadmard-Damirchi, S.; Geoffrey, P.; Dutta, P. Sterol fractions in hazelnut and virgin olive oils and 4, 4′-dimethylsterols as possible markers for detection of adulteration of virgin olive oil. J. Am. Oil Chem. Soc. 2005, 82, 717–725. [Google Scholar] [CrossRef]
- Farmani, J.; Safari, M.; Hamedi, M. Application of palm olein in the production of zero-trans Iranian vanaspati through enzymatic interesterification. Eur. J. Lipid Sci. Technol. 2006, 108, 636–643. [Google Scholar] [CrossRef]
- Petraru, A.; Ursachi, F.; Amariei, S. Nutritional characteristics assessment of sunflower seeds, oil and cake. Perspective of using sunflower oilcakes as a functional ingredient. Plants 2021, 10, 2487. [Google Scholar] [CrossRef]
- Momeni, N.; Asadi-Gharneh, H.A. Fatty acids composition of seed oils obtained from eight Iranian pomegranate cultivars. J. Med. Plants 2021, 20, 26–36. [Google Scholar] [CrossRef]
- Dunford, N. Canola Oil Properties; ID: FAPC-222; Oklahoma State University Food and Agricultural Product Center: Stillwater, OK, USA, 2018. [Google Scholar]
- Ichu, C.B.; Nwakanma, H.O. Comparative Study of the physicochemical characterization and quality of edible vegetable oils. Int. J. Res. Inf. Sci. Appl. Tech. (IJRISAT) 2019, 3, 1–9. [Google Scholar] [CrossRef]
- Alimentarius, C. Codex standard for named vegetable oils. Codex stan 1999, 210, 1–13. [Google Scholar]
- Xu, S.; Li, X. Refractive index characteristics of edible oils based on spectrometry and effects of oil dispersion on OCT. J. Innov. Opt. Health Sci. 2021, 14, 2140010. [Google Scholar]
- Li, Y.; Li, D.; Qi, B.; Rokayya, S.; Ma, W.; Liang, J.; Sui, X.; Zhang, Y.; Jiang, L. Heating quality and stability of aqueous enzymatic extraction of fatty acid-balanced oil in comparison with other blended oils. J. Chem. 2014, 2014, 530787. [Google Scholar]
- Ichu, C.B.; Nwakanma, H.O. Vegetable Oils property resulting from any ideas, methods, instructions or products referred to in the content. Int. J. Res. Inf. Sci. Appl. Tech. (IJRISAT) 2019, 2, 19321–19329. [Google Scholar]
- Zhang, N.; Li, Y.; Wen, S.; Sun, Y.; Chen, J.; Gao, Y.; Sagymbek, A.; Yu, X. Analytical methods for determining the peroxide value of edible oils: A mini-review. Food Chem. 2021, 358, 129834. [Google Scholar]
- Buthelezi, N.M.D.; Zeray Tesfay, S.; Ncama, K.; Samukelo Magwaza, L. Destructive and non-destructive techniques used for quality evaluation of nuts: A review. Sci. Hortic. 2019, 247, 138–146. [Google Scholar] [CrossRef]
- Daun, J.K. The relationship between rapeseed chlorophyll, rapeseed oil chlorophyll and percentage green seeds. J. Am. Oil Chem. Soc. 1982, 59, 15–18. [Google Scholar]
- Ghahjaverestani, S.T.; Gharachorloo, M.; Ghavami, M. Application of coconut fiber and shell in the bleaching of soybean oil. Grasas y Aceites 2022, 73, e471. [Google Scholar]
- Kreps, F.; Vrbiková, L.; Schmidt, Š. Influence of industrial physical refining on tocopherol, chlorophyll and beta-carotene content in sunflower and rapeseed oil. Eur. J. Lipid Sci. Technol. 2014, 116, 1572–1582. [Google Scholar]
- Abdiani, N.; Kolahi, M.; Javaheriyan, M.; Sabaeian, M. Effect of storage conditions on nutritional value, oil content, and oil composition of sesame seeds. J. Agric. Food Res. 2024, 16, 101117. [Google Scholar]
- Goulson, M.J.; Warthesen, J.J. Stability and antioxidant activity of beta carotene in conventional and high oleic canola oil. J. Food Sci. 1999, 64, 996–999. [Google Scholar]
- Tufail, T.; Bader Ul Ain, H.; Noreen, S.; Ikram, A.; Tayyab Arshad, M.; Adem Abdullahi, M. Nutritional Benefits of Lycopene and Beta-Carotene: A Comprehensive Overview. Food Sci. Nutr. 2024, 12, 8715–8741. [Google Scholar] [CrossRef] [PubMed]
- Nikolova, K.; Perifanova, M.; Pashev, A.; Minkova, S.; Gentscheva, G.; Antova, G.; Uzunova, G. Composition and physicochemical properties of seed oil of rarely grown varieties of grapes. Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Ind. 2021, 22, 427–435. [Google Scholar]
- Kim, T.S.; Decker, E.A.; Lee, J. Effects of chlorophyll photosensitisation on the oxidative stability in oil-in-water emulsions. Food Chem. 2012, 133, 1449–1455. [Google Scholar]
- Flynn, M.; Tierney, A.; Itsiopoulos, C. Is extra virgin olive oil the critical ingredient driving the health benefits of a mediterranean diet? a narrative review. Nutrients 2023, 15, 2916. [Google Scholar] [CrossRef]
- Janu, C.; Soban Kumar, D.R.; Reshma, M.V.; Jayamurthy, P.; Sundaresan, A.; Nisha, P. Comparative study on the total phenolic content and radical scavenging activity of common edible vegetable oils. J. Food Biochem. 2014, 38, 38–49. [Google Scholar]
- Fanali, C.; Della Posta, S.; Vilmercati, A.; Dugo, L.; Russo, M.; Petitti, T.; Mondello, L.; De Gara, L. Extraction, analysis, and antioxidant activity evaluation of phenolic compounds in different Italian extra-virgin olive oils. Molecules 2018, 23, 3249. [Google Scholar] [CrossRef]
- Kamal-Eldin, A. Effect of fatty acids and tocopherols on the oxidative stability of vegetable oils. Eur. J. Lipid Sci. Technol. 2006, 108, 1051–1061. [Google Scholar]
- Kumar, A.; Sharma, A.; Upadhyaya, K.C. Vegetable Oil: Nutritional and Industrial Perspective. Curr Genom. 2016, 17, 230–240. [Google Scholar]
- Simopoulos, A.P. Importance of the ratio of omega-6/omega-3 essential fatty acids: Evolutionary aspects. In Omega-6/Omega-3 Essential Fatty Acid Ratio: The Scientific Evidence; Karger Publishers: Basel, Switzerland, 2003; Volume 92, pp. 1–22. [Google Scholar]
- Caldwell, M.D.; Jonsson, H.T.; Othersen, H.B. Essential fatty acid deficiency in an infant receiving prolonged parenteral alimentation. J. Pediatr. 1972, 81, 894–898. [Google Scholar]
- Dunford, N.T.; Dunford, H.B. Nutritionally Enhanced Edible Oil Processing; AOCS Press: Champaign, IL, USA, 2004. [Google Scholar]
- Vangaveti, V.N.; Jansen, H.; Lee Kennedy, R.; Malabu, U.H. Hydroxyoctadecadienoic acids: Oxidised derivatives of linoleic acid and their role in inflammation associated with metabolic syndrome and cancer. Eur. J. Pharmacol. 2016, 785, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Blasbalg, T.L.; Hibbeln, J.R.; Ramsden, C.E.; Majchrzak, S.F.; Rawlings, R. Changes in consumption of omega-3 and omega-6 fatty acids in the United States during the 20th century. Am. J. Clin. Nutr. 2011, 93, 950–962. [Google Scholar] [CrossRef] [PubMed]
- Jandacek, R.J. Linoleic acid: A nutritional quandary. Healthcare 2017, 5, 25. [Google Scholar] [CrossRef] [PubMed]
- Yurchenko, S.; Sats, A.; Tatar, V.; Kaart, T.; Mootse, H.; Jõudu, I. Fatty acid profile of milk from Saanen and Swedish Landrace goats. Food Chem. 2018, 254, 326–332. [Google Scholar] [CrossRef]
- Nordöy, A.; Hamlin, J.T.; Chandler, A.B.; Newland, H. The influence of dietary fats on plasma and platelet lipids and ADP induced platelet thrombosis in the rat. Scand. J. Haematol. 1968, 5, 458–473. [Google Scholar] [CrossRef]
- Connor, W.E.; Hoak, J.C.; Warner, E.D. The effects of fatty acids on blood coagulation and thrombosis. Thromb. Diath. Haemorrh. Suppl. 1965, 17, 89–102. [Google Scholar]
- Hornstra, G. Experimental studies. Dietary fats and arterial thrombosis. In Dietary Fats and Thrombosis; Karger Publishers: Basel, Switzerland, 1974; p. 21. [Google Scholar]
- Mir, N.A.; Tyagi, P.K.; Biswas, A.K.; Tyagi, P.K.; Mandal, A.B.; Kumar, F.; Sharma, D.; Biswas, A.; Verma, A.K. Inclusion of flaxseed, broken rice, and distillers dried grains with solubles (DDGS) in broiler chicken ration alters the fatty acid profile, oxidative stability, and other functional properties of meat. Eur. J. Lipid Sci. Technol. 2018, 120, 1700470. [Google Scholar] [CrossRef]
- Paszczyk, B. Cheese and Butter as a Source of Health-Promoting Fatty Acids in the Human Diet. Animals 2022, 12, 3424. [Google Scholar] [CrossRef]
- Vargas-Bello-Pérez, E.; Íñiguez-González, G.; Fehrmann-Cartes, K.; Toro-Mujica, P.; Garnsworthy, P.C. Influence of fish oil alone or in combination with hydrogenated palm oil on sensory characteristics and fatty acid composition of bovine cheese. Anim. Feed Sci. Technol. 2015, 205, 60–68. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional indices for assessing fatty acids: A mini-review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- Xia, M.; Zhong, Y.; Peng, Y.; Qian, C. Olive oil consumption and risk of cardiovascular disease and all-cause mortality: A meta-analysis of prospective cohort studies. Front. Nutr. 2022, 9, 1041203. [Google Scholar]
- Azadmard-Damirchi, S. Review of the use of phytosterols as a detection tool for adulteration of olive oil with hazelnut oil. Food Addit. Contam. 2010, 27, 1–10. [Google Scholar]
- Ogbe, R.J.; Ochalefu, D.; Mafulul, S.G.; Olaniru, O.B. A review on dietary phytosterols: Their occurrence, metabolism and health benefits. Asian J. Plant Sci. Res. 2015, 5, 10–21. [Google Scholar]
- Woyengo, T.A.; Ramprasath, V.R.; Jones, P.J.H. Anticancer effects of phytosterols. Eur. J. Clin. Nutr. 2009, 63, 813–820. [Google Scholar]
- Shen, M.; Yuan, L.; Zhang, J.; Wang, X.; Zhang, M.; Li, H.; Jing, Y.; Zeng, F.; Xie, J. Phytosterols: Physiological Functions and Potential Application. Foods 2024, 13, 1754. [Google Scholar] [CrossRef]
- Jones, P.J.H.; Rideout, T.C. Plant Sterols: Nutritional Aspects; Karger Publishers: Basel, Switzerland, 2011; pp. 569–576. [Google Scholar]
- Hamada, K.; Wang, P.; Xia, Y.; Yan, N.; Takahashi, S.; Krausz, K.; Hao, H.; Yan, T.; Gonzalez, F.J. Withaferin A alleviates ethanol-induced liver injury by inhibiting hepatic lipogenesis. Food Chem. Toxicol. 2022, 160, 112807. [Google Scholar]
- Llaverias, G.; Carles Escolà-Gil, J.; Lerma, E.; Julve, J.; Pons, C.; Cabré, A.; Cofán, M.; Ros, E.; Sánchez-Quesada, J.L.; Blanco-Vaca, F. Phytosterols inhibit the tumor growth and lipoprotein oxidizability induced by a high-fat diet in mice with inherited breast cancer. J. Nutr. Biochem. 2013, 24, 39–48. [Google Scholar] [CrossRef]
- Bradford, P.G.; Awad, A. Phytosterols as anticancer compounds. Mol. Nutr. Food Res. 2007, 51, 161–170. [Google Scholar] [CrossRef]
- Aksoz, E.; Korkut, O.; Aksit, D.; Gokbulut, C. Vitamin E (α-, β+ γ-and δ-tocopherol) levels in plant oils. Flavour Fragr. J. 2020, 35, 504–510. [Google Scholar]
- Singh, V.K.; Singh, P.K.; Wise, S.Y.; Seed, T.M. Mobilized progenitor cells as a bridging therapy for radiation casualties: A brief review of tocopherol succinate-based approaches. Int. Immunopharmacol. 2011, 11, 842–847. [Google Scholar]
- Shin, E.; Huang, Y.; Pegg, R.; Phillips, R.D.; Eitenmiller, R. Commercial runner peanut cultivars in the United States: Tocopherol composition. J. Agric. Food Chem. 2009, 57, 10289–10295. [Google Scholar] [PubMed]
- Cert, A.; Moreda, W.; Pérez-Camino, M.C. Chromatographic analysis of minor constituents in vegetable oils. J. Chromatogr. A 2000, 881, 131–148. [Google Scholar] [PubMed]
- Chen, Y.; Cao, Y.; Zhao, L.; Kong, X.; Hua, Y. Macronutrients and micronutrients of soybean oil bodies extracted at different pH. J. Food Sci. 2014, 79, C1285–C1291. [Google Scholar]
- Pearce, B.C.; Parker, R.; Deason, M.E.; Dischino, D.; Gillespie, E.; Qureshi, A.; Wright, K.; Volk, K. Inhibitors of cholesterol biosynthesis. 2. hypocholesterolemic and antioxidant activities of benzopyran and tetrahydronaphthalene analogs of the tocotrienols. J. Med. Chem. 1994, 37, 526–541. [Google Scholar] [PubMed]
- Meulmeester, F.L.; Luo, J.; Martens, L.; Mills, K.; van Heemst, D.; Noordam, R. Antioxidant supplementation in oxidative stress-related diseases: What have we learned from studies on alpha-tocopherol? Antioxidants 2022, 11, 2322. [Google Scholar] [CrossRef]
- de Oliveira, V.A.; Rodrigues Monteiro Fernandes, A.N.; Maria dos Santos Leal, L.; Alves Ferreira Lima, P.; Rafaela Silva Pereira, A.; Costa Pereira, I.; Alves Negreiros, H. α-tocopherol as a selective modulator of toxicogenic damage induced by antineoplastic agents’ cyclophosphamide and doxorubicin. J. Toxicol. Environ. Health 2023, 86, 87–102. [Google Scholar]
- Rasool, A.H.G.; Abd Rahman, A.R.; Hay Yuen, K.; Rahim Wong, A. Arterial compliance and vitamin E blood levels with a self-emulsifying preparation of tocotrienol rich vitamin E. Arch. Pharmacal Res. 2008, 31, 1212–1217. [Google Scholar]
- Kesse-Guyot, E.; Bertrais, S.; Peneau, S.; Estaquio, C.; Dauchet, L.; Vergnaud, A.C.; Czernichow, S.; Galan, P.; Hercberg, S.; Bellisle, F. Dietary patterns and their sociodemographic and behavioural correlates in French middle-aged adults from the SU. VI. MAX cohort. Eur. J. Clin. Nutr. 2009, 63, 521–528. [Google Scholar]
- Tucker, J.M.; Townsend, D.M. Alpha-tocopherol: Roles in prevention and therapy of human disease. Biomed. Pharmacother. 2005, 59, 380–387. [Google Scholar]
- Steiner, M. Vitamin E: More than an antioxidant. Clin. Cardiol. 1993, 16, 16–18. [Google Scholar]
Parameter | Results |
---|---|
Oil percent (%) | 14.3 ± 0.2 * |
Specific gravity | 0.882 ± 0.0 |
Refractive index | 1.468 ± 0.0 |
Acid value (mg KOH/g oil) | 1.6 ± 0.1 |
Peroxide value (meq O2/kg oil) | 2.0 ± 0.1 |
Carotenoid content (mg/kg oil) | 3.2 ± 0.1 |
Chlorophyll content (mg/kg oil) | 6.1 ± 0.3 |
Total phenolic compounds (mg/kg oil) | 6.2 ± 0.5 |
Fatty Acid | A. iranicum Seed Oil | Safflower Oil | Corn Oil | Sunflower Oil | Grapeseed Oil |
---|---|---|---|---|---|
Lauric acid | 0.2 ± 0.01 * | ND ** | ND | ND | ND |
Myristic acid | 0.6 ± 0.10 | ND-0.2 | ND | ND-0.2 | ND-0.3 |
Palmitic acid | 13.6 ± 0.71 | 5.3–8.0 | 8.6–16.5 | 21.4–26.4 | 5.5.11.0 |
Palmitoleic acid | 0.3 ± 0.01 | ND-1.2 | ND-0.5 | ND-0.3 | ND-1.2 |
Stearic acid | 2.8 ± 0.23 | 1.9–2.9 | ND-3.3 | 2.7–6.5 | 3.0–6.5 |
Oleic acid | 16.9 ± 1.03 | 8.4–21.3 | 20.0–42.2 | 14.0–43.0 | 12.0–28.0 |
Linoleic acid | 64.4 ± 2.80 | 67.8–83.2 | 34.0–65.6 | 45.4–74.0 | 58.0–78.0 |
α-linolenic acid | 0.7 ± 0.10 | ND-0.1 | ND-2.0 | ND-0.3 | ND-1.0 |
Arachidic acid | 0.3 ± 0.01 | 0.2–0.4 | 0.3–1.0 | 0.1–0.5 | ND-1.0 |
Behenic acid | 0.1 ± 0.01 | ND-1.0 | ND-0.5 | 0.3–1.5 | ND-0.5 |
NQI | A. iranicum | Safflower | Corn | Sunflower | Grapeseed |
---|---|---|---|---|---|
Atherogenicity | 0.20 | 0.08 | 0.15 | 0.28 | 0.10 |
Thrombogenicity | 0.23 | 0.11 | 0.21 | 0.27 | 0.16 |
Hypo/Hyper * | 5.77 | 13.33 | 6.53 | 3.68 | 10.53 |
Phytosterol | A. iranicum | Safflower [24] | Corn [24] | Sesame [24] |
---|---|---|---|---|
Brassica sterol | 2.5 ± 0.1 * | ND **–0.3 | ND-0.2 | 0.1–0.2 |
Campesterol | 15.7 ± 1.2 | 5.0–13.0 | 16.0–24.1 | 10.1–20.0 |
Stigmasterol | 4.3 ± 0.5 | 4.5–13.0 | 4.3–8.0 | 3.4–12.0 |
Beta-sitosterol | 50.7 ± 3.7 | 42.0–70.0 | 54.8–66.6 | 57.7–61.9 |
Delta-5-avenasterol | 8.2 ± 1.4 | 1.5–6.9 | 1.5–8.2 | 6.2–7.8 |
Delta-7-stigmastanole | 1.3 ± 0.1 | 6.5–24.0 | 0.2–4.2 | 0.5–7.6 |
Delta-7-avenastero | 0.8 ± 0.1 | ND–9.0 | 0.3–2.7 | 1.2–5.6 |
Unknown or other | 16.4 ± 0.5 | 3.5–9.5 | ND-2.4 | 0.7–9.2 |
Total (mg/kg oil) | 2850 ± 49 | 2100–4600 | 7000–22,100 | 4500–19,000 |
Tocopherol | Content (ppm) |
---|---|
α-tocopherol | 1188.0 ± 11.5 * |
γ-tocopherol | 10.9 ± 2.0 |
δ-tocopherol | 1.7 ± 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dadazadeh, A.; Azadmard-Damirchi, S.; Piravi-Vanak, Z.; Torbati, M.; Martinez, F. Extraction of Oil from Allium iranicum Seed and Evaluation of Its Composition and Quality Characteristics. Foods 2025, 14, 1483. https://doi.org/10.3390/foods14091483
Dadazadeh A, Azadmard-Damirchi S, Piravi-Vanak Z, Torbati M, Martinez F. Extraction of Oil from Allium iranicum Seed and Evaluation of Its Composition and Quality Characteristics. Foods. 2025; 14(9):1483. https://doi.org/10.3390/foods14091483
Chicago/Turabian StyleDadazadeh, Abdolah, Sodeif Azadmard-Damirchi, Zahra Piravi-Vanak, Mohammadali Torbati, and Fleming Martinez. 2025. "Extraction of Oil from Allium iranicum Seed and Evaluation of Its Composition and Quality Characteristics" Foods 14, no. 9: 1483. https://doi.org/10.3390/foods14091483
APA StyleDadazadeh, A., Azadmard-Damirchi, S., Piravi-Vanak, Z., Torbati, M., & Martinez, F. (2025). Extraction of Oil from Allium iranicum Seed and Evaluation of Its Composition and Quality Characteristics. Foods, 14(9), 1483. https://doi.org/10.3390/foods14091483