Where does quinoa stand in this? It seems to be perfectly positioned for meeting contemporary expectations and needs as was just highlighted above, due to its agronomic characteristics, nutritional value, health benefits and by-product use that we exposed in the first part of this article. It is easy to see, then, that for its characteristics and in response to the global trends above mentioned, quinoa, considered a functional food, has consequently seen a peak in demand. Despite the seemingly positives coming from an increasing market demand, some issues have risen because of the nature of the product and the consequences that quinoa’s production and marketization have.
Regarding foreign production, the FAO and CIRAD report [
54] has provided a comprehensive overview for European countries. In France, it was decided to pursue locally produced “Quinoa d’Anjou”, in the Loire area, during the period 2009–2012 [
54]. After only a period of three years, the sector organized itself with conventional producers; and still, commercialization and slow market entry was also observed by the agri-food industry. In Italy, tests have shown that quinoa can be cultivated in the southern regions and would flourish under adverse conditions from nature as well. Italy is also predicted to have a shortage of water in the near future (alongside a quality deterioration of water and other forms of abiotic stresses, as a result of climate change). Turkey is also considered to have potential regions capable of producing quinoa [
54]. With arid and semi-arid regions, the country also has a large population to feed and has to deal with abiotic stresses, due to climate change which may lead to problems such as lower crop yields. It is not a customary practice to cultivate quinoa with full irrigation. Drought is one of the deadliest environmental issues facing the country alongside social and economic problems where farmers have higher input costs and suffer low crop prices. In fact, in the case of Turkey, the results are different and show a positive response with full irrigation both under freshwater as well as saline water [
54]. Other areas such as Morocco, Greece, and the Indian subcontinent (India and Pakistan) have also conducted positive tests, and India particularly has shown interests in developing their own markets for quinoa. A common problem these countries face is a system that has a weak market or lack thereof, risk-averse behavior shown by farmers, and a major lack of knowledge and technical diffusion. In conclusion, the tendency to test this crop according to the local production’s conditions to expand national markets is on the rise. Consequently, along with a rise in production, we have seen significant increases in prices, which have tripled from 2006 to 2013. Since quinoa production became competitive, low tariffs were introduced in EU and US with intense marketing and eco-labeling, with a direct consequence of a price increase [
54]. Since demand and prices are annually spiking with instability, new producers have emerged in the open market economy in the Andes with conventional methods of production. These methods are not deemed sustainable for the environment [
56]. Such high demand has also led to international conflicts such as the smuggling of quinoa across borders. This was documented when the army of Bolivia incinerated quinoa produce worth 23 tons that had been smuggled from Peru into Bolivia; and was meant to be sold as organic products [
48].
7.1. Socio-Economic and Environmental Issues Related to Quinoa Cultivation and Marketization
Currently, quinoa as an export product has mainly reached the educated, medium-upper class consumers, who are open to trying new food products and fitting the food trends mentioned above. However, the original consumers are the peasants for which quinoa has been a staple food for ages, and is embedded within their traditions and customs [
50,
51,
52,
53]. Global North consumers are the target for this product as the profit margins are very good. Competitive marketing using social media networks and technological advances came as a response to healthy food trends. Demand also increased for culturally rich and ethical food that comes from ancestral cultures and natives, mainly ones who produce organically in most cases and, unsurprisingly, also experience poverty. In fact, during the peak of the quinoa boom in 2013, media coverage shed light on the negative effects of the increased demand of quinoa on the welfare of its producers in the Andean region [
8,
57,
58]. These articles alarmed consumers about the grave consequences of rising quinoa demand for the producing Andean countries such as: loss of biodiversity, conflicts over land, and dietary changes (including westernization of diets and decreasing consumption of quinoa). Aside from quinoa, Blythman (2013) turns to other examples from the Global South, such as the case of Peruvian asparagus and the impacts of soybean production in South America [
57]. Further parallels with quinoa will be drawn in the section below, pointing out other crops in the Global South-North exchange of food commodities in parallel to quinoa. Along with the public discourse, academia has been raising a range of issues related to the quinoa boom’s environmental and social impact. While studies presenting empirical evidence have been published on diverse topics, critical aspects have been raised with respect to the sustainability of quinoa production. Thus, there is still a big ambiguity present in the discourse. The increasing demand for quinoa coming from the Global North and its future prospects concerning the posed environmental impacts, raises a series of challenges for the cultivating countries in the Global South, especially for the three major producers, Peru, Bolivia, and Ecuador. The calls to action regarding the deteriorating biodiversity mostly touch upon two main aspects, namely: the utilization of the available genetic diversity of the crop and its relation to market pressure and the effects of changing land use on biodiversity. The genetic diversity of quinoa is connected to centuries of work of traditional cultivars, passing on the knowledge from generation to generation. The crop’s wide genetic diversity and adaptability are key characteristics of quinoa’s growing importance in the light of today’s global challenges (e.g., climate change) [
8]. However, the loss of genetic variety does not only have an impact on biodiversity and producers, but it includes nutritional aspects as well [
59] (p. 115). Studies have identified and analyzed the reasons that producers opt for certain quinoa varieties. In the context of Peru and Bolivia, Carimentrand et al. emphasize the different tendencies of selling mixed quinoa seeds on local markets, while simultaneously responding to the international and urban demand for standardized products as “agro-industrial companies and exporters seeking to meet the market demand for uniform and large grains, encourage producers to sow improved quinoa varieties” [
60] (p. 331).
Astudillo and Aroni in 2012 gathered quantitative and qualitative data in southern Bolivia (namely, Salinas and Colcha K municipalities) regarding the use of quinoa varieties. It was observed that “Of the quinoa produced in the study communities, 90% came from only five of the more commercial types or cultivars (out of the 40 types found in the area)” [
59] (p. 106). Moreover, the percentage of people who cultivated only one type of quinoa significantly grew and the research also highlighted socio-economic determinants, which were influencing factors in choosing the use of a certain variety. While this regression analysis highlighted influencing determinants as “the number of varieties a farmer grew in the past, membership in a producer association, the area planted of quinoa and father’s education” [
59] (p. 111), focus groups shed light on more aspects such as marketability, cost of production, land size, limited access to seeds, preference for sow seed mixtures, and considering certain types as “lucky” and “unlucky” based on yields [
54] (pp. 114–115). In Chile’s main quinoa producing areas, a wide genetic variety had been identified with microsatellite analysis, and a field survey was conducted to analyze the management practices of local varieties [
61]. Fuentes et. al. pointed at the need to prevent the loss of biodiversity due to increasing market demand and pressure for homogenized seeds [
61]. On the other hand, Winkel calls out the alarming voices raised about endangered biodiversity and highlights studies which “suggest that the booming commercial production in the southern highlands of Bolivia has not altered its biodiversity” [
62] (pp. 96–97). In the
State of the Art Report of Quinoa in the World in 2013 the authors explain the boom’s lack of “appreciable” impact on the genetic diversity as: ‘’(i) different kinds of quinoa have continued to be used locally for a wide range of food preparations (
Table 11), as well as for medicinal and ritual uses; (ii) the commercial product, ‘Quinoa Real’, is identified with a set of diverse varieties which were traditionally cultivated and which have now found a market: white grain quinoa, dark grain quinoa, and quinoa for puffed grains’’ [
63] (p. 365).
A further key aspect related to the debated environmental impacts, which incorporates the challenges to biodiversity as well, is the change in land use. This includes among others, the increasing area under cultivation, the phenomenon of farmers opting for mono-cultural agriculture and the replacement of traditional agricultural methods. In detail, regarding land use change, Chelleri et al. notes a “sharp growth in the percentage of plots dedicated to quinoa mono-cropping in 2012 compared with 2010 and 2008” in the communities studied in Tomave municipality, Bolivia [
64] (p. 2233). In Peru changes in the land use in relation to the international quinoa market had been analyzed by Bedoya-Perales et al. in the framework of three phenomena, namely displacement, the rebound effect and the cascade effect [
65]. The study notes the expansion of land acreage both in traditional and new producing regions. Thus, as yields increase, it can lead to changing traditional agricultural methods, expansion of land and new technologies. Bedoya-Perales et al. note the environmental impacts (e.g., loss of genetic biodiversity and “the emergence of difficult-to-control pests”) of the quinoa boom related to the cascade effect in traditional producing areas, such as in the Puno region [
65] (p. 9). Latorre Farfán in 2017 analyzed in the framework of sustainable production in Peru’s two main producing regions: in the area of Majes, Arequipa region, and its conventional intensive production of quinoa, and in Camacani in Puno region, where traditional methods are in use. Putting focus on Majes, the study highlights the need for utilizing the resources more efficiently as one of the pillars to develop sustainable farming systems [
66] (p. 47). Changes in land use and its cause and effect relations are a deep-rooted and complex challenge present in the sustainability discourse and it is no different in the case of quinoa. As the current academic discourse illustrates, understanding present land use change on the local level is necessary in order to improve future forecasts and to achieve a more sustainable agricultural production. At the same time, from local peculiarities in climate conditions and production methods, challenges can arise for pursuing a meta-analysis and setting the research and policy agenda accordingly. Moreover, local-global linkages have to be taken into consideration, too, such as the relationship between land use change-related negative externalities and international market prices and the integration of traditional knowledge with the state-of-the-art research on sustainable agricultural production. Mechanization of agricultural practices are an additional characteristic connected to changing land use. Alongside positive effects (i.e., increased productivity), negative consequences can arise from mechanization, too. For example, in the framework of land management, Carimentrand and Ballet underline the connection between the arrival of tractors and land clearing as form of land appropriation, having a considerable impact on land ownership patterns in the Southern Altiplano of Bolivia [
67]. Connected to the appropriation of communal lands, Winkel and colleagues highlight the dynamics between the quantitative patrimonialization of lands, reaching its limits in space, and the qualitative patrimonialization, which is needed in the future in order to “improve cropping practices, and negotiate comprehensive agreements for using common land resources” [
68] (p. 201). For this reason, addressing extensive agricultural practices raises the need to tackle the topic of governance of local resources as well [
68,
69,
70]. In addition, soil erosion [
71,
72] or poor seed placement [
72] can be risks of mechanization, too. Walsh-Dilley notes in her study of San Juan de Rosario community in Bolivia, that since the efficiency of using tractors is perceived to be decreasing (e.g., due to quality of new quinoa lands, land degradation, and climate change), producers are opting for returning to hand labor to minimize the risks occurring [
72].
The challenges to biodiversity and changing land use practices include also the question of livestock, especially llamas, whose manure is used for fertilization. The llama population and its role in sustainable quinoa production can be assessed two-fold. Gandarillas et al. in 2015 notes in Bolivia the shrinking gazing lands and the decreasing number of llama population due to farmers’ switching to quinoa production [
73]. Chelleri et al. identified in the study nine communities in the southern Bolivian Altiplano a growing llama population together with an invasion of these animals to the quinoa fields due to the decreased land and other lands of great ecological value [
64] (p. 2234). This two-fold aspect sheds a light on the tensions between intensive agricultural practices and sustaining traditional cultivating methods. While on one hand, an increase in production can lead to the decrease of grazing lands for the llama population, thus causing damage for the local ecosystem or quinoa, on the other hand increasing production can also lead to farmers abandoning raising llamas for living resulting a decrease in the llama population. Chelleri et al. also note the decreasing productivity in yields presenting observations on farmers’ perception and from productivity data [
64]. This observation was noted by Gandarillas et al. in Bolivia as well, not only in terms of increase of cultivated areas but also in the decrease in yield performance [
73]. Bedoya-Perales also observed trends related to changes in land use with data of areas under cultivation in Peru [
65]. Possible solutions for protecting biodiversity in these times of increased demand need to be proposed. To answer the challenges posed to the environment, studies have been dealing with evaluating possible solutions for safeguarding biodiversity.
An example as such is Bioversity International’s pilot project of Payment for Agrobiodiversity Conservation Services (PACS) in Bolivia and Peru, which concluded with useful insights regarding the future application of PES in relation to agrobiodiversity [
74]. However, further analysis is needed on the implementation of these mechanisms. As Drucker et al. notes “PACS instruments can be designed in such a way as to create incentives to act collectively in order to contribute to the conservation goal and receive rewards. By contrast, it is also possible that PACS schemes, if not appropriately designed, could undermine existing institutions of collective action in poor farming communities.” [
75] (p. 108). Martinez et al. analyzed in Chile the role of tourism in rethinking a sustainable alternative to traditional agriculture in line with preserving the quinoa heritage of the territories studied [
76]. Winkel et al. analyzed the valorization of biocultural heritage for the inclusion of peasant farming through the case of Chile and Bolivia [
77]. Community gene banks have been analyzed as part of efforts reversing the genetic erosion of the crop in Bolivia [
78]. While different methods exist on policy and market levels, involving the community itself can be a possible strategic path as well in the future of biodiversity conservation and management, in particular with putting emphasis on involving local stakeholders and encouraging participation.
In addition, the socioeconomic impacts of the booming quinoa production have been part of the dialogue about sustainability. While in the Global North consumers became increasingly sensitive to the possible impacts of their consumption of quinoa on the producing households in the Global South, studies have been aiming to analyze these assumptions too. The study of Bellemare et al. proved to discredit these worries of ethical consumption with analyzing Peruvian households and the relationship between their welfare and rising prices, both in terms of production and consumption in the period between 2004 and 2013 [
79]. Similar results were reported and complemented from an own price elasticity of consumption perspective [
80]. Furthermore, impacts on welfare and quinoa as a way out of poverty have also been highlighted in the case of Bolivia by De Arco [
71].
Regarding welfare, another particularly debated aspect has been the decreasing quinoa consumption in the cultivating regions as a result of increasing prices in the global market. In Peru quinoa is a core part in the populations’ diet and Macedo illustrates within a study conducted in Lima how the usage of quinoa is more prominent in households of lower socioeconomic classification [
81] (p. 222). McDonell analyses consumption in Peru before the boom and highlights the fact that it resulted in increased purchasing power, leading farmers to be able to buy new type of food products [
82]. Furthermore, the opposite trend taking place in urban settings is also underlined, where the increasing price made it difficult for people with low-incomes to continue purchasing quinoa [
82]. Stevens provides an in-depth analysis of household nutrition and rising prices in Peru: these prices are just among the many factors, which can influence consumption trends [
83]. Migration to urban areas or the previously mentioned socioeconomic determinants of dietary habits, can be also determining factors in consuming quinoa [
81]. Winkel et al. reflects on Jacobsen’s findings about quinoa home consumption with highlighting misleading assumptions, such as the weight of consumed quinoa regarding comparisons with other staple cereals in local diets, consumption trends replacing quinoa with rice and pasta but occurring long before the quinoa boom and underlines national programs encouraging domestic quinoa consumption [
84].
Community resilience in the face of environmental and market challenges also has to be taken into consideration when analyzing social impacts of quinoa production. The concerns (i.e., extensive agriculture, larger competitors, etc.) faced by cultivating communities provoked diverse responses. Thus, besides the economic gains, it is important to address how the quinoa boom resulted in the cultivating communities developing different strategies in terms of resilience, collective action and empowerment. For example, the community of San Juan in Bolivia is answering the challenges posed by the imperfections arising from the global market by creating cooperative and reciprocal activities in the framework of a hybrid economy [
72]. In the times of uncertainty (i.e., in connection to land use) cooperatives can lead a way in the governance of natural resources [
69]. As revealed by the Rural Advancement Foundation International (RAFI), “Andean farmers have forced Colorado State University (CSU) to surrender U.S. patent #5,304,718 on ‘Apelawa’ quinoa. The anti-patent campaign that began 14 months ago ended on May 1st when one of the quinoa “inventors” admitted that the patent had been abandoned” [
85].
Quinoa has been cultivated in the South American Andes region approximately for the past 8000 years. Many observations based on archaeological evidences supports this thousand-year history and pinpoint several cultures’ role in it, as the Incas or Tiahuanacu [
6]. Thus, the acknowledgement of traditional knowledge and ownership, which contributed through centuries to the shaping of the crop’s genetic diversity, calls for the consideration intellectual property rights. Patenting quinoa seeds would put in danger the livelihood of small-scale producers and exporting capacity of the producing countries, such as Bolivia and Peru. One of the key documents related to this question is the Nagoya Protocol adopted in 2010, which “is an international agreement that aims to share the benefits of using genetic resources in a fair and equitable manner, and to support the conservation of biological diversity and the sustainable use of its components” [
8] (p. 51). Policies on national level are also directed towards safeguarding this heritage, such as in Bolivia, the national policies and the constitution are directed towards safeguarding the national resources, such as seeds and their germplasms [
86].
Connected to international property rights, the International Year of Quinoa (IYQ) in 2013 previously mentioned, found also heavy criticism [
84,
87]. The indigenous communities’ connection to quinoa is often depicted with preservation and safeguarding, instead of creation, strategically undermining the claim for ownership over quinoa by people from the Andes, or as McDonell puts it: “If the IYQ had thanked the Andean indigenous peoples for inventing quinoa rather than merely preserving it “in its natural state,” this framing would support the case, being made by Bolivia, that Andean nations should have some sort of ownership of quinoa germplasm” [
87] (p. 81). In the aftermath of the International Year of Quinoa, ethical considerations by Winkel et al. have been raised as well, calling for a need for further analysis, namely “commercial interests, seed property rights and unbalanced competition between farmers from southern and northern countries” [
62] (p. 98). McDonell raises similar questions regarding unbalanced competition and calls for appropriate institutional mechanisms when it comes to traditional food commercialization [
87]. The question of local markets and production for export was analysed by Soper in Ecuador, unravelling the motivation of Ecuadorian peasant farmers to produce for export, rather than for local markets [
88]. Winkel et al. mention the importance of recognizing local/global connections and short value chains regarding peasant biocultural heritage [
77]. Thus, alongside with analyzing quinoa production in the global food supply chain, empowering connections between producers and consumers and enhancing fair local market conditions is needed. Unequal power relations, funding limitations, technological access, and gaps in the legal framework are making access to fair position in the patenting system very difficult to attain for the farmers of the Global South [
89,
90]. Recognition of traditional knowledge, ownership, benefit-sharing and inclusive innovation continue to stand at the core of the debate over intellectual property rights and quinoa [
8,
89]. Thus, questions remain difficult to answer and future research and policy considerations are urgently needed.
McDonell proposes a “miracle food narrative” framework of analysis regarding the quinoa adaptation [
91]. This addressed the phenomenon from a discourse perspective, in which quinoa consumption is embedded namely in the narrative of commodifying an ‘indigenous’ and ‘ancient’ crop as a curative metaphor for solving hunger and malnutrition. In this framework McDonell places the International Year of Quinoa “as a self-conscious project to foster and strengthen the sociopolitical webs necessary to consolidate quinoa’s place as the incumbent miracle food” [
91] (p. 79).
In the light of the growing academic literature on international quinoa trade and its environmental and socioeconomic impacts, the fraction between professionals in quinoa trade, which Small describes as a debate around whether to reduce or increase production (“Some critics argue that the major need is to
limit production in environmentally fragile areas; some defenders argue that the major need is to
increase production in a sustainable way”) is becoming increasingly relevant [
92] (p. 177). Due to the fragmented linkages between macro and micro-level empirical evidence on the impacts of quinoa production, the current status and the future of sustainable quinoa production is ambiguous. Thus, taking into consideration the increasing demand and its foreseen continuing tendency in the future, the interpretation of the strategy contributing to quinoa production’s sustainability has to be re-approached. To give an idea of the level of contestation and possible issues rising, suffice it to say that civil reactions due to distrust in marketers and agro-tech have led a minimum of 29 countries including citizens and organizations to file more than 1300 lawsuits against corporate business and government actions within their respective countries and more than 75% were notified in the United States [
93].
Looking at the dynamics of quinoa boom, similar patterns can be discovered in other crops from the Global South as well, such as soybean, a ’classical example of an unsustainable agricultural model’ [
94] (p. 397). The top producers today are United States, Brazil, and Argentina [
95]. Looking at the history and the expansion of the crop in South America, we can understand how it has become a commodity characterized by Global South-North dependence, posing urgent issues regarding the formulation of a sustainable production covering such aspects as natural capital or food security [
96,
97].
However, recently researchers have been calling for a reconsideration of depicting soy production as the capitalist, large-scale farming narrative leaving no place for the recognition of small-scale production. While soybean’s sustainability discourse focuses mostly on these large actors embedded in the transnational agri-food commodity chain, research has to reconsider different farming styles in order to recognize sustainable solutions outside of this large-scale–small-scale dichotomy [
94,
98]. In this framework soy can rather be connected to the technological advancement and modernization of agriculture in contrast to quinoa’s heritage rooting in the traditional cultivating territories and their people. Furthermore, it can serve as a cautionary regarding the impact evaluation of turning quinoa into a global commodity and scale as a key question in evaluating sustainability potentials.
The case of aҫaí berries can provide us a basis for a comparative case study, rather than a cautionary tale. The production and market for aҫaí berry is similar to the ones of quinoa from many aspects. Firstly, it is considered a superfood as well, due to its high nutritional value and its market has great potentials with increasing demand. Aҫaí is traditionally grown in Brazilian Amazon (
Euterpe Oleraceae Mart, from the eastern part and
Euterpe precatoria Mart, in the central and western part [
99]. Similar to quinoa, it constitutes not only a key element of the local’s diet but it also provides a source of income. Following the growing demand for açaí and market expansion, the internationalization process has begun with businesses appearing outside of Brazil, such as Sambazon from California [
100]. These factors certainly raise the same questions regarding socioeconomic and environmental impacts of increased demand, as in the case of quinoa.
Income dependence due to seasonality and price fluctuations, new management practices, and the future of supply-demand balance can put producing communities in vulnerable position [
101,
102]. The introduction of monoculture and “modern production models” can bear further negative impacts to local communities [
101] (p. 944). On the other hand, the extraction of aҫaí, as a non-timber forest product (NTFP) has great opportunities in terms of contributing to local livelihoods or reducing deforestation, as the growing prices can provide a good income for extractors. Lopes et al. analyzed Acre region in terms of açaí production potentials and concluded the region could provide a sufficient place for sustainable production, despite the fact that NTFPs are still diminishing in terms of income potential next to cattle ranching [
99]. Concluding this parallel, in terms of opportunities and threats to sustainable aҫaí production, similar dynamics can be noted as in the case of quinoa, such as income dependence, dietary changes in traditional producing communities, depletion of natural resources and adapting new management and production techniques. In addition to identifying these potential uses and market value of quinoa, the growing demand driving pressuring market dynamics points out the need to identify the necessary conditions for enhancing a sustainable production of quinoa both from ecological and societal aspects. The potentialities of natural resources are given, but balancing the market demand and supply is inevitable to avoid further destructive social and ecological impacts affecting producing communities. For understanding this balance, a multidisciplinary approach is needed in order to map out the interconnections between the crop embedded in the landscape and the communities themselves. Consequently, this overview is calling for the reconsideration of the crop as a sustainable solution in order to broaden the conceptual framework with putting further focus on socio-economic and environmental impacts in traditional producing countries.