Production of Milk Phospholipid-Enriched Dairy Ingredients
Abstract
:1. Introduction
2. Milk Phospholipid Extraction from Dairy Products
2.1. Dairy By-Products Rich in Phospholipids
2.2. Commercialized Milk Phospholipid Products and Concentrate
2.3. Laboratory Extraction of Milk Phospholipids
3. Processes for Industrial Manufacturing of Milk Phospholipids
3.1. Solvent Extraction
3.2. Supercritical Fluid Extraction
3.3. Enrichment of Milk Phospholipids via Filtration
3.4. Available Processes for Extracting Milk Phospholipids
4. Carbon Footprint
4.1. Life-Cycle Accessment Method of Carbon Footprint
4.2. Carbon Footprint Estimation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ortega-Anaya, J.; Jiménez-Flores, R. Symposium review: The relevance of bovine milk phospholipids in human nutrition—Evidence of the effect on infant gut and brain development. J. Dairy Sci. 2018, 102, 1–11. [Google Scholar] [CrossRef]
- Verardo, V.; Arráez-Román, A.M.G.-C.D.; Hettinga, K. Recent advances in phospholipids from colostrum, milk and dairy by-products. Int. J. Mol. Sci. 2017, 18, 173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, H.; Jimenez-Flores, R.; Gragson, D.; Everett, D.W. Phospholipid architecture of the bovine milk fat globule membrane using giant unilamellar vesicles as a model. J. Agric. Food Chem. 2014, 62, 3236–3243. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Jiménez-Flores, R.; Everett, D.W. Lateral lipid organization of the bovine milk fat globule membrane is revealed by washing processes. J. Dairy Sci. 2014, 97, 5964–5974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holzmüller, W.; Kulozik, U. Technical difficulties and future challenges in isolating membrane material from milk fat globules in industrial settings—A critical review. Int. Dairy J. 2016, 61, 51–66. [Google Scholar] [CrossRef]
- Lopez, C.; Blot, M.; Briard-Bion, V.; Cirie, C.; Graulet, B. Butter serums and buttermilks as sources of bioactive lipids from the milk fat globule membrane: Differences in their lipid composition and potentialities of cow diet to increase n-3 PUFA. Food Res. Int. 2017, 100, 864–872. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Logan, A.; Cocks, B.G.; Rochfort, S. Seasonal variation of polar lipid content in bovine milk. Food Chem. 2017, 237, 865–869. [Google Scholar] [CrossRef]
- Gassi, J.Y.; Blot, M.; Beaucher, E.; Robert, B.; Leconte, N.; Camier, B.; Rousseau, F.; Bourlieu, C.; Jardin, J.; Briard-Bion, V.; et al. Preparation and characterisation of a milk polar lipids enriched ingredient from fresh industrial liquid butter serum: Combination of physico-chemical modifications and technological treatments. Int. Dairy J. 2016, 52, 26–34. [Google Scholar] [CrossRef]
- Burling, H.; Andersson, I.; Schneider, M. Phosphatidylserine Enriched Milk Fractions for the Formulation of Functional Foods. U.S. Patent Application No. 8231922B2, 31 July 2012. [Google Scholar]
- Burling, H.; Graverholt, G. Milk—A new source for bioactive phospholipids for use in food formulations. Lipid Technol. 2008, 20, 229–231. [Google Scholar] [CrossRef]
- Castro-Gómez, P.; Garcia-Serrano, A.; Visioli, F.; Fontecha, J. Relevance of dietary glycerophospholipids and sphingolipids to human health. Prostaglandins Leukot. Essent. Fat. Acids 2015, 101, 41–51. [Google Scholar] [CrossRef]
- Burling, H.; Andersson, I.; Schneider, M. Phosphatidylserine Enriched Milk Fractions for the Formulation of Functional Foods. W.O. Patent Application No. 128465A1, 7 December 2006. [Google Scholar]
- Kuchta-Noctor, A.M.; Murray, B.A.; Stanton, C.; Devery, R.; Kelly, P.M. Anticancer activity of buttermilk against SW480 colon cancer cells is associated with caspase-independent cell death and attenuation of Wnt, Akt, and ERK signaling. Nutr. Cancer 2016, 68, 1234–1246. [Google Scholar] [CrossRef] [PubMed]
- Contarini, G.; Povolo, M. Phospholipids in milk fat: Composition, biological and technological significance, and analytical strategies. Int. J. Mol. Sci. 2013, 14, 2808–2831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernell, O.; Timby, N.; Domellöf, M.; Lönnerdal, B. Clinical benefits of milk fat globule membranes for infants and children. J. Pediatr. 2016, 173, S60–S65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timby, N.; Hernell, O.; Vaarala, O.; Melin, M.; Lönnerdal, B.; Domellöf, M. Infections in infants fed formula supplemented with bovine milk fat globule membranes. J. Pediatr. Gastroenterol. Nutr. 2015, 60, 384–389. [Google Scholar] [CrossRef] [PubMed]
- Küllenberg, D.; Taylor, L.A.; Schneider, M.; Massing, U. Health effects of dietary phospholipids. Lipids Health Dis. 2012, 11, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutenberg, D. Infant Formula Supplemented with Phospholipids. W.O. Patent Application No. 105609A1, 24 December 2003. [Google Scholar]
- Timby, N.; Domellöf, M.; Lönnerdal, B.; Hernell, O. Supplementation of infant formula with bovine milk fat globule membrane. Adv. Nutr. 2017, 8, 351–355. [Google Scholar] [CrossRef] [Green Version]
- Braak, V.D.; Maria, C.C.; Thomassen, G.; Acton, D.S.; Abrahamse, E. Nutrition with Large Lipid Globules Comprising Vegetable Fat Coated with Milk Phospholipids for Lipid Digestion. W.O. Patent Application No. 163881A1, 13 Octorber 2016. [Google Scholar]
- Shulman, A.; Zuabi, R.; Dror, G.B.; Twito, Y.; Pelled, D.; Herzog, Y. Polar Lipid Mixtures, Their Preparation and Uses. U.S. Patent Application No. 9814252B2, 8 August 2017. [Google Scholar]
- Rueda, R.; Barranco, A.; Ramirez, M.; Vazquez, E.; Valverde, E.; Prieto, P.; Dohnalek, M.H. Enriched Infant Formulas. U.S. Patent Application No. 0057178A1, 6 March 2008. [Google Scholar]
- Lopez, C.; Menard, O. Human milk fat globules: Polar lipid composition and in situ structural investigations revealing the heterogeneous distribution of proteins and the lateral segregation of sphingomyelin in the biological membrane. Colloids Surf. B Biointerfaces 2011, 83, 29–41. [Google Scholar] [CrossRef]
- Thompson, A.K.; Haisman, D.; Singh, H. Physical stability of liposomes prepared from milk fat globule membrane and soya phospholipids. J. Agric. Food Chem. 2006, 5, 6390–6397. [Google Scholar] [CrossRef]
- Huang, Z.; Stipkovits, L.; Zheng, H.; Serventi, L.; Brennan, C.S. Bovine milk fats and their replacers in baked goods: A review. Foods 2019, 8, 383. [Google Scholar] [CrossRef] [Green Version]
- Vanderghem, C.; Deroanne, C.; Bodson, P.; Blecker, C. Milk fat globule membrane and buttermilks: From composition to valorization. Biotechnol. Agron. Soc. Environ. 2010, 14, 485–500. [Google Scholar]
- Phan, T.T.Q.; Le, T.T.; Van de Walle, D.; Van der Meeren, P.; Dewettinck, K. Combined effects of milk fat globule membrane polar lipids and protein concentrate on the stability of oil-in-water emulsions. Int. Dairy J. 2016, 52, 42–49. [Google Scholar] [CrossRef]
- Huppertz, T.; Kelly, A. Physical chemistry of milk fat globules. In Advanced Dairy Chemistry Volume 2 Lipids; Springer: New York, NY, USA, 2006; pp. 173–212. [Google Scholar]
- Britten, M.; Lamothe, S.; Robitaille, G. Effect of cream treatment on phospholipids and protein recovery in butter-making process. Int. J. Food Sci. Technol. 2008, 43, 651–657. [Google Scholar] [CrossRef]
- Rombaut, R.; Camp, J.V.; Dewettinck, K. Phospho- and sphingolipid distribution during processing of milk, butter and whey. Int. J. Food Sci. Technol. 2006, 41, 435–443. [Google Scholar] [CrossRef]
- Lamothe, S.; Robitaille, G.; St-Gelais, D.; Britten, M. Butter making from caprine creams: Effect of washing treatment on phospholipids and milk fat globule membrane proteins distribution. J. Dairy Res. 2008, 75, 439–443. [Google Scholar] [CrossRef]
- Morin, P.; Britten, M.; Jimenez-Flores, R.; Pouliot, Y. Microfiltration of buttermilk and washed cream buttermilk for concentration of milk fat globule membrane components. J. Dairy Sci. 2007, 90, 2132–2140. [Google Scholar] [CrossRef]
- Zheng, H.; Jiménez-Flores, R.; Everett, D.W. Bovine milk fat globule membrane proteins are affected by centrifugal washing processes. J. Agric. Food Chem. 2013, 61, 8403–8411. [Google Scholar] [CrossRef]
- Barry, K.M.; Dinan, T.G.; Kelly, P.M. Selective enrichment of dairy phospholipids in a buttermilk substrate through investigation of enzymatic hydrolysis of milk proteins in conjunction with ultrafiltration. Int. Dairy J. 2017, 68, 80–87. [Google Scholar] [CrossRef]
- Rombaut, R.; Dejonckheere, V.; Dewettinck, K. Filtration of milk fat globule membrane fragments from acid buttermilk cheese whey. J. Dairy Sci. 2007, 90, 1662–1673. [Google Scholar] [CrossRef]
- Rombaut, R.; Dewettinck, K. Thermocalcic aggregation of milk fat globule membrane fragments from acid buttermilk cheese whey. J. Dairy Sci. 2007, 90, 2665–2674. [Google Scholar] [CrossRef] [Green Version]
- Levin, M.A.; Burrington, K.J.; Hartel, R.W. Composition and functionality of whey protein phospholipid concentrate and delactosed permeate. J. Dairy Sci. 2016, 99, 6937–6947. [Google Scholar] [CrossRef]
- Costa, M.R.; Elias-Argote, X.E.; Jiménez-Flores, R.; Gigante, M.L. Use of ultrafiltration and supercritical fluid extraction to obtain a whey buttermilk powder enriched in milk fat globule membrane phospholipids. Int. Dairy J. 2010, 20, 598–602. [Google Scholar] [CrossRef]
- Food and Agriculture Organization-World Health Organization. Milk and Milk Products; World Health Organization, Food and Agriculture Organization of the United Nations: Rome, Italy, 2007. [Google Scholar]
- Dairymark. Buttermilk—A Strategic Review of Opportunities and Applications; Shainwright Consulting and Research Group Pty Ltd.: Norwood, Australia, 2007; p. 84. [Google Scholar]
- United States Department of Agriculture. National Nutrient Database for Standard Reference Software v.3.9.5.3; United States Department of Agriculture, Ed.; United States Department of Agriculture: Washington, DC, USA, 1 April 2018. Available online: http://ndb.nal.usda.gov/ndb (accessed on 6 January 2020).
- Konrad, G.; Kleinschmidt, T.; Lorenz, C. Ultrafiltration of whey buttermilk to obtain a phospholipid concentrate. Int. Dairy J. 2013, 30, 39–44. [Google Scholar] [CrossRef]
- Lambert, S.; Leconte, N.; Blot, M.; Rousseau, F.; Robert, B.; Camier, B.; Gassi, J.-Y.; Cauty, C.; Lopez, C.; Gésan-Guiziou, G. The lipid content and microstructure of industrial whole buttermilk and butter serum affect the efficiency of skimming. Food Res. Int. 2016, 83, 121–130. [Google Scholar] [CrossRef]
- Ireland, E.R. Developing a Better Buttermilk Solution. Master’s Thesis, Engineering Management, University of Canterbury, Canterbury, New Zealand, 2014. [Google Scholar]
- Verge, X.P.; Maxime, D.; Dyer, J.A.; Desjardins, R.L.; Arcand, Y.; Vanderzaag, A. Carbon footprint of Canadian dairy products: Calculations and issues. J. Dairy Sci. 2013, 96, 6091–6104. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.H. Current knowledge of buttermilk: Composition, applications in the food industry, nutritional and beneficial health characteristics. Int. J. Dairy Technol. 2018, 72, 169–182. [Google Scholar] [CrossRef]
- Yildiz, N.; Bakirci, I. Investigation of the use of whey powder and buttermilk powder instead of skim milk powder in yogurt production. J. Food Sci. Technol. 2019, 56, 4429–4436. [Google Scholar] [CrossRef]
- Price, N.; Fei, T.; Clark, S.; Wang, T. Extraction of phospholipids from a dairy by-product (whey protein phospholipid concentrate) using ethanol. J. Dairy Sci. 2018, 101, 8778–8787. [Google Scholar] [CrossRef]
- Li, B. Selective Extraction of Phospholipids from Dairy Powders Using Supercritical Fluid Extraction. Ph.D. Thesis, Kansas State University, Manhattan, KS, USA, 2017. [Google Scholar]
- Spence, A.J.; Jimenez-Flores, R.; Qian, M.; Goddik, L. Phospholipid enrichment in sweet and whey cream buttermilk powders using supercritical fluid extraction. J. Dairy Sci. 2009, 92, 2373–2381. [Google Scholar] [CrossRef]
- Fauquant, J.; Beaucher, E.; Sinet, C.; Robert, B.; Lopez, C. Combination of homogenization and cross-flow microfiltration to remove microorganisms from industrial buttermilks with an efficient permeation of proteins and lipids. Innov. Food Sci. Emerg. Technol. 2014, 21, 131–141. [Google Scholar] [CrossRef]
- Thompson, A. Structure and Properties of Liposomes Prepared from Milk Phospholipids. Ph.D. Thesis, Massey University, Palmerston North, New Zealand, 2005. [Google Scholar]
- Li, Z. Encapsulation of Bioactive Salmon Protein Hydrolysates with Chitosan-Coated Liposomes. Master’s Thesis, Master of Science, Dalhousie University, Halifax, NS, Canada, 2014. [Google Scholar]
- Sokol, E.; Ulven, T.; Faergeman, N.J.; Ejsing, C.S. Comprehensive and quantitative profiling of lipid species in human milk, cow milk and a phospholipid-enriched milk formula by GC and MS/MS(ALL). Eur. J. Lipid Sci. Technol. 2015, 117, 751–759. [Google Scholar] [CrossRef] [Green Version]
- Arla Foods Ingredients: Ingredients for the Next Generation. Available online: https://www.foodingredientsfirst.com/supplier-profiles/Arla-Foods-Ingredients.html (accessed on 27 February 2020).
- Tatua Specialty Nutritional Ingredients: Phospholipids. Available online: https://www.tatua.com/specialty-nutritionals-ingredients/phospholipids/ (accessed on 1 January 2020).
- Moukarzel, S. The Complexity of Understanding Human Milk Components and Infant Brain Development. Ph.D. Thesis, Human Nutrition, University of British Columbia, Vancouver, BC, Canada, 2016. [Google Scholar]
- Lecico Milk Phospholipids. Available online: http://www.lecico.de/en/products/milk-phospholipids (accessed on 23 January 2020).
- Fletcher, K.; Catchpole, O.; Grey, J.B.; Pritchard, M. Beta-Serum Dairy Products, Neutral Lipid-Depleted and/or Polar Lipid-Enriched Dairy Products, and Processes for Their Production. U.S. Patent Application No. 8471002B2, 25 June 2013. [Google Scholar]
- Meggle. Composition Richly Containing Polar Lipid and Method of Manufacturing the Same. E.P. Patent Application No. 2168438A1, 31 March 2010.
- Catchpole, O.J.; Tallon, S.J. Process for Separation Lipid Materials. W.O. Patent Application No. 123424A1, 20 April 2007. [Google Scholar]
- Dalemans, D.; Blecker, C.; Bodson, P.; Danthine, S.; Deroanne, C.; Paquot, M. Milk Ingredient Enriched in Polar Lipids and Uses Thereof. U.S. Patent Application No. 0068293A1, 18 March 2010. [Google Scholar]
- Dwwettinck, K.; Boone, M. Method for Obtaining Products Enriched in Phospho- and Sphingolipids. W.O. Patent Application No. 0234062A1, 2 May 2002. [Google Scholar]
- Gnanasambandam, R.; Patel, H. Methods of Concentrating Phospholipds. U.S. Patent Application No. 0335778A1, 7 November 2018. [Google Scholar]
- Sato, I. Method of Separation and Recovery of Lipid in Membrane Material of Fat Globule. JP Patent Application No. 336230A, 8 December 2005. [Google Scholar]
- Suzuki, A.; Shioda, M.; Imai, M. Manufacturing Method of Sphingoid Base-Containing Extract. JP Patent Application No. 052912A, 29 August 2018. [Google Scholar]
- Bruecher, T.; Demey, J.; Katte, M.; Molnar, J.; Tirok, S. Method for the Fractionation of Phospholipids from Phospholipid-Containing Material. U.S. Patent Application No. 9567356B2, 14 February 2017. [Google Scholar]
- Nyberg, L.; Burling, H. Method for Extracting Sphingomyelin. U.S. Patent Application No. 5677472, 14 October 1997. [Google Scholar]
- Dewettinck, K.; Rombaut, R.; Thienpont, N.; Le, T.T.; Messens, K.; Van Camp, J. Nutritional and technological aspects of milk fat globule membrane material. Int. Dairy J. 2008, 18, 436–457. [Google Scholar] [CrossRef]
- Lu, J.; Argov-Argama, N.; Anggrek, J.; Boeren, S.; Hooijdonk, T.V.; Vervoort, J.; Hetting, K.A. The protein and lipid composition of the membrane of milk fat globules depends on their size. J. Dairy Sci. 2016, 99, 4726–4738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jing, L. The Biology of Milk Synthesis from a Proteomics Perspective. Ph.D. Thesis, Wageningen University, Wageningen, Holland, 2013. [Google Scholar]
- Bezelgues, J.B.; Morgan, F.; Palomo, G.; Crosset-Perrotin, L.; Ducret, P. Short communication: Milk fat globule membrane as a potential delivery system for liposoluble nutrients. J. Dairy Sci. 2009, 92, 2524–2528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holzmüller, W.; Müller, M.; Himbert, D.; Kulozik, U. Impact of cream washing on fat globules and milk fat globule membrane proteins. Int. Dairy J. 2016, 59, 52–61. [Google Scholar] [CrossRef]
- Spitsberg, V.L.; Ivanov, L.; Shritz, V. Recovery of milk fat globule membrane (MFGM) from buttermilk: Effect of Ca-binding salts. J. Dairy Res. 2019, 86, 374–376. [Google Scholar] [CrossRef]
- Holzmüller, W.; Kulozik, U. Isolation of milk fat globule membrane (MFGM) material by coagulation and diafiltration of buttermilk. Int. Dairy J. 2016, 63, 88–91. [Google Scholar] [CrossRef]
- Hansen, S.F.; Hogan, S.A.; Tobin, J.; Rasmussen, J.T.; Larsen, L.B.; Wiking, L. Microfiltration of raw milk for production of high-purity milk fat globule membrane material. J. Food Eng. 2020, 276, 109887. [Google Scholar] [CrossRef]
- Bourlieua, C.; Cheillan, D.; Blota, M.; Daira, P.; Trauchessec, M.; Ruet, S.; Gassi, J.-Y.; Beaucher, E.; Robert, B.; Leconte, N.; et al. Polar lipid composition of bioactive dairy co-products buttermilk and butterserum: Emphasis on sphingolipid and ceramide isoforms. Food Chem. 2018, 240, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Cheema, M.; Smith, P.B.; Patterson, A.D.; Hristov, A.; Hart, F.M. The association of lipophilic phospholipids with native bovine casein micelles in skim milk: Effect of lactation stage and casein micelle size. J. Dairy Sci. 2017, 101, 8672–8687. [Google Scholar] [CrossRef]
- Gallier, S.; Gragson, D.; Cabral, C.; Jimenez-Flores, R.; Everett, D.W. Composition and fatty acid distribution of bovine milk phospholipids from processed milk products. J. Agric. Food Chem. 2010, 58, 10503–10511. [Google Scholar] [CrossRef] [Green Version]
- Claumarchirant, L.; Cilla, A.; Matencio, E.; Sanchez-Siles, L.M.; Castro-Gomez, P.; Fontecha, J.; Alegría, A.; Lagarda, M.J. Addition of milk fat globule membrane as an ingredient of infant formulas for resembling the polar lipids of human milk. Int. Dairy J. 2016, 61, 228–238. [Google Scholar] [CrossRef] [Green Version]
- Ferreiro, T.; Martínez, S.; Gayoso, L.; Rodríguez-Otero, J.L. Evolution of phospholipid contents during the production of quark cheese from buttermilk. J. Dairy Sci. 2016, 99, 4154–4159. [Google Scholar] [CrossRef] [PubMed]
- Barry, K.M.; Dinan, T.G.; Murray, B.A.; Kelly, P.M. Comparison of dairy phospholipid preparative extraction protocols in combination with analysis by high performance liquid chromatography coupled to a charged aerosol detector. Int. Dairy J. 2016, 56, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Alcal, L.M.; Castro-Gomez, P.; Felipe, X.; Noriega, L.; Fontecha, J. Effect of processing of cowmilk by high pressures under conditions up to 900 MPa on the composition of neutral, polar lipids and fatty acids. LWT Food Sci. Technol. 2015, 62, 265–270. [Google Scholar] [CrossRef]
- Zou, X.; Guo, Z.; Jin, Q.; Huang, J.; Cheong, L.; Xu, X.; Wang, X. Composition and microstructure of colostrum and mature bovine milk fat globule membrane. Food Chem. 2015, 185, 362–370. [Google Scholar] [CrossRef]
- Haddadian, Z.; Eyres, G.T.; Bremer, P.; Everett, D.W. Polar lipid composition of the milk fat globule membrane in buttermilk made using various cream churning conditions or isolated from commercial samples. Int. Dairy J. 2018, 81, 138–142. [Google Scholar] [CrossRef]
- Walczak, J.; Pomastowski, P.; Bocian, S.; Buszewski, B. Determination of phospholipids in milk using a new phosphodiester stationary phase by liquid chromatography-matrix assisted desorption ionization mass spectrometry. J. Chromatogr. A 2016, 1432, 39–48. [Google Scholar] [CrossRef]
- Vilamarim, R.; Bernardo, J.; Videira, R.A.; Valentão, P.; Veiga, F.; Andrade, P.B. An egg yolk’s phospholipid-pennyroyal nootropic nanoformulation modulates monoamino oxidase-A (MAO-A) activity in SH-SY5Y neuronal model. J. Funct. Foods 2018, 46, 335–344. [Google Scholar] [CrossRef]
- Kala, R.; Samková, E.; Pecová, L.; Hanuš, O.; Sekmokas, K.; Riaukienė, D. An overview of determination of milk fat: Development, quality control measures, and application. Acta Univ. Agric. Silvic. Mendel. Brun. 2018, 66, 1055–1064. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, P.; Davis, D.A.; Veeranna, R.P.; Carey, R.F.; Viollet, C.; Yarchoan, R. Hypoxia-inducible factor-1 alpha as a therapeutic target for primary effusion lymphoma. PLoS Pathog. 2017, 13, e1006628. [Google Scholar] [CrossRef] [Green Version]
- Hickey, C.D.; Diehl, B.W.K.; Nuzzo, M.; Millqvist-Feurby, A.; Wilkinson, M.G.; Sheehana, J.J. Influence of buttermilk powder or buttermilk addition on phospholipid content, chemical and bio-chemical composition and bacterial viability in Cheddar style-cheese. Food Res. Int. 2017, 102, 748–758. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Walkling-Ribeiro, M.; Griffiths, M.W.; Corredig, M. Pulsed electric field processing preserves the antiproliferative activity of the milk fat globule membrane on colon carcinoma cells. J. Dairy Sci. 2015, 98, 2867–2874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Alcalá, L.M.; Fontecha, J. Major lipid classes separation of buttermilk, and cows, goats and ewes milk by high performance liquid chromatography with an evaporative light scattering detector focused on the phospholipid fraction. J. Chromatogr. A 2010, 1217, 3063–3066. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Rathnakumar, K.; Martinez-Monteagudo, S.I. Extraction of dairy phospholipids using switchable solvents: A feasibility study. Foods 2019, 8, 265. [Google Scholar] [CrossRef] [Green Version]
- Hutton, K.J.; Guymon, J.S. Process for Producing Deoiled Phosphatides. CA Patent Application No. 2354705, 20 October 2009. [Google Scholar]
- Ota, M.; Oda, E.; Kataoka, S.; Sato, Y.; Inomata, H. Supercritical fluid extraction of high-value natural products from buttermilk analyzed by a dynamic extraction model. Nippon Shokuhin Kagaku Kogaku Kaishi 2018, 65, 251–258. [Google Scholar] [CrossRef]
- Barry, K.M.; Dinan, T.G.; Kellya, P.M. Pilot scale production of a phospholipid-enriched dairy ingredient by means of an optimised integrated process employing enzymatic hydrolysis, ultrafiltration and super-critical fluid extraction. Innov. Food Sci. Emerg. Technol. 2017, 41, 301–306. [Google Scholar] [CrossRef]
- Catchpole, O.J.; Tallon, S.J.; Grey, J.B.; Fletcher, K.; Fletcher, A.J. Extraction of lipids from a specialist dairy stream. J. Supercritic. Fluids 2008, 45, 314–321. [Google Scholar] [CrossRef]
- Astaire, J.C.; Ward, R.; German, J.B.; Jiménez-Flores, R. Concentration of polar MFGM lipids from buttermilk by microfiltration and supercritical fluid extraction. J. Dairy Sci. 2003, 86, 2297–2307. [Google Scholar] [CrossRef] [Green Version]
- Tomasula, P.M.; Bonnaillie, L.M. Crossflow microfiltration in the dairy industry. In Emerging Dairy Processing Technologies, 1st ed.; Datta, N., Tomasula, P., Eds.; John Wiley & Sons, Ltd.: Oxford, UK, 2015; pp. 1–32. [Google Scholar]
- Pimentel, L.; Gomes, A.; Pintado, M.; Rodríguez-Alcalá, L.M. Isolation and analysis of phospholipids in dairy foods. J. Analytic. Methods Chem. 2016, e9827369, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.-H.; Min, C.-S. Fouling reduction using the resonance vibration in membrane separation of whole milk. J. Indust. Eng. Chem. 2019, 75, 123–129. [Google Scholar] [CrossRef]
- Sachdeva, S.; Buchheim, W. Recovery of phospholipids from buttermilk using membrane processing. Kieler Milchwirtsch. Forsch. 1997, 49, 47–68. [Google Scholar]
- ISO 14044:2006(en) Environmental Management—Life Cycle Assessment—Requirements and Guidelines. Available online: https://www.iso.org/obp/ui/#iso:std:iso:14044:ed-1:v1:en (accessed on 27 February 2020).
- Famiglietti, J.; Guerci, M.; Proserpio, C.; Ravaglia, P.; Motta, M. Development and testing of the product environmental footprint milk tool: A comprehensive LCA tool for dairy products. Sci. Total Environ. 2019, 648, 1614–1626. [Google Scholar] [CrossRef] [PubMed]
- International Standard Organization. Greenhouse Gases—Carbon Footprint of Products—Requirements and Guidelines for Quantification; International Standard Organization: Geneva, Switzerland, 2018; pp. 1–11. [Google Scholar]
- Intergovernmental Panel on Climate Change. Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, Forestry and Other Land Use; Intergovernmental Panel on Climate Change: New York, NY, USA, 2006; p. 132. [Google Scholar]
- Verge, X.P.; Dyer, J.A.; Worth, D.E.; Smith, W.N.; Desjardins, R.L.; McConkey, B.G. A greenhouse gas and soil carbon model for estimating the carbon footprint of livestock production in Canada. Animals (Basel) 2012, 2, 437–454. [Google Scholar] [CrossRef] [PubMed]
- Dyer, J.A.; Desjardins, R.L. Simulated farm fieldwork, energy consumption and related greenhouse gas emissions in Canada. Biosys. Eng. 2003, 85, 503–513. [Google Scholar] [CrossRef]
- Feitz, A.J.; Lundie, S.; Dennien, G.; Morain, M.; Jones, M. Generation of an industry-specific physico-chemical allocation matrix. Application in the dairy industry and implications for systems analysis (9 pp). Int. J. Life Cycle Assess. 2005, 12, 109–117. [Google Scholar] [CrossRef]
- Mercier-Bouchard, D.; Benoit, S.; Doyen, A.; Britten, M.; Pouliot, Y. Process efficiency of casein separation from milk using polymeric spiral-wound microfiltration membranes. J. Dairy Sci. 2017, 100, 8838–8848. [Google Scholar] [CrossRef]
- Ang, B.W.; Su, B. Carbon emission intensity in electricity production: A global analysis. Energy Policy 2016, 94, 56–63. [Google Scholar] [CrossRef]
- Azapagic, A. CCaLC BIOCHEM V3.0 Carbon Footprint Calculator (Database of Ecoinvent 3), Funded by the Carbon Trust, EPSRC and NERC (Grant Number EP/F003501/1); The University of Manchester: Manchester, UK, 9 January 2013. [Google Scholar]
- Matzen, M.; Demirel, Y. Methanol and dimethyl ether from renewable hydrogen and carbon dioxide: Alternative fuels production and life-cycle assessment. J. Clean. Prod. 2016, 139, 1068–1077. [Google Scholar] [CrossRef] [Green Version]
- Albarelli, J.Q.; Santos, D.T.; Cocero, M.J.; Meireles, M.A.A. Perspectives on the integration of a supercritical fluid extraction plant to a sugarcane biorefinery: Thermo-economical evaluation of CO2 recycle systems. Food Sci. Technol. 2017, 38, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Natolino, A. Application of Supercritical Fluids Technology on Winery by-Products. Ph.D. Thesis, University of Udine, Udine, Italy, 2016. [Google Scholar]
- Methot-Hains, S.; Benoit, S.; Bouchard, C.; Doyen, A.; Bazinet, L.; Pouliot, Y. Effect of transmembrane pressure control on energy efficiency during skim milk concentration by ultrafiltration at 10 and 50 degrees C. J. Dairy Sci. 2016, 99, 8655–8664. [Google Scholar] [CrossRef] [Green Version]
- Zhao, R.; Xu, Y.; Wen, X.; Zhang, N.; Cai, J. Carbon footprint assessment for a local branded pure milk product: A lifecycle based approach. Food Sci. Technol. 2017, 38, 98–105. [Google Scholar] [CrossRef] [Green Version]
- Berlina, J. Environmental life cycle assessment (LCA) of Swedish semi-hard cheese. Int. Dairy J. 2002, 12, 939–953. [Google Scholar] [CrossRef]
Product | Total MPLs | DM MPLs | Fat MPLs | DM Protein | DM Fat | Total Solid | DM Ash | Reference |
---|---|---|---|---|---|---|---|---|
WPPC | 1.60 | 7.92 | 29.10 | 65.00 | 27.00 | 20.20 | 7.92 | [48] |
WPPC | 1.78 | 1.78 | 11.63 | 56.64 ± 0.05 | 24.23 ± 0.02 | 97.02 | 2.57 ± 0.02 | [49] |
WPPC | 2.20 | 2.20 | 14.57 | 64.82 ± 0.12 | 18.71 ± 0.09 | 96.40 | 2.32 ± 0.01 | [49] |
WPPC | 2.20 | 2.20 | 14.38 | 65.00 ± 0.06 | 18.46 ± 0.01 | 95.96 | 2.27 ± 0.03 | [49] |
BMP | 1.30 | 1.30 ± 0.00 | 19.01 | 31.40 ± 0.57 | 6.84 ± 0.17 | - | - | [34] |
BM | 0.14 ± 0.04 | - | - | 25.01 ± 0.76 | 12.22 ± 1.56 | - | 5.60 ± 0.16 | [50] |
BM | 0.13 ± 0.00 | 1.43 ± 0.00 | 25.50 | 3.46 ± 0.05 | 0.51 ± 0.02 | 9.12 ± 0.17 | - | [32] |
BM | 0.16 ± 0.02 | 1.78 ± 0.17 | 15.1 ± 0.5 | 32.44 ± 0.83 | 11.78 ± 0.53 | 9.02 ± 0.23 | - | [6] |
BS | 0.97 ± 0.05 | 8.78 ± 0.41 | 38.6 ± 2.3 | 32.41 ± 1.01 | 22.71 ± 1.04 | 11.05 ± 0.43 | - | [6] |
BS | 0.93 ± 0.07 | 8.42 ± 0.63 | 34.57 | 3.55 ± 0.11 | 2.69 ± 0.14 | 11.05 ± 0.40 | - | [8] |
BM | 0.12 ± 0.01 | 1.36 ± 0.07 | 25.36 | 32.68 ± 0.93 | 4.87 ± 0.12 | 8.63 ± 0.26 | - | [51] |
BS | 0.97 ± 0.17 | 8.8 ± 1.1 | 40 ± 7 | 33 ± 3 | 25 ± 8 | 11.0 + 0.8 | - | [43] |
BM | 0.11 ± 0.01 | 1.2 ± 0.1 | 14 ± 5 | 33 ± 2 | 10 ± 5 | 8.7 ± 0.8 | - | [43] |
Whey BM | 0.16 ± 0.01 | 2.01 ± 0.16 | 12.04 ± 0.8 | 24.89 ± 2.02 | 16.27 ± 2.06 | 8.05 ± 0.32 | 7.01 ± 0.47 | [38] |
BM454974 a | - | - | - | 3.33 b | 3.33 b | - | 5 c | [41] |
BM336087 a | - | - | - | 3.21 b | 3.31 b | 12.09 | 0.69/4.88 c | [41] |
BM171274 a | - | - | - | 34.3 | 5.78 | 97.03−BMP | 7.95 | [41] |
CM495516 a | - | - | - | 3.33 | 36.67 | - | 3.33 c | [41] |
CM336519 a | - | - | - | 2.84 | 36.08 | 42.19 | 2.74 c | [41] |
Applicant | Input | Technology Used | MPL Content | Reference |
---|---|---|---|---|
Fonterra | BSP | SFE CO2 defat, hi-pressure DME extract | 65.7–75.5 | [59] |
Meggle | BSP | SFE CO2 defat, hi-pressure ethanol extract | ≈98.5 | [60] |
Owen John | BSP | SFE CO2 defat, ethanol co-solvent extract | PI/PS lost | [61] |
Arla | BSP | MF, ethanol extraction | 16–19 | [9] |
Merchant & Gould | Cream | UF, DF | 27.7–38.8 | [62] |
Marc Boone | BM | UF 5–20 kDa | ≈2.84 | [63] |
Land O’Lakes | BM, BS | UF, defat using SFE CO2 | >30 | [64] |
Morinaga | Whey BM | MF 0.2 µm, defat using SFE CO2 | ≈22 | [65] |
Snow Brand | - | Extract using acidic ethanol, defat | - | [66] |
Enzymotec | - | Extract using ethanol & hexane, acetone defat | ≈24 | [21] |
Cargill | - | Extract using alcohol (C1–C3), acetone defat | - | [67] |
Svenska | BMP | Extract using ethanol & n-heptane, acetone defat | ≈70 SM | [68] |
Reference | Input | Technology Used | Purity | Recovery (%) |
---|---|---|---|---|
[97] | BSP | SFE: CO2, 300 bar, 40 °C, DME | 12.9 → 75.7 (5.9-fold) | 69.1 |
[97] | BSP | SFE: DME, 40 bar, 50 °C | 12.9 → 66.8 (5.2-fold) | 62.9 |
[49] | WPPC | SFE: 350 bar, CO2, 20% ethanol, 60 °C | 2.2 → 26.3 (11.9-fold) | PS/PI lost |
[49] | BMP | SFE: 550 bar, CO2, 15% ethanol, 60 °C | 2.0 → 16.9 (8.6-fold) | PS/PI lost |
[50] | BMC | SFE: CO2 defat | 2.2 →7.8 (3.5-fold) | 100 |
[50] | BMC | SFE: CO2 defat | 2.2 → 9.2 (4.2-fold) | 100 |
[98] | BMC | SFE: CO2 defat | 9.6 → 19.7 (2.1-fold) | 100 |
[38] | BMC | SFE: CO2 defat | 7.2 → 12.0 (1.7-fold) | 100 |
[93] | BM | Solvent: BM (6:1 v/v) extraction | - | 87.5 |
[93] | BM | Solvent: BM (12:1 v/v) extraction | - | 99.9 |
[93] | BS | Solvent: BS (12:1 v/v) extraction | - | 7.6 |
[42] | Whey BM | Proteolysis, UF/DF, 300 kDa, 40 °C | 0.3 → 8.6 (28.7-fold) | 95–99 |
[42] | Whey BM | Proteolysis, UF/DF, 300 kDa, 40 °C | 0.4 → 11.4 (27.1-fold) | 95–99 |
[42] | Whey BM | Proteolysis, UF/DF, 300 kDa, 40 °C | 0.5 → 14.0 (26.4-fold) | 95–99 |
[96] | BMP | Proteolysis, UF/DF, 50 kDa, 50 °C | 1.3 → 11.1 (8.5-fold) | 100 |
[34] | BMP | Proteolysis, UF/DF, 50 kDa, 50 °C | 0.8 → 6.2 (7.8-fold) | 100 |
[102] | BM | MF, 0.2 µm | 1.5 | 67 |
[98] | BM | MF, 0.8 µm | 9.6 | - |
[32] | BM | MF/DF, 0.5 µm, 50 °C | 1.4 → 2.5 (1.8-fold) | 88.8 |
[32] | BM | MF/DF, 0.5 µm, 50 °C | 1.4 → 4.1 (2.9-fold) | 89.7 |
[50] | BMP | MF/DF, 0.45 µm, 9 °C | 1.2 → 2.2 (1.8-fold) | 60.87 |
[50] | BMP | MF/DF, 0.45 µm, 9 °C | 1.5 → 2.2 (1.5-fold) | 87.34 |
[50] | BMP | MF/DF, 0.45 µm, 9 °C | 0.5 → 0.9 (1.7-fold) | 90.12 |
[50] | BMP | MF/DF, 0.45 µm, 9 °C | 0.3 → 0.7 (2.3-fold) | 80.24 |
[35] | CWBM | UF, 0.15 µm cellulose acetate | 1.8 → 2.3 (1.3-fold) | 41.9 |
[35] | CWBM | UF, 0.15 µm cellulose acetate, TA | 1.8 → 4.7 (2.7-fold) | 98.4 |
[38] | CWBM | UF/DF, 10 kDa | 2.0 → 7.2 (3.6-fold) | - |
[36] | CWBM | TA, wash at pH 7.25, UF/DF, 55 °C | 2.0 → 10.7 (5.4-fold) | >90 |
Process | Membrane | SFE (CO2/DME) | SFE (DME) | Solvent Extract | Unit |
---|---|---|---|---|---|
Reference | [96] | [59,97] | [59,97] | [21] | - |
Input | BMP | BMC | BMC | BMC | - |
Input amount | 100.00 | 100.00 | 100.00 | 100.00 | kg |
Input purity | 1.3 | 5.7 | 6.8 | 12.3 | g/100 g DM |
Product | BMC | MPLs | MPLs | MPLs | - |
Product amount | 11.76 | 5.13 | 6.56 | 13.98 | kg |
Product purity | 11.05 | 76.80 | 66.80 | 88.00 | g/100 g DM |
MPL yield | 100.00 | 69.10 | 67.40 | 100.00 | % |
Power | 17.48 | 512.85 | 655.68 | - | kWh |
Material used | Alcalase 0.03 | CO2 1000.00 DME 200.00 | DME 200.00 | C6/ethanol 552.00 Acetone 189.60 | kg kg |
Thermal energy | 13.10 | - | - | - | MJ |
Power CF factor | 0.1567 | 0.1567 | 0.1567 | 0.1567 | kg CO2/kWh |
Material CF factor | 5.00 | CO2 0.05 DME 0.16 | CO2 0.05 DME 0.16 | C6/ethanol 0.16 Acetone 0.42 | kg CO2/kg kg CO2/kg |
Thermal CF factor | 0.06 | - | - | - | kg CO2/MJ |
CF of power | 2.74 | 80.36 | 102.74 | - | kg CO2 |
CF of material | 0.16 | 82.00 | 32.00 | 167.95 | kg CO2 |
Thermal CF | 0.72 | - | - | - | kg CO2 |
Utility CF | 3.62 | 162.36 | 134.74 | 167.95 | kg CO2 |
BM/BMC baseline | 110.00 | 498.17 | 594.31 | 1074.99 | kg CO2 |
Product CF | 9.66 | 128.80 | 111.19 | 88.93 | kg CO2/kg |
Normalized CF | 87.40 | 170.59 | 159.07 | 101.05 | kg CO2/kg MPLs |
Dairy Products | CF | Scope 1 | Scope 2 | Scope 3 | Country | Reference |
---|---|---|---|---|---|---|
Raw milk | 1.10 | - | - | - | Canada | [45] |
Bulk liquid | 1.00 | 0.870 | 0.065 | 0.065 | Canada | [45] |
Yogurt | 1.50 | 1.083 | 0.252 | 0.165 | Canada | [45] |
Whole milk | 1.12 | 0.843 | 0.173 | 0.104 | China | [117] |
Powder milk | 10.10 | - | - | - | Canada | [45] |
Butter | 7.30 | - | - | - | Canada | [45] |
BM | 1.10 | - | - | - | Canada | [45] |
Cheese | 12.40 | - | - | - | Italy | [104] |
Cheese | 5.30 | - | - | - | Canada | [45] |
Cheese | 8.80 | - | - | - | Sweden | [118] |
BM → BMC: UF/DF | 87.40 | - | - | - | - | [96] |
BM → BMC → MPLs: SFE CO2/DME | 170.59 | - | - | - | - | [97] |
BM → BMC → MPLs: SFE DME | 159.07 | - | - | - | - | [97] |
BM → BMC → MPLs: Solvent extract | 101.05 | - | - | - | - | [45] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Zheng, H.; Brennan, C.S.; Mohan, M.S.; Stipkovits, L.; Li, L.; Kulasiri, D. Production of Milk Phospholipid-Enriched Dairy Ingredients. Foods 2020, 9, 263. https://doi.org/10.3390/foods9030263
Huang Z, Zheng H, Brennan CS, Mohan MS, Stipkovits L, Li L, Kulasiri D. Production of Milk Phospholipid-Enriched Dairy Ingredients. Foods. 2020; 9(3):263. https://doi.org/10.3390/foods9030263
Chicago/Turabian StyleHuang, Zhiguang, Haotian Zheng, Charles S. Brennan, Maneesha S. Mohan, Letitia Stipkovits, Lingyi Li, and Don Kulasiri. 2020. "Production of Milk Phospholipid-Enriched Dairy Ingredients" Foods 9, no. 3: 263. https://doi.org/10.3390/foods9030263
APA StyleHuang, Z., Zheng, H., Brennan, C. S., Mohan, M. S., Stipkovits, L., Li, L., & Kulasiri, D. (2020). Production of Milk Phospholipid-Enriched Dairy Ingredients. Foods, 9(3), 263. https://doi.org/10.3390/foods9030263