Preparation and Characterization of Coating Based on Protein Nanofibers and Polyphenol and Application for Salted Duck Egg Yolks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Whey Protein Isolates Nanofiber (WPNF) Formation
2.2.1. Transmission Electron Microscopy (TEM)
2.2.2. Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis (SDS–PAGE)
2.3. Preparation of Emulsions
2.3.1. Measurement of Particle Size and Zeta-Potential
2.3.2. Confocal Laser Scanning Microscopy (CLSM)
2.4. Preparation and Functional Properties of Edible Coatings (ECs)
2.4.1. Antibacterial Activity Analysis
2.4.2. Scanning Electron Microscopy (SEM)
2.4.3. Determination of Physical Properties of Composite Films
2.5. Quality Assessment of Salted Duck Egg Yolks (SDEYs)
2.5.1. Pretreatment of Salted Duck Egg Yolks (SDEYs)
2.5.2. Weight Loss
2.5.3. Evaluation of Physicochemical Properties of Coated SDEYs
2.6. Statistical Analysis
3. Results
3.1. Transmission Electron Microscopy (TEM) Micrographs of WPNFs
3.2. SDS–PAGE
3.3. Properties of WPNF-Based Emulsions
3.4. Emulsion Microstructure
3.5. Physical Properties of Edible Films (EFs)
3.6. Functional Properties of Edible Coating Emulsions (ECs) and Edible Films (EFs)
3.6.1. Antibacterial Activity Analysis
3.6.2. SEM
3.7. Functional Properties of the ECs on the Preservation of Salted Duck Yolk Eggs
3.7.1. Weight Loss
3.7.2. Texture Property
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
SDEY | salted duck egg yolk |
WPNFs | whey protein isolate nanofibers |
Gly | glycerol |
WPI | whey protein isolate |
CA | carvacrol |
EC | edible coating |
EFs | edible films |
TEM | transmission electron microscopy |
SDS-PAGE | sodium dodecyl sulfate-polyacrylamide gel electrophoresis |
SEM | scanning electron microscopy |
CLSM | confocal laser scanning microscopy |
References
- Ahmad, M.; Benjakul, S.; Prodpran, T.; Agustini, T.W. Physico-mechanical and antimicrobial properties of gelatin film from the skin of unicorn leatherjacket incorporated with essential oils. Food Hydrocoll. 2012, 28, 189–199. [Google Scholar] [CrossRef]
- Akkermans, C.; Van der Goot, A.J.; Venema, P.; Gruppen, H.; Vereijken, J.M.; Van der, L.; Boom, R.M. Micrometer-Sized Fibrillar Protein Aggregates from Soy Glycinin and Soy Protein Isolate. J. Agric. Food Chem. 2007, 55, 9877–9882. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Na, J.; Wang, L.; Li, D.; Liu, C.; Feng, Z. Separation and enrichment of antioxidant peptides from whey protein isolate hydrolysate by aqueous two-phase extraction and aqueous two-phase flotation. Foods 2019, 8, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, B.; Wang, L.; Na, J.; Zhang, X.; Yuan, Y.; Liu, C.; Feng, Z. Environmentally-friendly strategy for separation of alpha-lactalbumin from whey by aqueous two phase flotation. Arab. J. Chem. 2020, 13, 3391–3402. [Google Scholar] [CrossRef]
- Umaraw, P.; Verma, A.K. Comprehensive review on application of edible film on meat and meat products: An eco-friendly approach. Crit. Rev. Food Sci. Nutr. 2017, 57, 1270–1279. [Google Scholar] [CrossRef]
- Loveday, S.M.; Su, J.; Rao, M.A.; Anema, S.G.; Singh, H. Whey protein nanofibrils: Kinetic, rheological and morphological effects of group IA and IIA cations. Int. Dairy J. 2012, 26, 133–140. [Google Scholar] [CrossRef]
- Akkermans, C.; Van der Goot, A.J.; Venema, P.; Van der Linden, E.; Boom, R.M. Properties of protein fibrils in whey protein isolate solutions: Microstructure, flow behaviour and gelation. Int. Dairy J. 2008, 18, 1034–1042. [Google Scholar] [CrossRef]
- Feng, Z.; Wu, G.; Liu, C.; Li, D.; Jiang, B.; Zhang, X. Edible coating based on whey protein isolate nanofibrils for antioxidation and inhibition of product browning. Food Hydrocoll. 2018, 79, 179–188. [Google Scholar] [CrossRef]
- Feng, Z.; Li, L.; Zhang, Y.; Li, X.; Liu, C.; Jiang, B.; Xu, J.; Sun, Z. Formation of whey protein isolate nanofibrils by endoproteinase GluC and their emulsifying properties. Food Hydrocoll. 2019, 94, 71–79. [Google Scholar] [CrossRef]
- Kroes-Nijboer, A.; Venema, P.; Van der Linden, E. Fibrillar structures in food. Food Funct. 2012, 3, 221–227. [Google Scholar] [CrossRef]
- Yuan, L.; Zhang, J.; Wu, J.; Gao, Z.; Xie, X.; Wang, Z.; Wang, X. The effect on quality of pickled salted duck eggs using the novel method of pulsed pressure osmotic dehydration. J. Food Process. Preserv. 2018, 42, e13581. [Google Scholar] [CrossRef]
- Yang, N.; Jin, Y.; Xu, Y.; Bin, Y.L.; Xu, X.M. Effect of pressure cooking on physicochemical properties of salted eggs. RSC Adv. 2016, 6, 97089–97095. [Google Scholar] [CrossRef]
- Chi, S.P.; Tseng, K.H. Physicochemical Properties of Salted Pickled Yolks from Duck and Chicken Eggs. J. Food Sci. 1998, 63, 27–30. [Google Scholar] [CrossRef]
- Ai, M.M.; Guo, S.G.; Zhou, Q.; Wu, W.L.; Jiang, A.M. The investigation of the changes in physicochemical, texture and rheological characteristics of salted duck egg yolk during salting. LWT Food Sci. Technol. 2018, 88, 119–125. [Google Scholar] [CrossRef]
- Yemenicioğlu, A.; Farris, S.; Turkyilmaz, M.; Gulec, S. A review of current and future food applications of natural hydrocolloids. Int. J. Food Sci. Technol. 2020, 55, 1389–1406. [Google Scholar] [CrossRef]
- Jiang, B.; Na, J.; Wang, L.; Li, D.; Liu, C.; Feng, Z. Eco-Innovation in Reusing Food By-Products: Separation of Ovalbumin from Salted Egg White Using Aqueous Two-Phase System of PEG 1000/(NH4)2SO4. Polymers 2019, 11, 238. [Google Scholar] [CrossRef] [Green Version]
- Oboroceanu, D.; Wang, L.; Brodkorb, A.; Magner, E.; Auty, M.A. Characterization of β-lactoglobulin fibrillar assembly using atomic force microscopy, polyacrylamide gel electrophoresis, and in situ fourier transform infrared spectroscopy. J. Agric. Food Chem. 2010, 58, 3667–3673. [Google Scholar] [CrossRef]
- Abbasi, F.; Samadi, F.; Jafari, S.M.; Ramezanpour, S.; Shams Shargh, M. Ultrasound-assisted preparation of flaxseed oil nanoemulsions coated with alginate-whey protein for targeted delivery of omega-3 fatty acids into the lower sections of gastrointestinal tract to enrich broiler meat. Ultrason. Sonochem. 2019, 50, 208–217. [Google Scholar] [CrossRef]
- Shanmugam, A.; Ashokkumar, M. Ultrasonic preparation of stable flax seed oil emulsions in dairy systems-physicochemical characterization. Food Hydrocoll. 2014, 39, 151–162. [Google Scholar] [CrossRef]
- Gounga, M.E.; Xu, S.Y.; Wang, Z. Whey protein isolate-based edible films as affected by protein concentration, glycerol ratio and pullulan addition in film formation. J. Food Eng. 2007, 83, 521–530. [Google Scholar] [CrossRef]
- Mohammadian, M.; Salami, M.; Momen, S.; Alavi, F.; Emam Djomeh, Z.; Moosavi Movahedi, A.A. Enhancing the aqueous solubility of curcumin at acidic condition through the complexation with whey protein nanofibrils. Food Hydrocoll. 2019, 87, 902–914. [Google Scholar] [CrossRef]
- Madivala, B.; Vandebril, S.; Fransaer, J.; Vermant, J. Exploiting particle shape in solid stabilized emulsions. Soft Matter 2009, 5, 1717–1727. [Google Scholar] [CrossRef]
- Serfert, Y.; Lamprecht, C.; Tan, C.P.; Keppler, J.K.; Appel, E.; Rossier Miranda, F.J.; Schroen, K.; Boom, R.M.; Gorb, S.; Selhuber Unkel, C.; et al. Characterisation and use of β-lactoglobulin fibrils for microencapsulation of lipophilic ingredients and oxidative stability thereof. J. Food Eng. 2014, 143, 53–61. [Google Scholar] [CrossRef]
- Peng, J.; Simon, J.R.; Venema, P.; Van der Linden, E. Protein Fibrils Induce Emulsion Stabilization. Langmuir 2016, 32, 2164–2174. [Google Scholar] [CrossRef] [PubMed]
- Akkermans, C.; Venema, P.; Goot, A.J.V.D.; Gruppen, H.; Bakx, E.J.; Boom, R.M.; Linden, E.V.D. Peptides are Building Blocks of Heat-Induced Fibrillar Protein Aggregates of β-Lactoglobulin Formed at pH 2. Biomacromolecules 2008, 9, 1474–1479. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Liu, Q.; Mei, Z.; Wang, J.; Xu, J.; Sun, D. Pickering emulsions stabilized by paraffin wax and Laponite clay particles. J. Colloid Interf. Sci. 2009, 336, 314–321. [Google Scholar] [CrossRef]
- Amagliani, L.; Schmitt, C. Globular plant protein aggregates for stabilization of food foams and emulsions. Trends Food Sci. Technol. 2017, 67, 248–259. [Google Scholar] [CrossRef]
- Syed, I.; Sarkar, P. Ultrasonication-assisted formation and characterization of geraniol and carvacrol-loaded emulsions for enhanced antimicrobial activity against food-borne pathogens. Chem. Pap. 2018, 72, 2659–2672. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, S.; Zhang, J.; Chi, Y.; Tian, B.; Li, L.; Jiang, B.; Li, D.; Feng, Z.; Liu, C. Preparation of Whey Protein Isolate Nanofibrils by Microwave Heating and Its Application as Carriers of Lipophilic Bioactive Substances. LWT Food Sci. Technol. 2020, 125, 109213. [Google Scholar] [CrossRef]
- Kachur, K.; Suntres, Z. The antibacterial properties of phenolic isomers, carvacrol and thymol. Crit. Rev. Food Sci. Nutr. 2019. [Google Scholar] [CrossRef]
- Helander, I.M.; Alakomi, H.L.; Latva-Kala, K.; Mattila-Sandholm, T.; Pol, I.; Smid, E.J.; Gorris, L.G.M.; Von Wright, A. Characterization of the action of selected essential oil components on gram-negative bacteria. J. Agric. Food Chem. 1998, 46, 3590–3595. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 4, 233–253. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Li, L.; Wang, Q.; Wu, G.; Liu, C.; Jiang, B.; Xu, J. Effect of Antioxidant and Antimicrobial Coating based on Whey Protein Nanofibrils with TiO2 Nanotubes on the Quality and Shelf Life of Chilled Meat. Int. J. Mol. Sci. 2019, 20, 1184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, B.; Na, J.; Wang, L.; Li, D.; Liu, C.; Feng, Z. Reutilization of Food Waste: One-Step Extration, Purification and Characterization of Ovalbumin from Salted Egg White by Aqueous Two-Phase Flotation. Foods 2019, 8, 286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Films | Thickness (mm) | Transmittance (%) | Color Values | ||
---|---|---|---|---|---|
L* | a* | b* | |||
WPI/Gly | 0.184 ± 0.066 a | 46.7 ± 1.3 bc | 57.13 ± 1.84c | 3.57 ± 0.88 a | 2.64 ± 0.58 b |
WPNFs/Gly | 0.182 ± 0.034 a | 49.2 ± 1.4 c | 63.00 ± 0.16 d | 2.29 ± 0.81 c | 1.50 ± 0.14 a |
WPI–CA/Gly | 0.232 ± 0.045 b | 41.5 ± 0.1 a | 39.87 ± 0.24 a | 1.20 ± 0.36 b | 12.82 ± 0.42 c |
WPNFs–CA/Gly | 0.216 ± 0.038 ab | 45.7 ± 2.1 b | 46.89 ± 0.18 b | 2.94 ± 1.07 c | 10.00 ± 1.16 c |
- | Hardness (N) | Springiness (Mm) | Chewiness (N/m) | |||
---|---|---|---|---|---|---|
- | 0 day | 10 days | 0 day | 10 days | 0 day | 10 days |
Uncoated | 327.37 ± 7.73 a | 547.90 ± 3.80 c | 0.79 ± 0.02 b | 0.37 ± 0.06 a | 150.48 ± 1.76 b | 368.01 ± 7.37 c |
WPI–CA /Gly | 343.81 ± 3.11 b | 477.63 ± 1.37 b | 0.73 ± 0.01 a | 0.57 ± 0.06 b | 115.77 ± 6.68 a | 342.88 ± 5.11 b |
WPNFs–CA/Gly | 341.5 ± 0.70a b | 417.97 ± 2.46 a | 0.83 ± 0.02 b | 0.64 ± 0.05 b | 124.5 ± 0.99 b | 320.00 ± 2.69 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Liu, W.; Tian, B.; Li, D.; Liu, C.; Jiang, B.; Feng, Z. Preparation and Characterization of Coating Based on Protein Nanofibers and Polyphenol and Application for Salted Duck Egg Yolks. Foods 2020, 9, 449. https://doi.org/10.3390/foods9040449
Wang Q, Liu W, Tian B, Li D, Liu C, Jiang B, Feng Z. Preparation and Characterization of Coating Based on Protein Nanofibers and Polyphenol and Application for Salted Duck Egg Yolks. Foods. 2020; 9(4):449. https://doi.org/10.3390/foods9040449
Chicago/Turabian StyleWang, Qiannan, Weihua Liu, Bo Tian, Dongmei Li, Chunhong Liu, Bin Jiang, and Zhibiao Feng. 2020. "Preparation and Characterization of Coating Based on Protein Nanofibers and Polyphenol and Application for Salted Duck Egg Yolks" Foods 9, no. 4: 449. https://doi.org/10.3390/foods9040449
APA StyleWang, Q., Liu, W., Tian, B., Li, D., Liu, C., Jiang, B., & Feng, Z. (2020). Preparation and Characterization of Coating Based on Protein Nanofibers and Polyphenol and Application for Salted Duck Egg Yolks. Foods, 9(4), 449. https://doi.org/10.3390/foods9040449