Chemical Characterization and Antioxidant Properties of Ethanolic Extract and Its Fractions from Sweet Potato (Ipomoea batatas L.) Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Extraction and Fractionation
2.3. Identification and Quantification of Polyphenol Compounds
2.3.1. Identification of Polyphenol Compounds by HPLC-ESI-MS
2.3.2. Quantitative Analysis of Polyphenol Compounds by HPLC
2.4. Determination of Total Flavonoid Content
2.5. Determination of Total Phenolic Content
2.6. Determination of Sugar Content
2.6.1. Total Polysaccharide Content
2.6.2. Reducing Sugar Content
2.7. Antioxidant Capacity Measurement
2.7.1. DPPH Assay
2.7.2. FRAP Assay
2.8. Statistical Analysis
3. Results and Discussion
3.1. Extraction Yield of Fractions
3.2. Characterization and Quantification of Phenolic Compounds
3.3. TPC, TFC, Total Polysaccharides, and Reducing Sugar Contents
3.4. DPPH Radical Scavenging and FRAP-Reducing Activity
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bouwkamp, J.C. Sweet Potato Products: A Natural Resource for the Tropics; CRC Press: Boca Raton, FL, USA, 1985; pp. 270–271. [Google Scholar]
- Sun, H.; Mu, T.; Xi, L.; Zhang, M.; Chen, J. Sweet potato (Ipomoea batatas L.) leaves as nutritional and functional foods. Food Chem. 2014, 156, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Ishida, H.; Suzuno, H.; Sugiyama, N.; Innami, S.; Tadokoro, T.; Maekawa, A. Nutritive evaluation on chemical components of leaves, stalks and stems of sweet potatoes (Ipomoea batatas poir). Food Chem. 2000, 68, 359–367. [Google Scholar] [CrossRef]
- Islam, M.S.; Yoshimoto, M.; Yahara, S.; Okuno, S.; Ishiguro, K.; Yamakawa, O. Identification and characterization of foliar polyphenolic composition in sweetpotato (Ipomoea batatas L.) genotypes. J. Agric. Food Chem. 2002, 50, 3718–3722. [Google Scholar] [CrossRef] [PubMed]
- Ojong, P.B.; Njiti, V.; Guo, Z.; Gao, M.; Besong, S.; Barnes, S.L. Variation of flavonoid content among sweet potato accessions. J. Am. Soc. Hortic. Sci. 2008, 133, 819–824. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Mu, T.; Sun, H.; Fauconnier, M.L. Optimization of ultrasonic-microwave synergistic extraction of flavonoids from sweet potato leaves by response surface methodology. J. Food Process. Preserv. 2019, 43, e13928. [Google Scholar] [CrossRef]
- Islam, S. Sweet potato (Ipomoea batatas L.) leaf: Its potential effect on human health and nutrition. J. Food Sci. 2006, 71, 13–21. [Google Scholar] [CrossRef]
- Oki, T.; Masuda, M.; Furuta, S.; Nishiba, Y.; Terahara, N.; Suda, I. Involvement of anthocyanins and other phenolic compounds in radical-scavenging activity of purple-fleshed sweet potato cultivars. J. Food Sci. 2002, 67, 1752–1756. [Google Scholar] [CrossRef]
- Taira, J.; Taira, K.; Ohmine, W.; Nagata, J. Mineral determination and anti-LDL oxidation activity of sweet potato (Ipomoea batatas L.) leaves. J. Food Compos. Anal. 2013, 29, 117–125. [Google Scholar] [CrossRef]
- Sun, H.; Mu, T.; Xi, L.; Song, Z. Effects of domestic cooking methods on polyphenols and antioxidant activity of sweet potato leaves. J. Agric. Food Chem. 2014, 62, 8982–8989. [Google Scholar] [CrossRef]
- Liu, R.; Cheng, S.; Wang, L.; Zeng, Q.H.; Zhang, S.X. Antioxidant activity and α-glucosidase inhibitory activity of sweet potato (Ipomoea batatas L.) leaf extracts from different varieties. Sci. Technol. Food Ind. 2019, 6, 19. [Google Scholar]
- Proteggente, A.R.; Pannala, A.S.; Paganga, G.; Van Buren, L.; Wagner, E.; Wiseman, S.; Van De Put, F.; Dacombe, C.; Rice-Evans, C.A. The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin C composition. Free Radic. Res. 2002, 36, 217–233. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, Z.F.; Zheng, G.H.; Wang, A.M.; Sun, C.H.; Qin, S.P.; Zhuang, J.; Lu, J.; Ma, D.F.; Zheng, Y.L. The inhibitory effects of purple sweet potato color on hepatic inflammation is associated with restoration of NAD+ levels and attenuation of NLRP3 inflammasome activation in high-fat-diet-treated mice. Molecules 2017, 22, 1315. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Qu, H.; Jia, J.; Kuang, C.; Wen, Y.; Yan, H.; Gui, Z. Characterization, antioxidant and antitumor activities of polysaccharides from purple sweet potato. Carbohydr. Polym. 2015, 132, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Nagamine, R.; Ueno, S.; Tsubata, M.; Yamaguchi, K.; Takagaki, K.; Hira, T.; Hara, H.; Tsuda, T. Dietary sweet potato (Ipomoea batatas L.) leaf extract attenuates hyperglycaemia by enhancing the secretion of glucagon-like peptide-1 (GLP-1). Food Funct. 2014, 5, 2309–2316. [Google Scholar] [CrossRef]
- Huang, X.Q.; Tu, Z.C.; Xiao, H.; Li, Z.; Zhang, Q.T.; Wang, H.; Hu, Y.M.; Zhang, L. Dynamic high pressure microfluidization-assisted extraction and antioxidant activities of sweet potato (Ipomoea batatas L.) leaves flavonoid. Food Bioprod. Process. 2013, 91, 1–6. [Google Scholar] [CrossRef]
- Ignat, I.; Volf, I.; Popa, V.I. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem. 2011, 126, 1821–1835. [Google Scholar] [CrossRef]
- Castro-López, C.; Ventura-Sobrevilla, J.M.; González-Hernández, M.D.; Rojas, R.; Ascacio-Valdés, J.A.; Aguilar, C.N.; Martínez-Ávila, G.C.G. Impact of extraction techniques on antioxidant capacities and phytochemical composition of polyphenol-rich extracts. Food Chem. 2017, 237, 1139–1148. [Google Scholar] [CrossRef]
- Fu, Z.; Tu, Z.; Zhang, L.; Wang, H.; Wen, Q.; Huang, T. Antioxidant activities and polyphenols of sweet potato (Ipomoea Batatas L.) leaves extracted with solvents of various polarities. Food Biosci. 2016, 15, 11–18. [Google Scholar] [CrossRef]
- Xi, L.; Mu, T.; Sun, H. Preparative purification of polyphenols from sweet potato (Ipomoea batatas L.) leaves by AB-8 macroporous resins. Food Chem. 2015, 172, 166–174. [Google Scholar] [CrossRef]
- Erol, N.T.; Sari, F.; Polat, G.; Velioglu, Y.S. Antioxidant and antibacterial activities of various extracts and fractions of fresh tea leaves and green tea. Tarim Bilim. Derg. 2009, 15, 371–378. [Google Scholar]
- Larrauri, M.; Demaria, M.G.; Ryan, L.C.; Asensio, C.M.; Grosso, N.R.; Nepote, V. Chemical and sensory quality preservation in coated almonds with the addition of antioxidants. J. Food Sci. 2016, 81, S208–S215. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Ma, Y.; Wang, Z.; Khan, A.; Zhou, W.; Zhao, T.; Cao, J.; Cheng, G.; Cai, S. Phenolic constituents, antioxidant and cytoprotective activities of crude extract and fractions from cultivated artichoke inflorescence. Ind. Crops Prod. 2019, 143, 111433. [Google Scholar] [CrossRef]
- Wu, N.H.; Ke, Z.Q.; Wu, S.; Yang, X.S.; Chen, Q.J.; Huang, S.T.; Liu, C. Evaluation of the antioxidant and endothelial protective effects of Lysimachia Christinae Hance (Jin Qian Cao) extract fractions. BMC Complement. Altern. Med. 2018, 18, 128. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Tang, M.C.; Wu, J.M. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar]
- Gutfinger, T. Polyphenols in olive oils. J. Am. Oil Chem. Soc. 1981, 58, 966–968. [Google Scholar] [CrossRef]
- Chen, G.T.; Yuan, B.; Wang, H.X.; Qi, G.H.; Cheng, S.J. Characterization and antioxidant activity of polysaccharides obtained from ginger pomace using two different extraction processes. Int. J. Biol. Macromol. 2019, 139, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Chen, Q.; Li, Z.; Bi, J.; Zhou, L.; Yi, J.; Wu, X. Effect of hybrid drying methods on physicochemical, nutritional and antioxidant properties of dried black mulberry. LWT Food Sci. Technol. 2017, 80, 178–184. [Google Scholar] [CrossRef]
- Jang, Y.; Koh, E. Antioxidant content and activity in leaves and petioles of six sweet potato (Ipomoea batatas L.) and antioxidant properties of blanched leaves. Food Sci. Biotechnol. 2019, 28, 337–345. [Google Scholar] [CrossRef]
- Shyu, Y.; Lin, J.; Chang, Y.; Chiang, C.; Yang, D. Evaluation of antioxidant ability of ethanolic extract from dill (Anethum graveolens L.) flower. Food Chem. 2009, 115, 515–521. [Google Scholar] [CrossRef]
- Simin, F.; Zisheng, L.; Yanbing, Z.; Zhou, Z.; Baiyi, L. Phytochemical contents and antioxidant capacities of different parts of two sugarcane (Saccharum officinarum L.) cultivars. Food Chem. 2014, 151, 452–458. [Google Scholar]
- Barroso, M.R.; Martins, N.; Barros, L.; Antonio, A.L.; Angelo Rodrigues, M.; Sousa, M.J.; Santos-Buelga, C.; Ferreira, I.C.F.R. Assessment of the nitrogen fertilization effect on bioactive compounds of frozen fresh and dried samples of Stevia rebaudiana Bertoni. Food Chem. 2018, 243, 208–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zitnanova, I.; Ranostajova, S.; Sobotova, H.; Demelova, D.; Pechan, I.; Durakova, Z. Antioxidative activity of selected fruits and vegetables. Biologia 2006, 61, 279–284. [Google Scholar] [CrossRef] [Green Version]
- Siddhuraju, P.; Becker, K. Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. J. Agric. Food Chem. 2003, 51, 2144–2155. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, A.M.; O’Callaghan, Y.C.; O’Grady, M.N.; Queguineur, B.; Hanniffy, D.; Troy, D.J.; Kerry, J.P.; O’Brien, N.M. In vitro and cellular antioxidant activities of seaweed extracts prepared from five brown seaweeds harvested in spring from the west coast of Ireland. Food Chem. 2011, 126, 1064–1070. [Google Scholar] [CrossRef]
- Cai, Y.Z.; Luo, Q.; Sun, M.; Corke, H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004, 74, 2157–2184. [Google Scholar] [CrossRef]
Samples | Extraction Yield (mg/g) | Samples | Extraction Yield (mg/g) |
---|---|---|---|
LCE | 344.1 | PCE | 501.4 |
Fraction—LPE | 111.2 | Fraction—PPE | 23.9 |
Fraction—LEE | 12.5 | Fraction—PEE | 6.3 |
Fraction—LWE | 219.8 | Fraction—PWE | 470.5 |
Peak No. | Rt (min) | [M-H]− (m/z) | MS Fragments (m/z) | Molecular Formula | Compound | Samples |
---|---|---|---|---|---|---|
1 | 8.54 | 352.94 | 227, 707 | C16H18O9 | 5-Caffeoylquinic acid | LCE, LWE |
2 | 11.49 | 352.84 | 275, 707 | C16H18O9 | 3-Caffeoylquinic acid | LCE, LEE, LWE, PCE, PEE |
3 | 12.13 | 352.92 | 227, 707 | C16H18O9 | 4-Caffeoylquinic acid | LCE, LWE |
4 | 22.67 | 514.93 | 353, 227 | C25H24O12 | 3,4-Dicaffeoylquinic acid | LCE, LEE, LWE, PCE, PEE |
5 | 23.21 | 514.86 | 353, 227 | C25H24O12 | 3,5-Dicaffeoylquinic acid | LCE, LEE, LWE, PCE, PEE |
6 | 24.78 | 463.02 | 300, 301, 363 | C21H20O12 | Hyperoside | LCE, LPE, LEE, PCE, PEE |
7 | 25.43 | 462.97 | 300, 301, 315 | C21H20O12 | Quercetin-3-O-hexoside | LCE, LPE, LEE |
8 | 27.57 | 514.90 | 607, 353 | C25H24O12 | 4,5-Dicaffeoylquinic acid | LCE, LEE, LWE, PCE, PEE |
9 | 28.01 | 447.01 | 227, 284, 363 | C21H20O11 | Luteolin-7-O-glucoside | LCE, LEE |
10 | 28.60 | 447.03 | 249, 284, 353 | C21H20O11 | Kaempferol-3-O-glucoside | LCE, LEE |
11 | 29.87 | 676.94 | 515, 365 | C34H30O15 | 3,4,5-Tricaffeoylquinic acid | LCE, LEE, PCE, PEE |
Peak | Compound | LCE | LPE | LEE | LWE | PCE | PPE | PEE | PWE |
---|---|---|---|---|---|---|---|---|---|
1 | 5-Caffeoylquinic acid | 2.82 ± 0.21 b | ND | ND | 4.89 ± 0.85 a | ND | ND | ND | ND |
2 | 3-Caffeoylquinic acid | 16.77 ± 0.89 b | ND | 6.18 ± 0.77 d | 27.35 ± 2.66 a | 0.21 ± 0.05 e | ND | 12.95 ± 0.13 c | ND |
3 | 4-Caffeoylquinic acid | 2.29 ± 0.32 b | ND | ND | 4.21 ± 0.59 a | ND | ND | ND | ND |
4 | 3,4-Dicaffeoylquinic acid | 11.64 ± 0.45 c | ND | 22.89 ± 3.20 b | 8.70 ± 0.68 d | 1.16 ± 0.16 e | ND | 83.28 ± 1.66 a | ND |
5 | 3,5-Dicaffeoylquinic acid | 18.69 ± 1.34 c | ND | 229.10 ± 32.59 b | 17.24 ± 1.47 c | 3.65 ± 0.69 d | ND | 263.64 ± 2.67 a | ND |
6 | Hyperoside | 2.46 ± 0.22 d | 3.22 ± 0.13 c | 33.58 ± 0.58 a | ND | 0.29 ± 0.06 e | ND | 15.16 ± 1.39 b | ND |
7 | Quercetin-3-O-hexoside | 2.71 ± 0.44 b | 3.36 ± 0.17 b | 44.43 ± 0.88 a | ND | ND | ND | ND | ND |
8 | 4,5-Dicaffeoylquinic acid | 3.40 ± 0.77 b | ND | 16.51 ± 1.82 a | 4.74 ± 0.58 b | 0.19 ± 0.03 c | ND | 15.73 ± 0.64 a | ND |
9 | Luteolin-7-O-glucoside | 0.75 ± 0.17 b | ND | 21.77 ± 0.55 a | ND | ND | ND | ND | ND |
10 | Kaempferol-3-O-glucoside | 0.64 ± 0.10 b | ND | 18.46 ± 0.48 a | ND | ND | ND | ND | ND |
11 | 3,4,5-Tricaffeoylquinic acid | 0.82 ± 0.04 c | ND | 21.62 ± 1.63 a | ND | 0.11 ± 0.02 d | ND | 7.75 ± 0.12 b | ND |
Samples | Total Flavonoid Content (mg RE/g of Dried Extract) | Total Phenolic Content (mg GAE/g of Dried Extract) | Total Polysaccharide Content (mg GE/g of Dried Extract) | Reducing Sugar Content (mg GE/g of Dried Extract) | |
---|---|---|---|---|---|
Leaves | LCE | 56.87 ± 5.69 d | 112.98 ± 4.14 d | 49.41 ± 3.86 b | 52.93 ± 1.70 d |
LPE | 16.56 ± 1.39 e | 52.63 ± 2.24 e | ND | ND | |
LEE | 110.14 ± 4.10 b | 338.34 ± 21.81 b | ND | ND | |
LWE | 80.53 ± 2.05 c | 125.61 ± 4.01 c | 89.90 ± 5.85 a | 91.39 ± 2.82 | |
Petioles | PCE | 3.81 ± 0.52 g | 9.22 ± 2.67 f | 11.14 ± 0.94 d | 403.78 ± 7.09 b |
PPE | 11.75 ± 2.46 f | 47.14 ± 4.38 e | ND | ND | |
PEE | 127.12 ± 2.53 a | 375.44 ± 9.78 a | ND | ND | |
PWE | 1.52 ± 0.23 h | 2.90 ± 0.18 g | 15.01 ± 1.62 c | 417.37 ± 10.36 a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Liu, D.; Wu, L.; Zhang, J.; Li, X.; Wu, W. Chemical Characterization and Antioxidant Properties of Ethanolic Extract and Its Fractions from Sweet Potato (Ipomoea batatas L.) Leaves. Foods 2020, 9, 15. https://doi.org/10.3390/foods9010015
Zhang C, Liu D, Wu L, Zhang J, Li X, Wu W. Chemical Characterization and Antioxidant Properties of Ethanolic Extract and Its Fractions from Sweet Potato (Ipomoea batatas L.) Leaves. Foods. 2020; 9(1):15. https://doi.org/10.3390/foods9010015
Chicago/Turabian StyleZhang, Chengcheng, Daqun Liu, Liehong Wu, Jianming Zhang, Xiaoqiong Li, and Weicheng Wu. 2020. "Chemical Characterization and Antioxidant Properties of Ethanolic Extract and Its Fractions from Sweet Potato (Ipomoea batatas L.) Leaves" Foods 9, no. 1: 15. https://doi.org/10.3390/foods9010015
APA StyleZhang, C., Liu, D., Wu, L., Zhang, J., Li, X., & Wu, W. (2020). Chemical Characterization and Antioxidant Properties of Ethanolic Extract and Its Fractions from Sweet Potato (Ipomoea batatas L.) Leaves. Foods, 9(1), 15. https://doi.org/10.3390/foods9010015