Buchanania obovata: Functionality and Phytochemical Profiling of the Australian Native Green Plum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sample Preparation
2.3. Accelerated Solvent Extractions
2.4. Extraction of Unbound Polyphenols
2.5. Extraction of Bound Polyphenols
2.6. In Vitro Antioxidant Capacity
2.7. Antimicrobial Activity
2.8. Scanning Electron Microscopy of Antimicrobial Activity
2.9. Phytochemical Quantification and Identification
2.10. Statistical Analysis
3. Results and Discussion
3.1. In Vitro Antioxidant Capacity
3.2. Antimicrobial Activity
3.3. Phytochemical Analysis
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- McMahon, G. Bushtucker in the Top End; Northern Territory Government: Northern Territory, Australia, 2005. [Google Scholar]
- Head, L. Country and garden: Ethnobotany, archaeobotany and Aboriginal landscapes near the Keep River, Northwestern Australia. J. Soc. Archaeol. 2002, 2, 173–196. [Google Scholar] [CrossRef]
- Medley, P.; Bollhöfer, A. Influence of group II metals on Radium-226 concentration ratios in the native green plum (Buchanania obovata) from the Alligator Rivers Region, Northern Territory, Australia. J. Environ. Radioact. 2016, 151, 551–557. [Google Scholar] [CrossRef] [PubMed]
- Özçelik, B.; Aslan, M.; Orhan, I.; Karaoglu, T. Antibacterial, antifungal, and antiviral activities of the lipophylic extracts of Pistacia vera. Microbiol. Res. 2005, 160, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Levitt, D. Plants and People: Aboriginal Uses of Plants on Groote Eylandt; Australian Institute of Aboriginal Studies: Canberra, Australia, 1981. [Google Scholar]
- Barr, A.; Chapman, J.; Smith, N.; Wightman, G.; Knight, T.; Mills, L.; Andrews, M.; Alexander, V. Traditional Aboriginal Medicines in the Northern Territory of Australia, by Aboriginal Communities of the Northern Territories; Conservation Commission of the Northern Territory of Australia: Darwin, Australia, 1993. [Google Scholar]
- Williams, D.J.; Edwards, D.; Pun, S.; Chaliha, M.; Burren, B.; Tinggi, U.; Sultanbawa, Y. Organic acids in Kakadu plum (Terminalia ferdinandiana): The good (ellagic), the bad (oxalic) and the uncertain (ascorbic). Food Res. Int. 2016, 89, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Konczak, I.; Maillot, F.; Dalar, A. Phytochemical divergence in 45 accessions of Terminalia ferdinandiana (Kakadu plum). Food Chem. 2014, 151, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Sultanbawa, Y. Food Preservation and the Antimicrobial Activity of Australian Native Plants. In Australian Native Plants: Cultivation and Uses in the Health and Food Industries; Sultanbawa, Y., Sultanbawa, F., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2016; pp. 251–263. [Google Scholar]
- Gorman, J.; Courtenay, K.; Brady, C. Production of Terminalia ferdinandiana Excell. (‘Kakadu Plum’) in Northern Australia. In Australian Native Plants: Cultivation and Uses in the Health and Food Industries; Sultanbawa, Y., Sultanbawa, F., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2016; pp. 89–103. [Google Scholar]
- Chuen, T.L.K.; Vuong, Q.V.; Hirun, S.; Bowyer, M.C.; Predebon, M.J.; Goldsmith, C.D.; Sakoff, J.A.; Scarlett, C.J. Antioxidant and anti-proliferative properties of Davidson’s plum (Davidsonia pruriens F. Muell) phenolic-enriched extracts as affected by different extraction solvents. J. Herb. Med. 2016, 6, 187–192. [Google Scholar] [CrossRef]
- Gülçin, İ. Antioxidant activity of food constituents: An overview. Arch. Toxicol. 2012, 86, 345–391. [Google Scholar] [CrossRef] [PubMed]
- Dickson-Spillmann, M.; Siegrist, M.; Keller, C. Attitudes toward chemicals are associated with preference for natural food. Food Qual. Preference 2011, 22, 149–156. [Google Scholar] [CrossRef]
- European Commission. Special Eurobarometer 468: Attitudes of European Citizens towards the Environment; European Commission: Brussels, Belgium, 2017. [Google Scholar]
- Kiokias, S.; Varzakas, T. Activity of flavonoids and β-carotene during the auto-oxidative deterioration of model food oil-in water emulsions. Food Chem. 2014, 150, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Navarro, M.; Sonni, F.; Chaliha, M.; Netzel, G.; Stanley, R.; Sultanbawa, Y. Physicochemical assessment and bioactive properties of condensed distillers solubles, a by-product from the sorghum bio-fuel industry. J. Cereal Sci. 2016, 72, 10–15. [Google Scholar] [CrossRef]
- Kammerer, D.; Claus, A.; Carle, R.; Schieber, A. Polyphenol screening of pomace from red and white grape varieties (Vitis vinifera L.) by HPLC-DAD-MS/MS. J. Agric. Food Chem. 2004, 52, 4360–4367. [Google Scholar] [CrossRef] [PubMed]
- Adom, K.K.; Liu, R.H. Antioxidant activity of grains. J. Agric. Food Chem. 2002, 50, 6182–6187. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 1965, 16, 144–158. [Google Scholar]
- Ahmed, F.; Fanning, K.; Netzel, M.; Turner, W.; Li, Y.; Schenk, P.M. Profiling of carotenoids and antioxidant capacity of microalgae from subtropical coastal and brackish waters. Food Chem. 2014, 165, 300–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, L.; Moore, J. Methods for Antioxidant Capacity Estimation of Wheat and Wheat-Based Food Products. In Wheat Antioxidants; Yu, L., Ed.; Wiley-Interscience: Hoboken, NJ, USA, 2008. [Google Scholar]
- Decker, E.A.; Welch, B. Role of ferritin as a lipid oxidation catalyst in muscle food. J. Agric. Food Chem. 1990, 38, 674–677. [Google Scholar] [CrossRef]
- Kuda, T.; Tsunekawa, M.; Hishi, T.; Araki, Y. Antioxidant properties of dried kayamo-nori’, a brown alga Scytosiphon lomentaria (Scytosiphonales, Phaeophyceae). Food Chem. 2005, 89, 617–622. [Google Scholar] [CrossRef]
- Wang, T.; Jonsdottir, R.; Ólafsdóttir, G. Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chem. 2009, 116, 240–248. [Google Scholar] [CrossRef]
- Dussault, D.; Vu, K.D.; Lacroix, M. In vitro evaluation of antimicrobial activities of various commercial essential oils, oleoresin and pure compounds against food pathogens and application in ham. Meat Sci. 2014, 96, 514–520. [Google Scholar] [CrossRef] [PubMed]
- Gasperotti, M.; Masuero, D.; Mattivi, F.; Vrhovsek, U. Overall dietary polyphenol intake in a bowl of strawberries: The influence of Fragaria spp. in nutritional studies. J. Funct. Foods 2015, 18, 1057–1069. [Google Scholar] [CrossRef]
- Sommano, S.; Caffin, N.; Kerven, G. Screening for Antioxidant Activity, Phenolic Content, and Flavonoids from Australian Native Food Plants. Int. J. Food Propert. 2013, 16, 1394–1406. [Google Scholar] [CrossRef]
- Konczak, I.; Zabaras, D.; Dunstan, M.; Aguas, P.; Roulfe, P.; Pavan, A. Health Benefits of Australian Native Foods: An Evaluation of Health-Enhancing Compounds; Rural Industries Research and Development Corporation: Barton, Australia, 2009. [Google Scholar]
- Zhang, Z.; Vriesekoop, F.; Yuan, Q.; Liang, H. Effects of nisin on the antimicrobial activity of D-limonene and its nanoemulsion. Food Chem. 2014, 150, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Marino, T.; Galano, A.; Russo, N. Radical scavenging ability of gallic acid toward OH and OOH radicals. Reaction mechanism and rate constants from the density functional theory. J. Phys. Chem. B 2014, 118, 10380–10389. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Cao, Y.; Sun, B.; Wang, C. Characterisation of inclusion complex of trans-ferulic acid and hydroxypropyl-β-cyclodextrin. Food Chem. 2011, 124, 1069–1075. [Google Scholar] [CrossRef]
- Trombino, S.; Cassano, R.; Ferrarelli, T.; Barone, E.; Picci, N.; Mancuso, C. Trans-ferulic acid-based solid lipid nanoparticles and their antioxidant effect in rat brain microsomes. Colloids Surf. B: Biointerfaces 2013, 109, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Lou, Z.; Wang, H.; Zhu, S.; Ma, C.; Wang, Z. Antibacterial activity and mechanism of action of chlorogenic acid. J. Food Sci. 2011, 76, M398–M403. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, M.; Sánchez-Moreno, C.; de Pascual-Teresa, S. Flavonoid–flavonoid interaction and its effect on their antioxidant activity. Food Chem. 2010, 121, 691–696. [Google Scholar] [CrossRef]
- Vazquez Prieto, M.A.; Bettaieb, A.; Rodriguez Lanzi, C.; Soto, V.C.; Perdicaro, D.J.; Galmarini, C.R.; Haj, F.G.; Miatello, R.M.; Oteiza, P.I. Catechin and quercetin attenuate adipose inflammation in fructose-fed rats and 3T3-L1 adipocytes. Mol. Nutr. Food Res. 2015, 59, 622–633. [Google Scholar] [CrossRef] [PubMed]
- Dueñas, M.; González-Manzano, S.; González-Paramás, A.; Santos-Buelga, C. Antioxidant evaluation of O-methylated metabolites of catechin, epicatechin and quercetin. J. Pharm. Biomed. Anal. 2010, 51, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Orrego-Lagarón, N.; Martínez-Huélamo, M.; Vallverdú-Queralt, A.; Lamuela-Raventos, R.M.; Escribano-Ferrer, E. High gastrointestinal permeability and local metabolism of naringenin: Influence of antibiotic treatment on absorption and metabolism. Br. J. Nutr. 2015, 114, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Landete, J. Ellagitannins, ellagic acid and their derived metabolites: A review about source, metabolism, functions and health. Food Res. Int. 2011, 44, 1150–1160. [Google Scholar] [CrossRef]
- Díaz, A.M.; Caldas, G.V.; Blair, M.W. Concentrations of condensed tannins and anthocyanins in common bean seed coats. Food Res. Int. 2010, 43, 595–601. [Google Scholar] [CrossRef]
- Zhang, R.F.; Zhang, F.X.; Zhang, M.W.; Wei, Z.C.; Yang, C.Y.; Zhang, Y.; Tang, X.J.; Deng, Y.Y.; Chi, J.W. Phenolic composition and antioxidant activity in seed coats of 60 Chinese black soybean (Glycine max L. Merr.) varieties. J. Agric. Food Chem. 2011, 59, 5935–5944. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Zhong, Y. Novel antioxidants in food quality preservation and health promotion. Eur. J. Lipid Sci. Technol. 2010, 112, 930–940. [Google Scholar] [CrossRef]
- Sultanbawa, Y. Plant antimicrobials in food applications: Minireview. In Science against Microbial Pathogens: Communicating Current Research and Technological Advances; Formatex Research Center: Badajoz, Spain, 2011; pp. 1084–1099. [Google Scholar]
Extraction | TPC Flesh g GAE/kg DW | TPC Seed g GAE/kg DW | DPPH Flesh µM TE/g DW | DPPH Seed µM TE/g DW | FIC Flesh * % Chelating | FIC Seed * % Chelating |
---|---|---|---|---|---|---|
Methanol | 19.2 ± 4.4 b | 2.6 ± 0.6 b | 106.3 ± 28.6 a | 14.6 ± 3.6 a | 21.4 ± 8.9 a | 20.8 ± 9.4 b |
Ethanol | 10.3 ± 3.0 c | N/A | 40.2 ± 13.4 b | 10.0 ± 3.8 b | 4.9 ± 6.4 b | 17.8 ± 16.6 b |
Water | 5.0 ± 1.6 d | 1.4 ± 0.2 c | 34.7 ± 13.4 b | 11.5 ± 2.8 a,b | 3.5 ± 5.2 b | 34.9 ± 7.3 a |
Unbound | 84.6 ± 5.3 a | 6.5 ± 0.5 a | N/A | N/A | N/A | N/A |
Bound | 9.2 ± 2.8 c,d | 1.1 ± 0.2 c | N/A | N/A | N/A | N/A |
Extraction | Flesh E. coli (mm) | Flesh S. aureus (mm) | Seed E. coli (mm) | Seed S. aureus (mm) |
---|---|---|---|---|
Methanol | 20.73 ± 1.27 a | 22.61 ± 1.42 a | NI | 8.83 ± 0.24 a |
Ethanol | 9.55 ± 2.40 c | 20.38 ± 1.14 b | NI | NI |
Water | 16.48 ± 0.95 b | 23.44 ± 0.85 a | NI | 6.81 ± 0.10 b |
Flesh | Seed | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
m/z | U | B | M | E | W | U | B | M | E | W | |
Trans-ferulic acid | 193.0506 | X | X | X | X | X | X | X | X | X | |
p-coumaric acid | 163.0401 | X | X | X | X | X | X | X | X | X | |
hydroxybenzoic acid | 137.0244 | X | X | X | X | X | |||||
Salicylic acid | 137.0244 | [x] | [x] | X | |||||||
Catechin | 289.0718 | X | X | X | X | X | X | X | X | ||
Gallic acid | 169.0143 | X | X | X | X | X | X | X | X | X | X |
Kaempferol | 285.0405 | X | X | X | |||||||
Naringenin | 271.0612 | X | X | X | X | X | X | X | |||
Quercetin | 301.0354 | X | X | X | X | X | X | X | [x] | ||
Quercetin 3-glucoside | 463.0882 | X | X | X | X | X | X | X | X | X | X |
Quercetin 3 rutinoside | 609.1461 | X | X | X | X | X | X | X | X | X | |
Quercetin 3-xyloside | 433.0776 | X | X | X | X | X | X | X | [x] | ||
Chlorogenic acid | 353.0878 | X | [x] | [x] | X | X | |||||
Cinnamic acid | 147.0452 | X | |||||||||
Vanillic acid | 167.0350 | X | |||||||||
Isorhamnetin-3-glucoside | 477.1039 | [x] | [x] | [x] | [x] | X | X | X | |||
Quercetin 3,4′-diglucoside | 625.1410 | X | X | X | X | X | [x] | X | X | ||
Procyanidin B1 | 577.1352 | [x] | [x] | [x] | [x] | X | [x] | ||||
Eriodicyol 7-glucoside | 449.1089 | X | X | X | X | X | X | X | |||
Ellagic acid | 300.9990 | X | X | X | X | X | X | X | X | X |
Flesh Unbound (μg/g DW) | Flesh Bound (μg/g DW) | Seed Unbound (μg/g DW) | Seed Bound (μg/g DW) | |
---|---|---|---|---|
Gallic Acid | 955.39 | 3342.97 | 151.89 | 3.95 |
Myricetin | 180.96 | |||
Quercetin 3,4′-diglucoside | 63.37 | |||
Chlorogenic acid | 91.83 | 19.93 | 695.19 | 45.71 |
Ferulic Acid | 114.50 | 8.02 | 22.77 | 17.85 |
p-coumaric acid | 4.42 | |||
Quercetin 3-glucoside | 874.17 | 39.64 | 13.19 | |
Quercetin | 118.59 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fyfe, S.A.; Netzel, G.; Netzel, M.E.; Sultanbawa, Y. Buchanania obovata: Functionality and Phytochemical Profiling of the Australian Native Green Plum. Foods 2018, 7, 71. https://doi.org/10.3390/foods7050071
Fyfe SA, Netzel G, Netzel ME, Sultanbawa Y. Buchanania obovata: Functionality and Phytochemical Profiling of the Australian Native Green Plum. Foods. 2018; 7(5):71. https://doi.org/10.3390/foods7050071
Chicago/Turabian StyleFyfe, Selina A., Gabriele Netzel, Michael E. Netzel, and Yasmina Sultanbawa. 2018. "Buchanania obovata: Functionality and Phytochemical Profiling of the Australian Native Green Plum" Foods 7, no. 5: 71. https://doi.org/10.3390/foods7050071
APA StyleFyfe, S. A., Netzel, G., Netzel, M. E., & Sultanbawa, Y. (2018). Buchanania obovata: Functionality and Phytochemical Profiling of the Australian Native Green Plum. Foods, 7(5), 71. https://doi.org/10.3390/foods7050071