Nutrient Composition of Different Hazelnut Cultivars Grown in Germany
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Quantification of Main Constituents of Hazelnuts
2.3. Fatty Acid Composition
2.4. Tocopherol Determination
2.5. Quantification of Minerals, Trace and Ultra-Trace Elements
2.6. Statistics
3. Results and Discussion
3.1. Fat, Crude Protein, Dietary Fiber, Moisture and Ash
3.2. Fatty Acid Composition
3.3. Tocopherols
3.4. Micronutrients
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Value of Agricultural Production; The Food and Agriculture Organization (FAO): Rome, Italy, 2016. [Google Scholar]
- Ozdemir, F.; Akinci, I. Physical and nutritional properties of four major commercial Turkish hazelnut varieties. J. Food Eng. 2004, 63, 341–347. [Google Scholar] [CrossRef]
- Ros, E. Nuts and CVD. Br. J. Nutr. 2015, 113, S111–S120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perna, S.; Giacosa, A.; Bonitta, G.; Bologna, C.; Isu, A.; Guido, D.; Rondanelli, M. Effects of Hazelnut Consumption on Blood Lipids and Body Weight: A Systematic Review and Bayesian Meta-Analysis. Nutrients 2016, 8, 747. [Google Scholar] [CrossRef] [PubMed]
- Schlormann, W.; Birringer, M.; Böhm, V.; Löber, K.; Jahreis, G.; Lorkowski, S.; Müller, A.; Schöne, F.; Glei, M. Influence of roasting conditions on health-related compounds in different nuts. Food Chem. 2015, 180, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.L.; Hu, F.B. Long-term associations of nut consumption with body weight and obesity. Am. J. Clin. Nutr. 2014, 100, 408S–411S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stuetz, W.; Schlörmann, W.; Glei, M. B-vitamins, carotenoids and α-/γ-tocopherol in raw and roasted nuts. Food Chem. 2017, 221, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Ros, E. Health Benefits of Nut Consumption. Nutrients 2010, 2, 652–682. [Google Scholar] [CrossRef] [Green Version]
- FDA. Qualified Health Claims: Letter of Enforcement Discretion Nuts and Coronary Heart Disease (Docket No 02p-0505); Administration, F.D., Ed.; Food and Drug Administration: Silver Spring, MD, USA, 2003.
- Holstein, N.; El Tamer, S.; Weigend, M. The nutty world of hazel names—a critical taxonomic checklist of the genus Corylus (Betulaceae). Eur. J. Taxon. 2018. [Google Scholar] [CrossRef]
- Mehlenbacher, S.A. Betulaceae Corylus; CAB International: Wallingford, UK, 2008. [Google Scholar]
- NCGR-Corvallis. Ncgr-Corvallis Corylus Catalog. Available online: https://www.ars.usda.gov/ARSUserFiles/20721500/catalogs/corcore.html (accessed on 13 December 2018).
- Köksal, A.I. Inventory of Hazelnut Research, Germplasm and References; FAO Regional Office for Europe, Interregional (REU/RNE), Cooperative Research Network on Nuts (ESCORENA): Rome, Italy, 2000. [Google Scholar]
- AOAC. Official Methods of Analysis of Aoac International; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Lee, S.C.; Prosky, L.; De Vries, J.W. Determination of Total, Soluble, and Insoluble Dietary Fiber in Foods—Enzymatic-Gravimetric Method, MES-TRIS Buffer: Collaborative Study. J. AOAC Int. 1992, 75, 395–416. [Google Scholar] [CrossRef]
- Dawczynski, C.; Schubert, R.; Jahreis, G. Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem. 2007, 103, 891–899. [Google Scholar] [CrossRef]
- Meyer, S.; Markova, M.; Pohl, G.; Marschall, T.A.; Pivovarova, O.; Pfeiffer, A.F.; Schwerdtle, T. Development, validation and application of an ICP-MS/MS method to quantify minerals and (ultra-)trace elements in human serum. J. Trace Elements Med. Biol. 2018, 49, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Marschall, T.A.; Kroepfl, N.; Jensen, K.B.; Bornhorst, J.; Meermann, B.; Kuehnelt, D.; Schwerdtle, T. Tracing cytotoxic effects of small organic Se species in human liver cells back to total cellular Se and Se metabolites. Metallomics 2017, 9, 268–277. [Google Scholar] [CrossRef] [PubMed]
- Savage, G.; McNeil, D.L. Chemical composition of hazelnuts (Corylus avellana L.) grown in New Zealand. Int. J. Food Sci. Nutr. 1998, 49, 199–203. [Google Scholar] [CrossRef]
- Amaral, J.S.; Casal, S.; Citová, I.; Santos, A.; Seabra, R.M.; Oliveira, B.P.P. Characterization of several hazelnut (Corylus avellana L.) cultivars based in chemical, fatty acid and sterol composition. Eur. Food Res. Technol. 2005, 222, 274–280. [Google Scholar] [CrossRef] [Green Version]
- Köksal, A.I.; Artik, N.; Şimşek, A.; Güneş, N. Nutrient composition of hazelnut (Corylus avellana L.) varieties cultivated in Turkey. Food Chem. 2006, 99, 509–515. [Google Scholar] [CrossRef]
- Alasalvar, C.; Pelvan, E.; Topal, B. Effects of roasting on oil and fatty acid composition of Turkish hazelnut varieties (Corylus avellanaL.). Int. J. Food Sci. Nutr. 2010, 61, 630–642. [Google Scholar] [CrossRef]
- Locatelli, M.; Coïsson, J.D.; Travaglia, F.; Bordiga, M.; Arlorio, M. Impact of Roasting on Identification of Hazelnut (Corylus avellana L.) Origin: A Chemometric Approach. J. Agric. Food Chem. 2015, 63, 7294–7303. [Google Scholar] [CrossRef] [PubMed]
- Taş, N.G.; Gökmen, V. Profiling triacylglycerols, fatty acids and tocopherols in hazelnut varieties grown in Turkey. J. Food Compos. Anal. 2015, 44, 115–121. [Google Scholar] [CrossRef]
- Rezaei, F.; Bakhshi, D.; Fotouhi Ghazvini, R.; Javadi Majd, D.; Pourghayoumi, M. Evaluation of fatty acid content and nutritional properties of selected native and imported hazelnut (corylus avellana l.) varieties grown in iran. J. Appl. Bot. Food Qual. 2014, 87, 104–107. [Google Scholar] [CrossRef]
- Bonvehí, J.S. A chemical study of the protein fractions of Tarragona hazelnuts (Corylus avellana). Eur. Food Res. Technol. 1995, 201, 371–374. [Google Scholar] [CrossRef] [PubMed]
- Alasalvar, C.; Shahidi, F.; Liyanapathirana, C.M.; Ohshima, T. Turkish Tombul Hazelnut (Corylus avellanaL.). 1. Compositional Characteristics. J. Agric. Food Chem. 2003, 51, 3790–3796. [Google Scholar] [CrossRef]
- Dodevska, M.; Sobajic, S.; Djordjevic, B. Fibre and polyphenols of selected fruits, nuts and green leafy vegetables used in Serbian diet. J. Serbian Chem. Soc. 2015, 80, 21–33. [Google Scholar] [CrossRef]
- Ciemniewska-Żytkiewicz, H.; Verardo, V.; Pasini, F.; Bryś, J.; Koczoń, P.; Caboni, M.F. Determination of lipid and phenolic fraction in two hazelnut (Corylus avellana L.) cultivars grown in Poland. Food Chem. 2015, 168, 615–622. [Google Scholar] [CrossRef]
- Bacchetta, L.; Aramini, M.; Zini, A.; Di Giammatteo, V.; Spera, D.; Drogoudi, P.; Rovira, M.; Silva, A.P.; Solar, A.; Botta, R. Fatty acids and alpha-tocopherol composition in hazelnut (Corylus avellana L.): A chemometric approach to emphasize the quality of European germplasm. Euphytica 2013, 191, 57–73. [Google Scholar] [CrossRef]
- Amaral, J.S.; Casal, S.; Alves, M.R.; Seabra, R.M.; Oliveira, M.B.P.P. Tocopherol and Tocotrienol Content of Hazelnut Cultivars Grown in Portugal. J. Agric. Food Chem. 2006, 54, 1329–1336. [Google Scholar] [CrossRef]
- Marzocchi, S.; Pasini, F.; Verardo, V.; Ciemniewska-Żytkiewicz, H.; Caboni, M.F.; Romani, S. Effects of different roasting conditions on physical-chemical properties of Polish hazelnuts (Corylus avellana L. var. Kataloński). LWT 2017, 77, 440–448. [Google Scholar] [CrossRef]
- Matthäus, B.; Özcan, M.M. The comparison of properties of the oil and kernels of various hazelnuts from Germany and Turkey. Eur. J. Lipid Sci. Technol. 2012, 114, 801–806. [Google Scholar] [CrossRef]
- Özdemir, M.; Açkurt, F.; Kaplan, M.; Yıldız, M.; Loker, M.; Gürcan, T.; Biringen, G.; Okay, A.; Seyhan, F.G. Evaluation of new Turkish hybrid hazelnut (Corylus avellana L.) varieties: Fatty acid composition, α-tocopherol content, mineral composition and stability. Food Chem. 2001, 73, 411–415. [Google Scholar] [CrossRef]
- Açkurt, F.; Ozdemir, M.; Biringen, G.; Loker, M. Effects of geographical origin and variety on vitamin and mineral composition of hazelnut (Corylus avellana L.) varieties cultivated in Turkey. Food Chem. 1999, 65, 309–313. [Google Scholar] [CrossRef]
- Simsek, A.; Aykut, O. Evaluation of the microelement profile of Turkish hazelnut (Corylus avellanaL.) varieties for human nutrition and health. Int. J. Food Sci. Nutr. 2007, 58, 677–688. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA). Scientific Opinion on Dietary Reference Values for molybdenum. EFSA J. 2013, 11, 3333. [Google Scholar] [CrossRef] [Green Version]
- Özkutlu, F.; Ziya Doğru, Y.; Özenç, N.; Yazici, G.; Turan, M.; Akçay, F. The importance of turkish hazelnut trace and heavy metal contents for human nutrition. J. Soil Sci. Environ. Manag. 2011, 2, 25–33. [Google Scholar]
- Utermann, J.; Fuchs, M.; Düwel, O. Flächenrepräsentative Hintergrundwerte für arsen, Antimon, Beryllium, Molybdän, Kobalt, Selen, Thallium, Uran und Vanadium in Böden Deutschlands aus Länderübergreifender Sicht; Bundesanstalt für Geowissenschaften und Rohstoffe: Hannover, Germary, 2008.
- Molin, M.; Ulven, S.M.; Meltzer, H.M.; Alexander, J. Arsenic in the human food chain, biotransformation and toxicology—Review focusing on seafood arsenic. J. Trace Elements Med. Biol. 2015, 31, 249–259. [Google Scholar] [CrossRef] [Green Version]
Fat | Protein | Dietary Fiber | Ash | Moisture | |
---|---|---|---|---|---|
Tonda di Giffoni | 62.7 ± 1.0 | 16.5 ± 0.2 | 13.8 ± 0.4 | 2.1 ± 0.0 | 3.9 ± 0.0 |
Juningia | 62.3 ± 0.7 | 11.7 ± 0.1 | 15.3 ± 0.1 | 1.9 ± 0.0 | 3.8 ± 0.0 |
Ennis | 59.8 ± 0.6 | 12.4 ± 0.1 | 18.9 ± 1.1 | 2.2 ± 0.1 | 3.5 ± 0.0 |
Cosford | 52.6 ± 0.8 | 10.2 ± 0.2 | 14.9 ± 0.4 | 2.8 ± 0.1 | 4.0 ± 0.4 |
Red Lambert | 64.8 ± 0.8 | 10.6 ± 0.2 | 16.4 ± 0.8 | 1.9 ± 0.0 | 3.3 ± 0.0 |
Englische Riesen | 51.9 ± 0.0 | 19.7 ± 0.2 | 14.9 ± 1.2 | 2.8 ± 0.1 | 4.5 ± 0.1 |
Webb’s Prize Cob | 50.9 ± 0.1 | 15.9 ± 0.0 | 22.2 ± 0.8 | 2.7 ± 0.0 | 4.5 ± 0.1 |
Gustav’s Zellernuss | 60.6 ± 1.3 | 14.3 ± 0.1 | 18.1 ± 1.8 | 2.6 ± 0.1 | 4.0 ± 0.1 |
Pauetet | 57.7 ± 0.2 | 16.0 ± 0.0 | 14.4 ± 0.1 | 2.2 ± 0.0 | 3.9 ± 0.1 |
Corabel | 47.9 ± 0.8 | 22.1 ± 0.1 | 14.7 ± 0.2 | 3.1 ± 0.0 | 4.4 ± 0.0 |
Hall’s Giant | 54.1 ± 1.3 | 18.4 ± 0.1 | 19.7 ± 0.7 | 2.5 ± 0.0 | 4.0 ± 0.0 |
Merveille de Bollweiler | 54.1 ± 1.4 | 14.2 ± 0.2 | 19.5 ± 0.2 | 2.7 ± 0.0 | 4.3 ± 0.0 |
Gunslebener Zellernuss | 50.3 ± 0.3 | 17.4 ± 0.2 | 16.7 ± 0.8 | 3.2 ± 0.1 | 4.4 ± 0.0 |
Emoa-1 | 56.9 ± 0.3 | 15.1 ± 0.1 | 13.9 ± 0.6 | 2.6 ± 0.0 | 3.9 ± 0.0 |
Barcelloner Zellernuss | 60.2 ± 0.2 | 16.1 ± 0.1 | 13.4 ± 0.5 | 2.2 ± 0.0 | 3.9 ± 0.1 |
C16:0 | C18:0 | C18:1 n-9 | C18:2 n-6 (LA) 2 | C-18:3 n-3 (ALA) 3 | Σ SFA 4 | Σ MUFA 5 | Σ PUFA 6 | Σ n-3 | Σ n-6 | |
---|---|---|---|---|---|---|---|---|---|---|
Tonda di Giffoni | 4.5 | 1.8 | 81.7 | 10.3 | 0.1 | 6.5 | 83.0 | 10.7 | 0.1 | 10.3 |
Juningia | 4.7 | 1.8 | 81.0 | 10.5 | 0.1 | 6.8 | 82.6 | 10.7 | 0.1 | 10.5 |
Ennis | 5.2 | 1.8 | 77.1 | 13.9 | 0.1 | 7.2 | 78.8 | 14.0 | 0.1 | 13.9 |
Cosford | 4.7 | 1.2 | 68.1 | 24.1 | 0.2 | 6.0 | 69.7 | 24.3 | 0.2 | 24.1 |
Red Lambert | 4.9 | 1.9 | 80.3 | 11.0 | 0.1 | 7.0 | 81.8 | 11.2 | 0.1 | 11.0 |
Englische Riesen | 4.1 | 1.0 | 69.0 | 24.0 | 0.2 | 5.2 | 70.5 | 24.3 | 0.2 | 24.0 |
Webb’s Prize Cob | 4.9 | 0.8 | 65.8 | 26.2 | 0.2 | 5.9 | 67.6 | 26.5 | 0.2 | 26.2 |
Gustav’s Zellernuss | 4.4 | 1.7 | 76.4 | 15.6 | 0.1 | 6.3 | 77.9 | 15.8 | 0.1 | 15.6 |
Pauetet | 4.7 | 2.1 | 80.8 | 10.6 | 0.1 | 7.0 | 82.2 | 10.8 | 0.1 | 10.6 |
Corabel | 4.9 | 1.0 | 65.1 | 26.8 | 0.2 | 6.1 | 66.9 | 27.0 | 0.2 | 26.8 |
Hall’s Giant | 4.3 | 1.7 | 75.2 | 16.9 | 0.1 | 6.3 | 76.6 | 17.1 | 0.1 | 16.9 |
Merveille de Bollweiler | 4.4 | 1.4 | 77.0 | 15.3 | 0.1 | 6.0 | 78.6 | 15.5 | 0.1 | 15.3 |
Gunslebener Zellernuss | 4.6 | 1.1 | 66.2 | 25.9 | 0.2 | 5.9 | 67.9 | 26.1 | 0.2 | 25.9 |
Emoa-1 | 4.6 | 1.8 | 72.1 | 19.5 | 0.1 | 6.6 | 73.6 | 19.8 | 0.1 | 19.5 |
Barcelloner Zellernuss | 4.3 | 1.8 | 79.4 | 12.8 | 0.1 | 6.3 | 80.7 | 13.0 | 0.1 | 12.8 |
α-Tocopherol | β-Tocopherol | γ-Tocopherol | δ-Tocopherol | |
---|---|---|---|---|
Tonda di Giffoni | 13.5 | <0.6 | <1.0 | <0.6 |
Juningia | 28.9 | 0.80 | <1.0 | <0.6 |
Ennis | 21.2 | 0.60 | <1.0 | <0.6 |
Cosford | 20.7 | <0.6 | <1.0 | <0.6 |
Red Lambert | 24.8 | <0.6 | 2.00 | <0.6 |
Englische Riesen | 16.6 | 0.60 | <1.0 | <0.6 |
Webb’s Prize Cob | 16.3 | <0.6 | <1.0 | <0.6 |
Gustav’s Zellernuss | 13.3 | <0.6 | <1.0 | <0.6 |
Pauetet | 19.2 | <0.6 | <1.0 | <0.6 |
Corabel | 10.9 | <0.6 | <1.0 | <0.6 |
Hall’s Giant | 9.9 | <0.6 | <1.0 | <0.6 |
Merveille de Bollweiler | 11.8 | <0.6 | <1.0 | <0.6 |
Gunslebener Zellernuss | 18.6 | <0.6 | <1.0 | <0.6 |
Emoa-1 | 15.6 | <0.6 | <1.0 | <0.6 |
Barcelloner Zellernuss | 16.1 | <0.6 | <1.0 | <0.6 |
Mg (mg/100 g) | Ca (mg/100 g) | Mn (mg/100 g) | Fe (mg/100 g) | Cu (mg/100 g) | Zn (mg/100 g) | Mo (mg/100 g) | Se (µg/100 g) | As (µg/100 g) | |
---|---|---|---|---|---|---|---|---|---|
Tonda di Giffoni | 148 ± 3 | 177 ± 4 | 2.78 ± 0.09 | 3.02 ± 0.04 | 1.14 ± 0.02 | 2.48 ± 0.03 | 0.109 ± 0.003 | 5.10 ± 0.20 | 1.57 ± 0.14 |
Juningia | 155 ± 3 | 155 ± 1 | 1.22 ± 0.02 | 2.88 ± 0.07 | 0.948 ± 0.013 | 2.12 ± 0.003 | 0.310 ± 0.004 | 4.33 ± 0.28 | 0.95 ± 0.04 |
Ennis | 162 ± 3 | 140 ± 2 | 1.17 ± 0.02 | 3.21 ± 0.02 | 0.764 ± 0.011 | 2.36 ± 0.05 | 0.414 ± 0.004 | 3.11 ± 0.11 | 2.01 ± 0.06 |
Cosford | 178 ± 3 | 247 ± 2 | 2.94 ± 0.01 | 3.42 ± 0.03 | 1.26 ± 0.01 | 2.91 ± 0.03 | 0.256 ± 0.003 | 4.55 ± 0.45 | 2.53 ± 0.09 |
Red Lambert | 151 ± 1 | 176 ± 1 | 0.682 ± 0.001 | 3.34 ± 0.03 | 1.21 ± 0.004 | 2.48 ± 0.01 | 0.231 ± 0.002 | 2.73 ± 0.21 | 2.57 ± 0.07 |
Englische Riesen | 211 ± 1 | 241 ± 3 | 2.71 ± 0.02 | 3.09 ± 0.04 | 1.36 ± 0.01 | 2.87 ± 0.01 | 0.309 ± 0.002 | 4.49 ± 0.47 | 3.58 ± 0.04 |
Webb’s Prize Cob | 173 ± 3 | 235 ± 3 | 1.40 ± 0.01 | 3.71 ± 0.05 | 1.06 ± 0.02 | 2.92 ± 0.01 | 0.331 ± 0.006 | 3.69 ± 0.23 | 3.47 ± 0.12 |
Gustav’s Zellernuss | 206 ± 2 | 224 ± 1 | 2.10 ± 0.01 | 3.90 ± 0.004 | 1.84 ± 0.06 | 3.01 ± 0.01 | 0.479 ± 0.010 | 3.29 ± 0.27 | 3.81 ± 0.07 |
Pauetet | 162 ± 2 | 175 ± 0.4 | 1.87 ± 0.02 | 3.73 ± 0.06 | 1.52 ± 0.02 | 3.02 ± 0.04 | 0.117 ± 0.001 | 6.25 ± 0.51 | 2.35 ± 0.06 |
Corabel | 188 ± 5 | 212 ± 5 | 2.91 ± 0.05 | 4.26 ± 0.11 | 2.17 ± 0.03 | 3.93 ± 0.06 | 0.280 ± 0.005 | 4.79 ± 0.45 | 2.38 ± 0.07 |
Hall’s Giant | 182 ± 1 | 211 ± 14 | 1.67 ± 0.10 | 3.67 ± 0.04 | 1.71 ± 0.05 | 3.40 ± 0.03 | 0.297 ± 0.005 | 2.94 ± 0.23 | 2.91 ± 0.07 |
Merveille de Bollweiler | 213 ± 5 | 201 ± 6 | 1.77 ± 0.04 | 3.74 ± 0.12 | 1.85 ± 0.05 | 2.88 ± 0.05 | 0.515 ± 0.008 | 3.68 ± 0.05 | 2.13 ± 0.05 |
Gunslebener Zellernuss | 209 ± 3 | 207 ± 1 | 3.92 ± 0.02 | 4.67 ± 0.03 | 1.79 ± 0.04 | 3.43 ± 0.03 | 0.351 ± 0.001 | 4.11 ± 0.56 | 2.69 ± 0.03 |
Emoa-1 | 180 ± 3 | 225 ± 1 | 1.94 ± 0.04 | 3.49 ± 0.05 | 0.972 ± 0.010 | 2.81 ± 0.02 | 0.279 ± 0.004 | 4.23 ± 0.11 | 1.99 ± 0.07 |
Barcelloner Zellernuss | 171 ± 6 | 232 ± 11 | 2.33 ± 0.10 | 3.99 ± 0.29 | 0.779 ± 0.027 | 2.68 ± 0.11 | 0.204 ± 0.003 | 3.83 ± 0.26 | 2.61 ± 0.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Müller, A.K.; Helms, U.; Rohrer, C.; Möhler, M.; Hellwig, F.; Glei, M.; Schwerdtle, T.; Lorkowski, S.; Dawczynski, C. Nutrient Composition of Different Hazelnut Cultivars Grown in Germany. Foods 2020, 9, 1596. https://doi.org/10.3390/foods9111596
Müller AK, Helms U, Rohrer C, Möhler M, Hellwig F, Glei M, Schwerdtle T, Lorkowski S, Dawczynski C. Nutrient Composition of Different Hazelnut Cultivars Grown in Germany. Foods. 2020; 9(11):1596. https://doi.org/10.3390/foods9111596
Chicago/Turabian StyleMüller, Anke Katharina, Ute Helms, Carsten Rohrer, Monika Möhler, Frank Hellwig, Michael Glei, Tanja Schwerdtle, Stefan Lorkowski, and Christine Dawczynski. 2020. "Nutrient Composition of Different Hazelnut Cultivars Grown in Germany" Foods 9, no. 11: 1596. https://doi.org/10.3390/foods9111596